㈠ 测定氮的方法
克氏定氮法
于有机式样中假如硫酸和硫酸钾,加硒或铜催化.N定量转化成NH4HSO4或者(NH4)2SO4,然后在
上述煮液中假如浓NAOH,析出NH3导入标准HCL.用标NAOH返滴
或直接用H3BO3吸收氨气,用标HCL吸收
㈡ 测定含氮量除了用甲醛法外还有什么其他方法
测定含氮量除了用甲醛法外,还有凯氏定氮法,Nessler试剂法等。
凯氏定氮法是非常经典的测试氮含量的方法,各种有机氮都可以测量。经过硫酸消化后的溶液蒸馏出氨气,滴定即可测出有机物中的氮含量。
Nessler试剂法是一种利用红外-可见分光光度法用于测定空气中、水体中氨氮含量的方法。碘离子和汞离子在强碱性条件下,会与氨反应生成红棕色胶态化合物,此颜色在波长420nm左右会有强烈的吸收。而生成的这类红棕色胶态化合物的量会与其溶液的吸收值成正比,可用测试反应液的吸收值而测定氨氮的含量。
㈢ 常用蛋白质氮定量测定方法它有哪些
测定蛋白质最基本的方法是定氮法,即先测定样品中的总氮量,再由总氮量计算出样品中蛋白质的含量.蛋白质含量测定最常用的方法是凯氏定氮法,它是测定总有机氮的最准确和操作较简便的方法之一,在国内外应用普遍.此外,双缩脉法、染料结合法、酚试剂法等也常用于蛋白质含量测定,由于方法简便快速,故多用于生产单位质量控制分析. 蛋白质及氨基酸的测定 蛋白质是生命的物质基础,是构成生物体细胞组织的重要成分,一切有生命的活体都含有不同类型的蛋白质.人体内的酸碱平衡、水平衡的维持;遗传信息的传递;物质的代谢及转运都与蛋白质有关.人及动物只能从食品得到蛋白质及其分解产物,来构成自身的蛋白质,故蛋白质是人体重要的营养物质,也是食品中重要的营养指标. 蛋白质是复杂的含氮有机化合物,分子量很大,它们由20种氨基酸通过酰胺键以一定的方式结合起来,并具有一定的空间结构.不同的蛋白质其氨基酸构成比例及方式不同,故各种不同的蛋白质其含氮量也不同.蛋白质可以被酶、酸或碱水解,最终产物为氨基酸.氨基酸是构成蛋白质的最基本物质,在构成蛋白质的氨基酸中,亮氨酸、异亮氨酸、赖氨酸、苯丙氨酸、蛋氨酸、苏氨酸、色氨酸和缬氨酸等8种氨基酸在人体中不能合成,必须依靠食品供给,故被称为必需氨基酸,它们对人体有着极其重要的生理功能,常会因其在体内缺乏而导致患病,或通过补充而增强了新陈代谢作用.所以食品及其原料中蛋白质和氨基酸的分离、鉴定和定量具有极其重要的意义.
