❶ 笛卡尔的几何是以什么作为基本方法的
笛卡尔(1596-1690)创立的解析几何的诞生则被称为数学史上的伟大转折。1637年笛卡尔发表了他的名着《方法论》,《几何》是当时该书的三个附录之一。后世的数学家和数学史学家都把笛卡尔的《几何学》作为解析几何的起点。笛卡尔的《几何学》共分三卷,第一卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和"超立体"的作图,但它实际是代数问题,探讨方程的根的性质。从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立起一种"普遍"的数学,把算术、代数、几何统一起来。他设想,把任何数学问题化为一个代数问题,在把任何代数问题归结到去解一个方程式。
❷ 解析几何是用什么方法研究几何问题的一门学科
4)与x轴距离的平方:y^2+z^2;与xoy平面距离的两倍:2*z;则所求轨迹为:y^2+z^2=2z;5)以向量a,b为邻边的平行四边形的面积为|a1*b2*m*n-a2*b1*m*n|=|a1*b2-a2*b1|*m*n;(两向量的向量积:两向量的向量积为向量,方向垂直于两向量所构成的平面,大小等于以两向量为邻边的平行四边形面积。)以m,n为邻边的平行四边形(在直角坐标系当中是矩形)面积为:m*n;二者之比为:|a1*b2-a2*b1|*m*n/(m*n)=|a1*b2-a2*b1|;若欲使其相等,则充要条件为:|a1*b2-a2*b1|=1
❸ 在数学中为什么要用代数的方法来研究几何问题
历史上把用代数研究几何的方法称为解析几何。在欧几里得几何出现的几百年后,各种非欧几何开始出现,解析几何就是非欧几何的一种。在解析几何中,数轴上的点、直角坐标系上的点、多维坐标系上的点可以分别表示实数、有序实数对和有序多维实数对。这样整个几何空间的点都可以用数来表示和衡量。这样欧式几何学的定理都可以通过向量的运算解决。降低了几何证明的难度。
❹ 几何的主要研究方法
综合几何法和分析法
❺ 几何问题解题技巧是什么
得看你说的是平面几何还是立体几何
平面几何是“一线难求”,也就是说能作出一条很好的辅助线就是突破的关键,在初中对于平面几何的训练非常多,因此初中学生对于一般的平面几何不是问题
而高中要考察学生的“化图为数”的能力,在高中考察立体几何一般利用空间直角坐标系就可以轻松解决问题而用传统的方法很不容易思考,高中的平面几何就考察的不多了,只有一本选修课本专门讲平面几何,而一般高考学生们做选修题大多选的都是极坐标和参数方程。
❻ 解答初中数学几何题时有哪些思想方法
解答初中数学几何题时有哪些思想方法
分类讨论思想等腰三角形已知两角或两腰底角还是顶角腰还是底函数一般存在X2就有两个解。分式方程无解分母为0化出来的方程无解。 由特殊到一般一般找规律题总结结论题。整体带入 如果一个字母的值无法求出那就把已知的代数式的值代入求解。 一看到图形三角形平行四边形正方形..
就想它的基本性质旋转。想旋转角对应边对应点到旋转中心的距离相等..一般求解。要有对应线段成比例。一般找相似图形A型图X型图平行就有相似。再两边对应成比例且夹角相等要掌握图形的性质、判定。正确分类。
一、数形结合思想
数形结合思想是指看到图形的一些特征可以想到数学式子中相应的反映是看到数学式子的特征就能联想到在图形上相应的几何表现。如教材引入数轴后就为数形结合思想奠定了基础。如有理数的大小比较相反数和绝对位的几何意义列方程解应用题的画图分析等这种抽象与形象的结合能使学生的思维得到训练。
数形结合是数学解题中常用的思想方法数形结合的思想可以使某些抽象的数学问题直观化、生动化能够变抽象思维为形象思维有助于把握数学问题的本质另外由于使用了数形结合的方法很多问题便迎刃而解且解法简捷。
所谓数形结合就是根据数与形之间的对应关系通过数与形的相互转化来解决数学问题的思想实现数形结合常与以下内容有关1实数与数轴上的点的对应关系2函数与图象的对应关系3曲线与方程的对应关系4以几何元素和几何条件为背景建立起来的概念如复数、三角函数等5所给的等式或代数式的结构含有明显的几何意义。
如等式 。
纵观多年来的中考试题巧妙运用数形结合的思想方法解决一些抽象的数学问题可起到事半功倍的效果数形结合的重点是研究“以形助数”。
例1如图所示比较aabb的大小
简析在数轴上指出-a-b两个数表示的点四数大小关系就一目了 然。
例2有一十字路口甲从路口出发向南直行乙从路口以西1500米处向东直行已
知甲、乙同时出发10分钟后两人第一次距十字路口的距离相等40分钟后两人再次距十字路口距离相等求甲、乙两人的速度。
简析画出“十字”图分析表示出两人在10分钟、40分钟时的位置由图分析从而列出方程组。
二、整体变换思想
整体变换思想是指将复杂的代数式或几何图形中的一部分看作一个整体进行变换使问题简单化。
例3已知y=ax7+bx5+cx3+dx-1当x=2时y=4则当x=-2时
y= 。
简析由已知条件求出27a+25b+23c+2d的值整体代入求出x=-2时
y的值。
