导航:首页 > 研究方法 > 商务数据分析的方法有

商务数据分析的方法有

发布时间:2022-06-10 05:40:38

怎么做商业数据分析

商业数据分析一般分为5个步骤:收集、清洗、对比、细分、溯源。

  1. 数据收集

当我们在做数据分析时,第一步要解决的问题肯定就是数据源的问题。Allen通常把数据分为二大类。第一类是直接能获取的数据,通常都是内部数据。无非就是从网站后台或者是自己家的数据库里面导。第二类就是外部数据,需要经过加工整理后得到的数据。

典型的数据来源有:网络指数、阿里指数、梅花网、cnzz等。

2. 数据清洗

清洗数据(筛选、清除、补充、纠正)的目的是从大量的、杂乱无章、难以理解的数据中抽取并推导出对解决问题有价值、有意义的数据。清洗后、保存下来真正有价值、有条理的数据,为后面做数据分析减少分析障碍。

3. 数据对比

对比,是数据分析的切入点。因为如果没参照物,数据就没有一个定量的评估标准。通常情况下我们从二个点去切入进行数据对比分析:1.横向对比 2.纵向对比

横向对比,与行业平均数据,与竞争对手的数据进行比对。举个粟子,比如你家的APP用户留存率是60%,而行业平均留存是70%或竞争对手的用户留存率是70%,那就说明你家的产品在留存率方面有待加强!

纵向对比,与自家产品的历史数据进行对比,围绕着时间轴来对比。还是用用户留存率来进行举粟子吧,比如,APP改版前30天,新用户留存率是70%的,而新版APP发布后,新用户留存率降了10%或者升了5%,这就产生了问题,到底是那些因素导致数据产生了异常呢?

4. 数据细分

数据对比发现了异常,我们当然想知道是什么原因导致的。这里就要用到数据细分了,数据细分通常情况下先分纬度,再分粒度。

何谓为纬度?按时间分类就是时间纬度,按地区分类就是地域纬度,按来路分类就是来源纬度,按受访页面分类就是受访纬度。今天APP访问量涨了5%,咋回事不知道,你细分一看,大部分网页都没涨,某个频道某个活动页涨了300%,这就清楚了,这就是细分最简单的范例,其实很多领域都通用。

粒度是什么?你时间纬度,是按照天,还是按照小时?这就是粒度差异,你来路纬度,是来路的网站,还是来路的url,这就是粒度的差异;纬度结合粒度进行细分,就可以将对比的差异值逐级锁定问题区域,就可以更容易地寻找出发生问题的原因了。

5.数据溯源

通常情况下,通过数据细分就能分析出大多数问题的原因并推导出结论了。但也有特殊的情况,即使具体到粒度了也得不出有说服力的结论。

这时候我们再进一步,通过数据溯源就能找出问题的原因。依据锁定的这个纬度和粒度作为搜索条件,查询所涉及的源日志,源记录,然后基于此分析和反思用户的行为,往往会有惊人的发现。

❷ 做数据分析时的常用方法哪些

数据分析的三个常用方法有数据趋势分析、数据对比分析及数据细分分析。


1、数据趋势分析


趋势分析一般而言,适用于产品核心指标的长期跟踪,比如,点击率,GMV,活跃用户数等。做出简单的数据趋势图,并不算是趋势分析,趋势分析更多的是需要明确数据的变化,以及对变化原因进行分析。


2、数据对比分析


对比分析,就是给孤立的数据一个合理的参考系,否则孤立的数据毫无意义。一般而言,对比的数据是数据的基本面,比如行业的情况,全站的情况等。有的时候,在产品迭代测试的时候,为了增加说服力,会人为的设置对比的基准。也就是A/B test。


3、数据细分分析


在得到一些初步结论的时候,需要进一步地细拆,因为在一些综合指标的使用过程中,会抹杀一些关键的数据细节,而指标本身的变化,也需要分析变化产生的原因。细分分析是一个非常重要的手段,多问一些为什么,才是得到结论的关键,而一步一步拆分,就是在不断问为什么的过程。

❸ 电商数据分析常用方法有哪些

1.对比分析


横向对比:简单的说就是和谁对比?假如说我们上个月店铺的成交额增长了30%,那么我们是不是应该开心呢?