㈣ 总氮测定方法是什么
高温催化氧化法。
高温催化氧化法则采用高温燃烧管或高温燃烧反应炉对水样进行消解,在850℃的高温、高纯氧气、催化剂共同作用下,样品中的含氮化合物转化为NO气体。连续流动分析法测定总氮时,碱性介质中的样品在107~110℃、紫外线照射条件下被过硫酸钾氧化为NO3-。
臭氧紫外联合—分光光度法测定总氮的过程中,臭氧在紫外光的照射下所产生的游离氧自由基与水反应生成的羟基自由基对有机物具有较强的氧化能力,可以使水样中的含氮有机物被氧化成NO3-。
(4)测定氮都有什么方法扩展阅读:
注意事项:
碱性过硫酸钾消解紫外分光光度法测定总氮的过程中,过硫酸钾是至关重要的试剂。首先, 试剂的纯度关系到空白值的高低、测定结果的准确度。一般普通分析纯过硫酸钾的总氮含量最高不超过0. 005%, 但由于试剂质量存在差异, 有些厂家、批次的试剂含氮量常常达不到这个要求, 致使空白值偏高。
GB11894- 89中只要求使用过硫酸钾,并没有对过硫酸钾的规格做出要求,而很多厂家的过硫酸钾含氮量都很高,造成空白居高不下。这种情况下就要采取重结晶的办法来提纯过硫酸钾,一般要重结晶5-6次以上。
㈤ 土壤普查中,土壤中氮的测试方法求推荐
按照土壤分析技术文件,凯式定氮、连续流动分析仪法、杜马斯燃烧法等均可进行土壤中全氮含量的测定。按照方法的便捷性、自动化程度等,首推杜马斯燃烧法。相较于凯式定氮及连续流动分析仪法,杜马斯燃烧法无需使用与配制大量化学试剂、分析过程简单、过程全自动、环保高效等。杜马斯燃烧法也可处理克级的样品量,满足实验室测试需求。
㈥ 废水中含氮量用什么方法测
用凯式定氮法,就是把所有含氮有机物转化为NH3+的盐,再测定氨氮的含量
蛋白质是含氮的有机化合物。食品与硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,即为蛋白质含量。
1.有机物中的胺根在强热和CuSO4,浓H2SO4 作用下,硝化生成(NH4)2SO4
反应式为:
2NH2+H2S04+2H=(NH4)2S04 (其中CuSO4做催化剂)
2.在凯氏定氮器中与碱作用,通过蒸馏释放出NH3 ,收集于H3BO3 溶液中
反应式为:
(NH4)2SO4+2NaOH=2NH3+2H2O+Na2SO4
2NH3+4H3BO3=(NH4)2B4O7+5H2O
3. 用已知浓度的H2SO4(或HCI)标准溶液滴定,根据HCI消耗的量计算出氮的含量,然后乘以相应的换算因子,既得蛋白质的含量
反应式为:
(NH4)2B4O7+H2SO4+5H2O=(NH4)2SO4+4H3BO3
(NH4)2B4O7+2HCl+5H2O=2NH4Cl+4H3BO3
㈦ 检测氮含量的方法!
一、材料:各种干燥、过筛(60~80目)的植物样品。
二、仪器设备:消化管; 微量凯氏定氮蒸馏装;三角烧瓶;微量滴定管; 量筒;容量瓶;烧杯;移液管等。
三、植物样品中氮元素含量检测实验:
1、样品提取分离:准确称取烘至恒重的样品0.1000g~0.5000g(依样品含氮量而定,含氮1~3mg宜),置10ml离心管中,加入5ml5%三氯乙酸,90℃水浴中浸提15min,不时搅拌。
取出后用少量蒸馏水冲洗玻棒,待溶液冷却后,4000rpm离心15min,上清液弃去。并用5%三氯乙酸洗沉淀2~3次,离心,弃去上清液,最后用蒸馏水将沉淀无损地洗入铺有滤纸的漏斗上,去掉滤液后,将沉淀和滤纸在50℃下烘干,用于蛋白氮的测定。