例4有一个六位数它的个位数学是6如果把6移至第一位前面时
所得到的六位数是原数的4倍求这个六位数。
简析设这个六位数的前五位数为x那么这个六位数为10x+8整
体处理问题就简单化了。
三、分类讨论思想
在解答某些数学问题时,有时会有多种情况,对各种情况加以分类,并逐类求解,然后综合
求解,这就是分类讨论法。分类讨论是一种逻辑方法,也是一种数学思想。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在试题中占有重要的位置。
分类评论的一般步骤是明确讨论对象,确定对象的全体→确定分类标准,正确进行分类→逐步进行讨论,获取阶段性结果→归纳小结,综合得出结论。
分类讨论应遵循的原则分类的对象是确定的,标准是统一的,不遗漏,不重复,分层次,不
越级讨论。
当某个问题有多种情况出现或推导结果不唯一确定时常运用分类讨论再加以集中归纳。例如对|a|要去掉绝对值符号应讨论绝对值内部式子的符号要分三种情况去掉绝对值符号。几何中也存在着一些数学和位置关系的分类讨论。
例5甲、乙两人骑自行车同时从相距75km的两地相向而行甲的速度为15km/n
乙的速度为10km/n经过多少小时甲、乙两人相距25km
简析甲、乙两人相遇前后都会相距25km。分两种情况解答。
例6在同一图形内画出∠AOB=60°∠COB=50°OD是∠AOB的平分线OE是
∠COB的平分线并求出∠DOE的度数。
简析分∠COB在∠AOB的内部和外部两种情形总图。
四、转化与化归思想
解决某些数学问题时,如果直接求解较为困难,可通过观察、分析、类比、联想等思维过程,运用恰当的数学方法进行变换,将问题转化为一个新问题(相对来说较为熟悉的问题),通过新问题的求解,、达到解决原问题的目的。这一思想方法我们称之为“转化与化归的思想方法”。转化是将数学命题由一种形式向另一种形式的转换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题。转化与化归思想是中学数学最基本的思想方法。 转化与化归思想是指根据已有知识、经验通过观察、联想、类比等手段把问题进行变换转化为已经解决或容易解决的问题。如二元一次方程组三元一次方程组的解决实质就是化为解已经学过的一元一次方程。如果把若干个人之间握手总次数单握称为“握手问题”那么像无三点共线的n个点之间连线共端点射线夹角小于平角的角个数一条线段上有若干个点形成的线段的条数足球队之间单个循环比赛场次都可转化为“握手问题”。
例7用同样长的火柴组成6个大小相同的正方形最少要火柴 根。
简析这6个大小相同的正方形可看作一个正方体的6个面这样所
用火柴最少。实际上就是正方体的12条棱。
例8用同样长的6根火柴棒摆大小相同的三角形最多能摆多少个
简析同样长的6根火柴棒可以看作正三棱锥的三条棱那么最多能
摆四个三角形。
五、逆变换思想
逆变换思想是指对一些定义、定理、公式法则的逆用和对解题思路的逆向分析。如加减、函数、通分与约分去括号与添括号与均为互逆变换。
例9计算
简析逆用乘法分配律。
例10
简析逆用幂运算法则。
例11当a= 时|a|a||=2a
简析采用逆向分析例12先看绝对值结果根据绝对值的非负性得-2a≥0则a≤0。
六、函数与方程思想
函数思想是指变量与变量之间的一种对应思想。方程思想则指把研究数学问题中已知量与未知量之间的数量关系转化成方程或方程组等数学模型。当函数值为零时函数问题就转化为方程问题。同样也可以把方程视为函数值为零时求自变量的问题。
例12一角的余角的3倍和它的补角的互为补角求这个角的度数。简析几何题中列方
程组会使问题解决。
例13某工程队要招聘甲、乙两种工种的工人700人甲、乙两种工
种的工人的月工资分别为800元和1200元现要求乙种工种的工人数不少于甲种工种人数的3倍问甲、乙两种工种各招聘多少人时可使得每月所付的工资最少
简析建立函数关系式确定自变量范围利用一次函数单调性增减性解决问题。
总之在数学教学中切实把握好上述几个典型的数学思想方法同时注重渗透的过程
依据课本内容和学生的认识水平从初中开始有计划有步骤地渗透使其成为由知识转化为能力的纽带成为提高学生的学习效率和数学能力的法宝。
❼ 在解析几何中,运用代数方法研究几何问题是实质,还是用几何方法研究代数问题是实质,为什么求解释
在解析几何中,实质是运用代数方法研究几何问题。中学解析几何,主要是用代数方法研究圆锥曲线的几何特征。
❽ 几何证明题分析的方法有几种
几何证明题分析的方法一般有分析法与综合法两种。
分析法:从已知入手,逐步推向结论。
综合法:从结论出发,逐步推向已知。
❾ 平面解析几何研究的主要问题是什么
解析几何(Analytic geometry),又称为坐标几何(Coordinate geometry)或卡氏几何(Cartesian geometry),早先被叫作笛卡儿几何,是一种借助于解析式进行图形研究的几何学分支。解析几何通常使用二维的平面直角坐标系研究直线、圆、圆锥曲线、摆线、星型线等各种一般平面曲线,同时研究它们的方程,并定义一些图形的概念和参数。