这里我们还要参考竞争对手的成交额,数据时代,我们可以很轻易的拿到竞争对手的相关数据。


纵向对比:我们可以把近15天的成交额以线条的形式显示出来,这样就可以很清楚的看到近期的成交额是否达到预期,有没有下降趋势,当然我们也可以以季度、月或周为单位。


2.转化分析


这里牵涉到一个问题,评判一家电商企业需要用到的一些日常统计指标:


店铺的目标用户数量:一家店铺的成交量,反映的是这家店铺对于市场的影响以及用户对于产品的满意度。


平均消费金额:店铺每年平均每位用户消费了多少,以此来定位目标人群,确定是否达到盈利的指标。


用户的复购率:判别产品满意度,假如用户购买过一次后,还会购买第二次,说明用户对于你的产品还是很满意的,这样既节省了市场推广费用,用户也会推荐给更多朋友来够买。


3.留存分析


我们通过活动等形式把用户引流到我们的流量池里,但是经过一段时间后,用户可能就会慢慢的流失了。那些留下来或者经常访问我们店铺的用户称之为留存。


我们常常用到的日活跃用户量、月活跃用户量、季度活跃用户量,来检测我们店铺的流量。有的时候可能会看到我们的日活,在一段时期内都是逐渐增加的,以为是非常好的现象,但是如果没有做留存分析的话,这个结果很可能是一个错误的。


留存是产品的核心,用户只有留下来,我们的产品才能不断增长。如果我们什么都不做的话,用户很快的就流失了。


4.产品比价


大部分电商公司会频繁搞促销,一般来说每次打的旗帜无非是全网最低,但是如何才能确定是全网最低呢?


这时候需要我们去搭建一个比价系统,这个比价系统的目的主要是为了去抓取各大电商平台商品的价格。通过各大电商平台的价格以及优惠额,来制定你自己的策略。


关于电商数据分析常用方法有哪些,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

❹ 数据分析的基本方法有哪些

数据分析的三个常用方法:
1. 数据趋势分析
趋势分析一般而言,适用于产品核心指标的长期跟踪,比如,点击率,GMV,活跃用户数等。做出简单的数据趋势图,并不算是趋势分析,趋势分析更多的是需要明确数据的变化,以及对变化原因进行分析。
趋势分析,最好的产出是比值。在趋势分析的时候需要明确几个概念:环比,同比,定基比。环比是指,是本期统计数据与上期比较,例如2019年2月份与2019年1月份相比较,环比可以知道最近的变化趋势,但是会有些季节性差异。为了消除季节差异,于是有了同比的概念,例如2019年2月份和2018年2月份进行比较。定基比更好理解,就是和某个基点进行比较,比如2018年1月作为基点,定基比则为2019年2月和2018年1月进行比较。
比如:2019年2月份某APP月活跃用户数我2000万,相比1月份,环比增加2%,相比去年2月份,同比增长20%。趋势分析另一个核心目的则是对趋势做出解释,对于趋势线中明显的拐点,发生了什么事情要给出合理的解释,无论是外部原因还是内部原因。
2. 数据对比分析
数据的趋势变化独立的看,其实很多情况下并不能说明问题,比如如果一个企业盈利增长10%,我们并无法判断这个企业的好坏,如果这个企业所处行业的其他企业普遍为负增长,则5%很多,如果行业其他企业增长平均为50%,则这是一个很差的数据。
对比分析,就是给孤立的数据一个合理的参考系,否则孤立的数据毫无意义。在此我向大家推荐一个大数据技术交流圈: 658558542 突破技术瓶颈,提升思维能力 。
一般而言,对比的数据是数据的基本面,比如行业的情况,全站的情况等。有的时候,在产品迭代测试的时候,为了增加说服力,会人为的设置对比的基准。也就是A/B test。
比较试验最关键的是A/B两组只保持单一变量,其他条件保持一致。比如测试首页改版的效果,就需要保持A/B两组用户质量保持相同,上线时间保持相同,来源渠道相同等。只有这样才能得到比较有说服力的数据。
3. 数据细分分析
在得到一些初步结论的时候,需要进一步地细拆,因为在一些综合指标的使用过程中,会抹杀一些关键的数据细节,而指标本身的变化,也需要分析变化产生的原因。这里的细分一定要进行多维度的细拆。常见的拆分方法包括:
分时 :不同时间短数据是否有变化。
分渠道 :不同来源的流量或者产品是否有变化。
分用户 :新注册用户和老用户相比是否有差异,高等级用户和低等级用户相比是否有差异。
分地区 :不同地区的数据是否有变化。
组成拆分 :比如搜索由搜索词组成,可以拆分不同搜索词;店铺流量由不用店铺产生,可以分拆不同的店铺。
细分分析是一个非常重要的手段,多问一些为什么,才是得到结论的关键,而一步一步拆分,就是在不断问为什么的过程。