2、样品的消化:取4支消化管编号。1号管直接放入称好的材料用于测定总氮,2号管放入上述烘干的滤纸和沉淀,用于蛋白氮的测定,3号管放入同样滤纸一张、4号管不加任何样品作为空白对照,注意将样品放入消化管底部。
向各消化管加浓硫酸5ml,混合催化剂0.3g~0.5g,将样品浸泡数h或放置过夜后,在管口盖一小漏斗,放在远红外消煮炉上加热消化。开始时温度可稍低,以防止内容物上升至管口。泡沫多时,可从小漏斗加入2~3滴无水乙醇。
到管口出现白色雾状物时,泡沫已不再产生;此时可逐渐升温,使内容物达到微沸。直到消化液变为清澈透明为止。
消化过程中,若在消化管上部发现有黑色颗粒时,应小心地转动消化管,用消化液将它冲洗下来,以保证样品消化完全。消化过程约需2~3h。
3、定容消化完毕待溶液冷却后,沿管壁仔细加入10ml左右无氨蒸馏水,以冲洗管壁,再将消化液小心转入100ml容量瓶中。以无氨水少量多次冲洗消化管,洗涤液并入容量瓶。冷却后用无氨水定容至刻度,混匀备用。
4、蒸馏及滴定 以下几步进行:
A、仪器的洗涤:先经一般洗涤后,还要用水蒸气洗涤。可按下列方法进行蒸气洗涤。先在蒸气发生器中加入2/3体积的蒸馏水(事先加入几滴浓硫酸,使其酸化,加入甲基红指示剂,并加入少许沸石或毛细玻璃管以防止爆沸)。
打开漏斗下的夹子,用电炉或酒精炉加热至沸腾,使水蒸气通入仪器的各个部分,以达到清洗的目的。在冷凝管下端放置一个三角瓶接收冷凝水。然后关紧漏斗下的夹子,继续用蒸气洗涤5min。
冲洗完毕,夹紧蒸气发生器与收集器之间的连接橡胶管,蒸馏瓶中的废液由于减压而倒吸进入收集器,打开收集器下端的活塞排除废液。
如此清洗2~3次,再在冷凝管下端换放一个盛有硼酸-指示剂混合液的三角瓶,使冷凝管下口完全浸没在液面以下0.5cm处,蒸馏1~2min,观察三瓶内的溶液是否变色。
如不变色,表示蒸馏装置内部已洗干净。移去三角瓶,再蒸馏1~2min,用蒸馏水冲洗冷凝管下口,关闭电炉,仪器即可供测定样品使用。
B、标准硫酸铵测定为了熟悉蒸馏和滴定的操作技术,并检验实验的准确性,找出系统误差,常用已知浓度的标准硫酸铵测试三次。
在三角瓶中加入20ml硼酸-指示剂混合液,将此三角瓶承接在冷凝管下端,并使冷凝管的出口浸入溶液中。注意在加样前务必打开收集器活塞,以免三角瓶内液体倒吸。准确吸取2ml硫酸铵标准溶液,加到漏斗中。
四、结果计算:
样品中总氮量(%)=0.010×(V3—V0)×100×14/(W×1000×10)×100×氮的回收率样品中蛋白氮含量(%)=0.0100×(V1-V2-V0)×100×14/(W×5×1000)×100×氮的回收率。
回收率(%)=0.0100×(V-V0)×14/(2.0×0.6×100)×100。
一、药剂空白高的问题:
造成药剂空白高主要原因是过硫酸钾纯度不够。空白高于0.030 ,就需要提纯过硫酸钾。提纯方法就是二次结晶过硫酸钾:
1、(可以同时做两份)在1L的大烧杯中加入约800mL水,50 摄氏度的水浴锅上加热(水浴锅的温度要用温度计检测下是不是正常,以免超过60摄氏度。过硫酸钾在60 摄氏度以上会分解)。
我的经验是先加入90 克过硫酸钾,用一滤纸盖在上面(避免污染),溶解速度慢, 可以边做别的事边提纯,有空就去搅拌几下,全部溶解之后(速度较慢)。
用勺子逐渐向烧杯中加入过硫酸钾,一次不要加太多,溶了再加,直至不管怎样搅拌,隔了近一小时多都不能溶解为止(刚好有一丁点儿不能溶解),这个过程挺漫长。
2.把完全溶解的饱和溶液放在室温中自然冷却,用一干净的塑料袋包住烧杯口, 并用皮筋扎紧,再放进冰箱里(调到低温度),放置一晚上,重结晶。建议同时用一个1L 的广口瓶放一瓶无氨水在冰箱里冷藏(用于冲洗用)。
3.重结晶一夜后,第二天早上拿出来立即倒掉上清液,重结晶的晶体会结成一块沉在瓶底,但其实结构很松散,用钢勺什么的弄两下就离散开了,然后再清洗:用冰好的无氨水清洗几遍,尽量不要让下面的结晶流失。
4.二次结晶:清洗后的烧杯里只剩下下面的结晶,向烧杯中加入约400ML 的无氨水,搅拌溶解,这次跟次结晶不同的是向烧杯中慢慢地加入无氨水,一开始可以一次稍多点水 (看结晶的多少),剩下不多时要等久些,加的水也要少,直到有一丁点儿结晶不能溶解为止。
5.然后重复第2步骤(二次结晶)、第3步骤(清洗)。
6.清洗后倒掉上清液,把结晶移入一250ML的烧杯中,然后放入50摄氏度烘箱烘干即可 (烘箱里的温度要用温度计检测是否正常)。烘干箱里不要放入其它物品,以免再次污染。
烘干时间较长,(我的烘了二天三夜)可以晚上放烘干箱里烘,白天放在50 度水浴锅上蒸干一定。完全烘干后的药品跟原来的药品一样松散干燥,搅动会发出清脆的声音。
7 .烘干后的药品从烘箱里拿出要放在干燥器里冷却一小时以上。冷却后用干净的聚乙烯瓶装好盖紧。
8.实验过程中加碱性过硫酸钾的时候一定要避免加在瓶口处。
二、总氮取水体积:
因为碱性过硫酸钾消解紫外分光光度法测定总氮取水样量为10ML时,测定范围为0.20mg/l7.00mg/l。总氮高于7 mg/l时要适当减少取水样量。
如果取5ML水样再稀释至10ML 进行测定的话,高检出限是14 mg/l。当总氮高于14 mg/l 时取水量就要再减少进行测定。我一般是取2ML水样进行测定。
出水总氮低时可以取5ML水样进行测定。 吸取水样时要取静止一定时间后的上清液。
三、要用新鲜的无氨水:
整个总氮的测定过程中所用的无氨水,包括加药前稀释至10ML 用的无氨水,消解后加的无氨水,以及测定吸光值时参比样用的无氨水,都必须使用同一瓶水。 以免不同无氨水不同带来的误差。
四、密封事项:
比色管盖子用生料带缠好,这样密封性更好,防止氨氮跑出。
生料带对药剂没影响不会影响结果。但缠在盖子上的生料带要保持完好无损,以免碎屑掉入比色管内,影响吸光值,从而影响化验结果。比色管盖子一定要塞紧,然后用纱布和绳子扎紧。扎好后把纱布边沿往下拔, 使纱布紧密包住盖子。
五、灭菌锅的温度灭菌锅的温度设定为125度,消解时间设定为1小时。
六、趁热拿出消解结束后,待灭菌锅压力降为0 后,马上打开放气阀放气,放气后马上打开灭菌锅盖,立即拿出装比色管的烧杯,把总氮的比色管(压住总氮比色管的盖子)趁热多次摇匀,放回烧杯中,自然冷却。
七、加入1+1盐酸后,10分钟之后测定吸光值(只要是10 分钟后就行,时间长些不要紧,但要避免污染。)。分光光度计要预热30分钟以上,测定总氮的吸光值时,要先测220 波长的吸光值,全部测完了再测275波长的吸光值。
㈧ 氮量的测定 凯氏法
1 范围
本方法规定了地球化学勘查试样中氮含量的测定方法。
本方法适用于水系沉积物及土壤试料中氮量的测定。
本方法检出限(3S):0.002%氮。
本方法测定范围:0.006%~0.4%氮。