❺ 如何着手商业数据分析

商业分析的流程一般分为5个步骤

明确问题-拆解问题-安排工作任务-推进工作任务-输出分析报告

1、明确问题

首先在解决问题前,我们一定要知道问题到底是什么?这样我们就知道了后期工作的方向,避免了以后出现的没必要的争论。对于如何明确问题,可以用SMART法则来说明


S——Specific 具体明确的,不能将问题说得太抽象

比如小米手机想要卖的好,就不能简单的说成小米手机要做成让每个人都喜欢的产品,而是应该说成小米手机的出货量要达到去年的150%

M——Measurable 可衡量的,不管是问题的本身还是目标要量化出来

还是小米的例子,出货量达到到去年的150%,那么150%就是可以量化的标准

A——Action-oriented 行动导向 就是说明问题时,必须要有解决的方向

比如小米通过销售改进、加大市场推广、增强产品研发能力这三种方式使出货量要达到去年的150%。

R——Relevant 相关联的,行动与问题存在相关性

小米通过销售改进、加大市场推广、增强产品研发能力对提升出货量是有相关性的,不能说小米通过进入笔记本电脑领域的方式去增加手机的出货量,开发笔记本电脑这个产品线这个行动跟提升手机出货量没有任何关联

T——Time-bound 时间限制

计划使出货量增加到去年的150%,可能过了两年手机的出货量也没有提升到150%,所以明确时间尤其重要 ,比如我计划用8个月的时间使手机出货量达到去年的150%。当然,时间的限定一定要从实际情况出发,要具备一定的合理性

2、拆分问题

拆分问题需要用到逻辑树模型

逻辑树分析模型顾名思义,就是把一个已知明确的问题作为树干,分析哪些问题跟这个问题有关,把相关的问题作为树枝加入到树干当中,由此不断向下拓展,就会将问题拓展成一个逻辑树

使用逻辑树模型的优点:

● 保证了解决问题的完整性

● 理清了所有的思路

● 避免了重复和无关的思考

除此之外,还有2个法则能更好的帮你理清思路,分别是MECE分析法和二八法则

MECE分析法即把一个工作项目分解为若干个更细的工作任务的方法

它主要有两条原则:

完整性

分解工作的过程中不要漏掉某项,要保证完整性

比如市场推广和提升产品研发能力就是2个不同的解决问题方向,漏掉某一项都会使解决问题的方向不完整

独立性

每项工作之间要独立,每项工作之间不要有交叉重叠

比如小米手机想要增加出货量可以提升产品研发能力和把手机设计得更好看,那么这2个子问题就重合了,因为产品研发能力包含了手机设计能力

二八法则,通俗理解就是在任何一组东西中,最重要的只占其中一小部分,约20%,其余80%尽管是多数,却是次要的

逻辑树分析模型中也是一样,要时刻关注重点问题,对于一些非重点的问题舍弃掉,减少工作量的同时集中力量解决重点问题

3、安排工作任务

将相互关系紧密的问题作为一个独立项目-确定项目负责人和工作推进计划表;特别是重要节点-负责人不时检查工作,按计划推进工作

4、推进执行任务

既然是商业分析,那么我们就要知道从哪几个维度去分析,以及如何获取有用的信息。明确这两个问题,我们就能很好的推进执行任务

3个分析维度

市场分析-竞争者分析-用户分析

以小米案例说明:

首先我们要了解整个手机市场的概况,对于手机市场的规模多大,供应链上下游的情况一一了解清楚,根据手机市场的环境来预测未来手机市场的发展趋势,做到快人一步

对于竞争者分析,我们要知道整个手机市场的几个大的玩家,以及他们的市场占有率是多少,还要具体分析每个竞争对手的概况和优劣势,包括渠道、供应链、产品等等方面。对于手机行业来说,苹果、华为、OPPO、vivo这几个大玩家是一定要仔细研究