注:本方法测得的氮不包括硝态氮、亚硝态氮。因硝酸根离子在煮解过程中不会完全还原为铵离子,且易挥发损失。但一般土壤样品中硝态氮含量不超过全氮量的1%,故可以忽略不计(引自GB7848-87)。
2 规范性引用文件
下列文件中的条款通过本方法的本部分的引用而成为本部分的条款。
下列不注日期的引用文件,其最新版本适用于本方法。
GB/T 20001.4 标准编写规则 第4部分:化学分析方法。
GB 7848—87 森林土壤全氮的测定。
GB/T 14505 岩石和矿石化学分析方法总则及一般规定。
GB 6379 测试方法的精密度通过实验室间试验确定标准方法的重复性和再现性。
GB/T 14496—93 地球化学勘查术语。
3 方法提要
试料在硫酸钾、硫酸铜和硒的共存下,用硫酸煮解氧化,使试料中的氮转化为硫酸铵,再用氢氧化钠碱化后,加热蒸馏逸出氨,经硼酸溶液吸收,用盐酸标准溶液滴定并计算试料中氮的含量。
4 试剂
除非另有说明,在分析中仅使用确认为分析纯的试剂和蒸馏水或去离子水。
4.1 氢氧化钠
4.2 硼酸
4.3 硼砂
4.4 硒粉w(Se)=99%
4.5 硫酸(ρ 1.84g/mL)
4.6 盐酸(ρ 1.19g/mL)
4.7 硝酸(ρ 1.40g/mL)
4.8 乙醇 w(CH3CH2OH)=95%
4.9 氢氧化钠溶液 ρ(NaOH)=400g/L
4.10 盐酸溶液[c(HCl)=1mol/L]
量取84mL盐酸(4.6),用水稀释至1000mL。
4.11 王水(1+1)
75mL盐酸(4.6)和25mL硝酸(4.7)混合后,加入100mL水混匀。用时配制。
4.12 混合加速剂
将硫酸钾(K2SO4)和硫酸铜()按10∶1比例,在玻璃研钵中研磨混匀,装入宽口玻璃瓶中。
4.13 硒溶液[ρ(Se)=10.0g/L]
称取5.0g硒粉(4.4)于250mL烧杯中,加入10mL王水(1+1)(4.11)溶解后,用水稀释至500mL,摇匀。装入磨口玻璃瓶中备用。
4.14 硼酸溶液[ρ(H3BO3)=20g/L]
称取20g硼酸(4.2)溶解在1000mL水中。
4.15 甲基红-溴甲酚绿混合指示剂 称取0.1g甲基红和0.5g溴甲酚绿,溶解在100mL乙醇(4.8)中,移入玻璃瓶中备用。其变色范围:pH4.4(红色)~pH5.4(蓝色)。
4.16 硼酸溶液含有甲基红、溴甲酚绿指示剂的混合溶液
100mL硼酸溶液(4.14),加入2mL甲基红-溴甲酚绿混合指示剂(4.15),用稀的氢氧化钠溶液及稀的盐酸溶液调节溶液呈紫红色,此时该溶液的 pH为4.5。
4.17 硼砂标准溶液[c(1/2Na2B4O7)=0.02000mol/L]
称取1.9068g硼砂()(4.3)于250mL烧杯中,加入100mL水,溶解后移入500mL容量瓶中,用水稀释至刻度,摇匀。
4.18 盐酸标准溶液
吸取20 mL 1mol/L盐酸溶液(4.10)于1000ml容量瓶中,用水稀释至刻度,摇匀后须用硼砂标准溶液(4.17)标定。
4.18.1 标定方法 平行分取3份各20.00mL硼砂标准溶液(4.17)于各150mL三角烧杯中,各滴加1滴甲基红-溴甲酚绿混合指示剂(4.15),用盐酸标准溶液(4.18)分别进行滴定,溶液由蓝色变为紫红色为终点。同时分取3份各20.0mL水作空白试验滴定。分别记录各次滴定溶液的体积。按以下公式计算盐酸标准溶液浓度(4.18):