最后是用户分析,要从用户属性、购买产品的决策等等因素上精准定位粉丝,了解用户需求,抓住用户痛点,帮助公司获取和留存用户。手机行业,OPPO和vivo因为渠道优势,对于目标人群的需求抓得非常精准

3种获取信息的方式

案头研究-用户调研-实地考察


案头研究,互联网时代,我们可以从网络获得相关新闻和一些专业的数据库,但是由于信息量极大,我们也要注意筛选出可靠准确的目标信息

用户调查可以分为线上调查和线下调查,线上我们可以通过网络/电话的形式调研,能得到大量的一手信息,但是不一定能得到你想要的全部信息。线下我们可以通过拜访的形式交流调研,线下调查能直接触达用户,了解到你想要的全部信息,但是时间经济成本太高

实地调研一般会和用户调查相结合,能得到一些隐藏但是非常重要的信息,当然,时间经济成本也是非常高

5、输出分析报告

这一步是整个商业分析过程的复盘总结,决定着你的分析结果是否能给企业做出正确的决策

一般来说,输出分析报告可以分为4个步骤

总体概要-整个商业分析的主要内容,包公整体的框架和逻辑

填充整理PPT信息-将信息填充到每个独立的项目,清楚解决问题的细节

沟通优化-内部沟通保证报告的完整性,用户沟通包含用户想要的信息

定稿汇报-对报告内容做到了然于胸,根据不同受众,报告称显得内容和形式不同。

❻ 如何做好电子商务数据分析

数据是这些:访客、页面数、停留时间、商品被访问数、转化率、客单价、成交额’访问来源等等,分析方法:天、周、月、年的同比和环比数据,扩展分析行业的数据和竞争对手的数据

❼ 常用的数据分析方法有哪些


常见的数据分析方法有哪些?
1.趋势分析
当有大量数据时,我们希望更快,更方便地从数据中查找数据信息,这时我们需要使用图形功能。所谓的图形功能就是用EXCEl或其他绘图工具来绘制图形。
趋势分析通常用于长期跟踪核心指标,例如点击率,GMV和活跃用户数。通常,只制作一个简单的数据趋势图,但并不是分析数据趋势图。它必须像上面一样。数据具有那些趋势变化,无论是周期性的,是否存在拐点以及分析背后的原因,还是内部的或外部的。趋势分析的最佳输出是比率,有环比,同比和固定基数比。例如,2017年4月的GDP比3月增加了多少,这是环比关系,该环比关系反映了近期趋势的变化,但具有季节性影响。为了消除季节性因素的影响,引入了同比数据,例如:2017年4月的GDP与2016年4月相比增长了多少,这是同比数据。更好地理解固定基准比率,即固定某个基准点,例如,以2017年1月的数据为基准点,固定基准比率是2017年5月数据与该数据2017年1月之间的比较。
2.对比分析
水平对比度:水平对比度是与自己进行比较。最常见的数据指标是需要与目标值进行比较,以了解我们是否已完成目标;与上个月相比,要了解我们环比的增长情况。
纵向对比:简单来说,就是与其他对比。我们必须与竞争对手进行比较以了解我们在市场上的份额和地位。
许多人可能会说比较分析听起来很简单。让我举一个例子。有一个电子商务公司的登录页面。昨天的PV是5000。您如何看待此类数据?您不会有任何感觉。如果此签到页面的平均PV为10,000,则意味着昨天有一个主要问题。如果签到页面的平均PV为2000,则昨天有一个跳跃。数据只能通过比较才有意义。
3.象限分析
根据不同的数据,每个比较对象分为4个象限。如果将IQ和EQ划分,则可以将其划分为两个维度和四个象限,每个人都有自己的象限。一般来说,智商保证一个人的下限,情商提高一个人的上限。
说一个象限分析方法的例子,在实际工作中使用过:通常,p2p产品的注册用户由第三方渠道主导。如果您可以根据流量来源的质量和数量划分四个象限,然后选择一个固定的时间点,比较每个渠道的流量成本效果,则该质量可以用作保留的总金额的维度为标准。对于高质量和高数量的通道,继续增加引入高质量和低数量的通道,低质量和低数量的通过,低质量和高数量的尝试策略和要求,例如象限分析可以让我们比较和分析时间以获得非常直观和快速的结果。
4.交叉分析
比较分析包括水平和垂直比较。如果要同时比较水平和垂直方向,则可以使用交叉分析方法。交叉分析方法是从多个维度交叉显示数据,并从多个角度执行组合分析。
分析应用程序数据时,通常分为iOS和Android。
交叉分析的主要功能是从多个维度细分数据并找到最相关的维度,以探究数据更改的原因。