区域地球化学勘查样品分析方法
式中:c——盐酸标准溶液的浓度,mol/L;0.02000——硼砂标准溶液的浓度,mol/L;V1——硼砂标准溶液的体积,mL;V2——滴定硼砂标准溶液用去盐酸标准溶液的体积,mL;V0——滴定空白试验溶液用去盐酸标准溶液的体积,mL。
5 仪器及器具
5.1 市售通用的凯式法定氮装置
5.2 凯式烧瓶
规格:50mL。
5.3 三角锥瓶
规格:150mL。
6 分析步骤
6.1 试料
试料粒径应小于0.097mm,经室温干燥后,装入磨口小玻璃瓶中备用。
试料量 称取0.1g~1.0g试料,精确至0.0002g。
6.2 空白试验
随同试料分析全过程做双份空白试验。所用试剂需与试料测定(6.4)手续中使用同一瓶试剂,加入量也应一致。
6.3 质量控制
选取同类型水系沉积物或土壤一级标准物质2个~4个样品,随同试料同时分析。
6.4 测定
6.4.1 试料的煮解 称取试料(6.1)置于50mL凯式烧瓶(5.2)中,加入2g混合加速剂(4.12)及1mL硒溶液(4.13),加少许水润湿,加入5mL硫酸(4.5),瓶口放一小漏斗;于通风柜内,在调温电炉上先低温加热,待溶液中无泡沫发生(约需15min)后,再升高温度,使瓶内硫酸蒸汽回流的高度控制在瓶颈上部的三分之一处,要经常摇动凯式瓶,直至试料和煮解液完全变为灰白带绿色(约需15min)后,再继续煮解1h。全部煮解时间约需85~90min。切勿煮干。煮解完毕,取下凯式瓶,冷却,以待蒸馏。
6.4.2 蒸馏 在150mL三角锥瓶中加入5mL硼酸溶液含有甲基红-溴甲酚绿指示剂的混合溶液(4.16),将其套在凯式定氮蒸馏装置(5.1)的下端,端口置于硼酸溶液含有甲基红-溴甲酚绿指示剂的混合溶液(4.16)液面以下3~4cm处。把煮解液全部转入蒸馏器的内室,并用水冲洗凯式瓶4次,冲洗液用量不要超过40mL,打开冷却水,经三通管加入20mL氢氧化钠深液(4.9),立即关闭蒸馏室,打开蒸气夹,用蒸气蒸镏。当三角锥瓶内的馏出液达到50~55mL(约需8~10min)后,用广泛pH试纸置冷却管口碰触蒸馏液,如无碱性反应,表示氨已蒸馏完毕。若仍为碱性反应,应继续蒸馏直至无碱性反应。同时进行空白试验(6.2)的蒸馏。
6.4.3 滴定 已蒸馏在150mL三角锥瓶吸收的氨溶液,用盐酸标准溶液(4.18)滴定,滴定至溶液由蓝色突跃变为紫红色即为滴定终点,记录盐酸标准溶液(4.18)的体积。同时进行空白试验的蒸馏及其吸收液的滴定,记录盐酸标准溶液(4.18)的体积。
7 分析结果的计算
按下式计算试料中氮的含量:
区域地球化学勘查样品分析方法
式中:V——滴定试料溶液用去盐酸标准溶液的体积,mL;V0——滴定空白溶液用去盐酸标准溶液的体积,mL;c——盐酸标准溶液(4.18)的浓度,mol/L;0.014——氮原子的毫摩尔质量,g/m mol;m——试料质量,g。
8 精密度
氮量的精密度见表1。
表1 精密度[w(N),10-2]
附 录 A
(资料性附录)
A.1 从实验室间试验结果得到的统计数据和其他数据
见表A.1。
本方法精密度协作试验数据是由多个实验室进行方法合作研究所提供的结果进行统计分析得到的。
表A.1中不需要将各浓度的数据全部列出,但至少列出3个或3个以上浓度所统计的参数。
A.1.1 列出了试验结果可接受的实验室个数(即除了经平均值及方差检验后,属界外值而被舍弃的实验室数据。)
A.1.2 列出了方法的相对误差参数,计算公式为,公式中为多个实验室测量平均值:x0为一级标准物质的标准值。
A.1.3 列出了方法的精密度参数,计算公式为,公式中Sr为重复性标准差:SR为再现性标准差。为了与GB/T20001.4所列参数的命名一致,本方法精密度表列称谓为:“重复性变异系数”及“再现性变异系数”。
A.1.4 列出了方法的相对准确度参数。相对准确度是指测定值(平均值)占真值的百分比。
表A.1 N统计结果表
附加说明
本方法由中国地质调查局提出。
本方法由武汉综合岩矿测试中心技术归口。
本方法由中国地质科学院地球物理地球化学勘查研究所负责起草。
本方法主要起草人:张勤。
本方法精密度协作试验由武汉综合岩矿测试中心叶家瑜、江宝林组织实施。
㈨ 凯氏法测定氮
方法提要
试样在硫酸钾、硫酸铜和硒的共存下,用硫酸煮解氧化,使试样中的氮转化为硫酸铵,再用氢氧化钠碱化后,加热蒸馏逸出氨,经硼酸溶液吸收,用盐酸标准溶液滴定并计算试样中氮的含量。
方法适用于水系沉积物及土壤中氮量的测定。
方法检出限(3s):0.002%。
测定范围:0.006%~0.4%。
仪器及装置
通用的凯氏定氮蒸馏装置。
凯氏烧瓶50mL。
锥形瓶150mL。
试剂
硫酸。
氢氧化钠溶液(400g/L)。
盐酸溶液c(HCl)=1mol/L量取84mLHCl,用水稀释至1000mL。
(1+1)王水75mLHCl和25mLHNO3混合后,加入100mL水混匀。用时配制。
混合加速剂将硫酸钾(K2SO4)和硫酸铜(CuSO4·5H2O)按(10+1)比例,在玻璃研钵中研磨混匀,装入宽口玻璃瓶中。
硒溶液ρ(Se)=10.0g/L称取5.0g优级纯硒粉置于250mL烧杯中,加入10mL(1+1)王水溶解后,用水稀释至500mL,摇匀。装入磨口玻璃瓶中备用。
硼酸溶液称取20g硼酸溶解在1000mL水中。
甲基红-溴甲酚绿混合指示剂称取0.1g甲基红和0.5g溴甲酚绿,溶解在100mL乙醇中,移入玻璃瓶中备用。变色范围:pH4.4(红色)~pH5.4(蓝色)。
含有甲基红、溴甲酚绿指示剂的硼酸混合溶液取100mL硼酸溶液,加入2mL甲基红-溴甲酚绿混合指示剂,用氢氧化钠溶液及盐酸溶液调节溶液呈紫红色,此时该溶液的pH为4.5。
硼砂标准溶液c(1/2Na2B4O7)=0.0200mol/L称取1.9068g硼砂(Na2B4O7·10H2O)置于250mL烧杯中,加100mL水,溶解后移入500mL容量瓶中,用水稀释至刻度,摇匀。
盐酸标准溶液吸取20mL1mol/LHCl溶液置于1000mL容量瓶中,用水稀释至刻度,摇匀。
标定分取20.00mL硼砂标准溶液置于150mL锥形烧杯中,加1滴甲基红-溴甲酚绿混合指示剂,用盐酸标准溶液进行滴定,溶液由蓝色变为紫红色为终点。同时分取20.0mL水作空白试验。按下式计算盐酸标准溶液浓度:
岩石矿物分析第四分册资源与环境调查分析技术
式中:c为盐酸标准溶液的浓度,mol/L;0.0200为硼砂标准溶液的浓度数值,单位用了mol/L;V1为硼砂标准溶液的体积,mL;V2为滴定消耗盐酸标准溶液的体积,mL;V0为滴定空白试验溶液消耗盐酸标准溶液的体积,mL。
分析步骤