❽ 数据分析的方法有哪些

数据分析的方法有:对比分析法,分组分析法,预测分析法,漏斗分析法,AB测试分析法,象限分析法,公式拆解法,可行域分析法,二八分析法,假设性分析法。

1.对比分析法:对比分析法指通过指标的对比来反映事物数量上的变化,属于统计分析中常用的方法。常见的对比有横向对比和纵向对比。

横向对比指的是不同事物在固定时间上的对比,例如,不同等级的用户在同一时间购买商品的价格对比,不同商品在同一时间的销量、利润率等的对比。

数据分析方法是‬数据统计学‬当中‬应用‬非常‬广泛‬的方法‬,具体‬方法‬有很多种‬,具体采用的时候因人而异。

❾ 常用的数据分析方法有哪些

1. 描述型分析:发生了什么?


这是最常见的分析方法。在业务中,这种方法向数据分析师提供了重要指标和业务的衡量方法。


例如,每月的营收和损失账单。数据分析师可以通过这些账单,获取大量的客户数据。了解客户的地理信息,就是“描述型分析”方法之一。利用可视化工具,能够有效的增强描述型分析所提供的信息。


2. 诊断型分析:为什么会发生?


描述性数据分析的下一步就是诊断型数据分析。通过评估描述型数据,诊断分析工具能够让数据分析师深入地分析数据,钻取到数据的核心。


良好设计的BI dashboard能够整合:按照时间序列进行数据读入、特征过滤和钻取数据等功能,以便更好的分析数据。


3. 预测型分析:可能发生什么?


预测型分析主要用于进行预测。事件未来发生的可能性、预测一个可量化的值,或者是预估事情发生的时间点,这些都可以通过预测模型来完成。


预测模型通常会使用各种可变数据来实现预测。数据成员的多样化与预测结果密切相关。在充满不确定性的环境下,预测能够帮助做出更好的决定。预测模型也是很多领域正在使用的重要方法。


4. 指令型分析:需要做什么?


数据价值和复杂度分析的下一步就是指令型分析。指令模型基于对“发生了什么”、“为什么会发生”和“可能发生什么”的分析,来帮助用户决定应该采取什么措施。通常情况下,指令型分析不是单独使用的方法,而是前面的所有方法都完成之后,最后需要完成的分析方法。

❿ 有哪些商业智能数据分析方法

你好,商业智能中的数据分析工作主要通过OLAP来实现。原理是根据业务需求,建立人员分析数据的维度比如年月日等等。
而分析人员需要掌握的是数据分析的思路,比如我们要利用比较常用的FineBI做一个简单的分析,先确立哪些分析指标,需要哪些表,然后取出, OLAP会自动建立表间关联,只需要搭建图表结构即可实现数据查询和分析结构的展示,这也正是商业智能的“智能”所在。

阅读全文

与商务数据分析的方法有相关的资料

热点内容
coolpad3G手机解锁方法 浏览:51
心理各学派研究方法 浏览:859
临床测定排卵方法有哪些 浏览:384
万年高效过滤器安装方法 浏览:465
氨氮分析仪检测方法 浏览:977
636减去197的简便方法 浏览:417
考起清华北大有哪些方法 浏览:712
电瓶充电线和插座连接方法 浏览:721
薏米红豆代餐饼的食用方法 浏览:330
重庆偏瘫自我训练方法有哪些 浏览:593
老公帮小孩吸奶有什么方法 浏览:249
电流导入仪使用方法 浏览:498
提拔领导的正确方法 浏览:628
成本核算方法应用研究 浏览:688
博美犬减肥方法技巧有哪些 浏览:498
用什么方法去老年斑 浏览:599
鱼轮怎么使用方法 浏览:646
大月份怀孕母牛肚胀治疗方法 浏览:849
测量尽量准的方法 浏览:199
研究课题具体研究方法 浏览:149