试样的煮解。称取0.1~1.0g(精确至0.0001g)试样(粒径小于0.075mm,经室温干燥后,装入磨口小玻璃瓶中备用)置于50mL凯氏烧瓶中,加入2g混合加速剂及1mL硒溶液,加少许水润湿,加入5mLH2SO4,瓶口放一小漏斗,于通风柜内,在调温电炉上先低温加热,待溶液中无泡沫发生(约需15min)后,再升高温度,使瓶内硫酸蒸汽回流的高度控制在瓶颈上部的1/3处,要经常摇动凯氏烧瓶,直至试样和煮解液完全变为灰白带绿色(约需15min)后,再继续煮解1h。全部煮解时间需85~90min,切勿煮干。煮解完毕,取下凯氏烧瓶,冷却,以待蒸馏。
蒸馏。在150mL锥形瓶中加入5mL硼酸混合溶液,将其套在凯氏定氮蒸馏装置的下端,端口置于硼酸混合溶液液面以下3~4cm处。把煮解液全部转入蒸馏器的内室,并用水冲洗凯氏烧瓶4次,冲洗液用量不要超过40mL,打开冷却水,经三通管加入20mLNaOH溶液,立即关闭蒸馏室,打开蒸气夹,用蒸气蒸馏。当锥形瓶内的馏出液达到50~55mL(约需8~10min)后,用广泛pH试纸置冷却管口碰触蒸馏液,如无碱性反应,表示氨已蒸馏完毕。若仍为碱性反应,应继续蒸馏直至无碱性反应。同时进行空白试验的蒸馏。
滴定。已蒸馏在150mL锥形瓶吸收的氨溶液,用盐酸标准溶液滴定,滴定至溶液由蓝色突跃变为紫红色即为滴定终点,记录盐酸标准溶液的体积。同时进行空白试验的蒸馏及其吸收液的滴定,记录盐酸标准溶液的体积。
按下式计算氮的含量:
岩石矿物分析第四分册资源与环境调查分析技术
式中:w(N)为氮的质量分数,%;V为滴定试样溶液消耗盐酸标准溶液的体积,mL;V0为滴定空白溶液消耗盐酸标准溶液的体积,mL;c为盐酸标准溶液的浓度,mol/L;0.014为氮原子的毫摩尔质量的数值,单位用g/mmol;m为试样的质量,g。
注意事项
本方法测得的氮不包括硝态氮、亚硝态氮。因硝酸根离子在煮解过程中不会完全还原为铵离子,且易挥发损失。但一般土壤试样中硝态氮含量不超过全氮量的1%,故可以忽略不计。
㈩ 可溶性有机氮的测定方法
土壤中的可溶性氮一般指硝酸根,亚硝酸根和铵根离子.
测量步骤应为:
1.取样称量,并溶解于蒸馏水中.
2.加入已知量(需过量)的用稀硫酸酸化过的高锰酸钾溶液.
3.等分并取一份进行氧化还原滴定(注:此还原剂的还原性应不足以被酸化过的硝酸根离子氧化).
4.加入稀硫酸酸化.
5.滴入已知量的(过量)淀粉KI溶液.
6.再用氧化性弱于硝酸的氧化剂对"5"中所得溶液进行氧化还原滴定至蓝色褪去.
记录以上数据并进行简单计算,即可准确测量.
土壤可溶性有机氮是指可以溶于水或盐溶液的有机氮,是土壤氮素中最活跃的组分之一。一方面,它是土壤有效养分的来源之一,可以直接或经过转化后为作物吸收;另一方面,它的移动性较强,可随水分运移而发生径流或淋溶流失,引起环境污染。研究发现,在农田中可溶性有机氮含量为2.9~12.3mg·kg-1,占可溶性总氮(可溶性有机氮和无机氮之和)的13~82%。通过总结前人的研究,Kessel等发现,农田中可溶性有机氮的损失占总溶解性氮素损失的26%。近几年,为探索其影响因素,组成、运移特性等,越来越多的研究围绕可溶性有机氮展开。目前测定可溶性有机氮的方法为差减法(如图1),需要测定可溶性总氮的含量和矿质态氮的含量,两者之差即为可溶性有机氮的含量。该方法步骤繁琐;并且矿质态氮的测定结果直接影响可溶性有机氮的计算结果,尤其是在矿质态氮含量高的土壤中,矿质态氮测定的误差对计算可溶性有机氮的含量影响很大,甚至在有的情况下计算为负值;由于可溶性总氮的测定是采用碱性过硫酸钾氧化法进行的