‘壹’ 这个反向放大器的电容怎么分析
这种情况下的电容通常是为了放大器级与级之间的耦合考虑的,比方说C1是为了防止前级的直流电压输入到反向放大器,而C2是为了防止因为运放电源波动而导致输出的偏移进入到后级,这里对于一个反向放大器来说,输入电阻为10K,对于前级的1K来说算比较大了,因此C1,C2使用较大的电容就OK
电压增益为10
‘贰’ 这个运放电路该怎么分析
这里两级放大都是典型的反相放大器电路,因为运放是单电源供电,所以需要红色圈圈的电阻分压电路来给运放的同相端提供偏置电压,此值需要在 电源电压的一半;
绿色圈圈电路,应该是因为输入信号的静态时直流电压偏离Vcc/2很多,需要加以调节补偿。而后级电路就不需要这个调节电路了;
如果是在电阻R101左端串联个隔直电容,就不需要R103了;
‘叁’ 反向、同向求和放大电路的工作原理
工作原理:反相求和放大电路与同相求和电路的差异在于输入信号分别从运放的反相输入端和同相输入端输入。输出信号与输入信号的相位相反或相同。
利用虚短和虚断的概念(便于叙述,假设反相输入端的电位为U-,同相输入端的电位为U+),得U-=U+=0
再列出“-”端的KCL:(Ui1-U-)/R1+(Ui2-U-)/R2+(Ui3-U-)/R3=(U--Uo)/Rf
整理得到输出和输入之间的关系式:Uo=-(Rf/R1*Ui1+Rf/R2*Ui2+Rf/R3*Ui3)
假设R1=R2=R3=R,则Uo=-Rf/R*(Ui1+Ui2+Ui3)
电路放大倍数Av=Rf/R,输出信号是三路输入信号之和的Av倍。“-”仅代表输出信号和输入信号的相位相反,或差180°。同相求和电路与此类似。
(3)反相放大电路的分析方法扩展阅读:
有静态和动态两种工作状态,所以有时往往要画出它的直流通路和交流通路才能进行分析;电路往往加有负反馈,这种反馈有时在本级内,有时是从后级反馈到前级,所以在分析这一级时还要能“瞻前顾后”。在弄通每一级的原理之后就可以把整个电路串通起来进行全面综合。
放大电路的输入电阻是从输入端向放大电路内看进去的等效电阻,它等于放大电路输出端接实际负载电阻后,输入电压与输入电流之比,即Ri=Ui/Ii。对于信号源来说,输入电阻就是它的等效负载。
对负载而言,放大电路的输出端可等效为一个信号源。输出电阻越小,输出电压受负载的影响就越小,若Ro=0,则输出电压的大小将不受RL的大小影响,称为恒压输出。当RL<<Ro时即可得到恒流输出。因此,输出电阻的大小反映了放大电路带负载能力的大小。
‘肆’ 运放电路分析
我将会用大约十篇文章把运放的最基本的知识介绍清楚,这是第一篇。
运放这个词既熟悉又陌生,既简单有不简单,说它熟悉,是因为它的应用非常广泛,经常听说它,说它陌生,是因为运放内部的电路结构非常复杂,很难搞清楚。说它简单,因为在设计运放电路时,可以避免晶体管电路的复杂参数计算,说它不简单,因为很多时候运放并不理想,若按理想运放来设计电路,会导致结果错误。
1、什么是运放
运放是运算放大器的简称。可以实现各种模拟电量的数学运算。但它不是用来做计算器上的加减乘除运算,而是在模拟信号处理过程中,可能需要将信号进行放大、加减乘除、积分、微分等操作。
①、运放的电路符号是:
pin 2、3为信号输入、pin 4、7为电源输入、pin 6为信号输出。
②、输入输出关系:Uo = A * (Up-Un)
A为运放的放大倍数,这个数值非常非常大,近似为无穷大,Up与Un几乎相等。Uo,Up,Un为正常的数值。这个表达式初看太奇怪了,但是它确实那么的有用,大大简化了电路的设计,后面会慢慢解释。
③、最重要的性质:“虚短”和“虚断”
虚短:因为上面表达式中Up与Un几乎相等,所以pin 2、3近似短路,但不是真的短路,所以叫虚短。
虚断:pin 2、3的输入阻抗非常大,至少在1Mohm。所以可以认为Pin2、3上的输入电流为零,所以叫虚断。
2、反相比例运放电路
只要记住Uo = A * (Up-Un)和“虚短”、“虚断”,理想运放的电路都能看懂。这里先不要纠结为什么会是这样,有机会后面会介绍。这里先介绍一个最简单的运放电路:反相比例放大电路。
①、根据虚断原理,运放输入端的两个管脚输入电流为零,所以不管R4阻值是多少,都有Up=0;
②、根据虚短原理,Un=Up,所以Un也等于零。
③、根据基尔霍夫定理就可以求出:Uo=-Rf/R1 * Ui
④、理论上,R2和RL的阻值不会影响放大倍数,但是实际的运放需要设计R2=R1 || Rf,因为这样一来,运放的同相端和反相端往外看的阻抗才一样大。
⑤、从仿真结果可以看出反向比例放大器的输出与输入波形ui是精确的5倍的关系。
3、总结
理想运放如此简单,我们根本不需要了解运放里面的东西,不需要像三极管那样考虑它到底工作在哪个区,不需要考虑密勒效应,输入输出阻抗等等,只需要用电阻分压的方法就能得到想要的精确的放大倍数。用起来简单,性能又好,这是运放广泛应用的重要原因。
反相比例运放是我们认识运放的第一个例子。也是最简单,最基础的应用,后面会慢慢介绍其他的电路,以及实际运放的应用。
‘伍’ 反相放大器原理
运算放大器有反相输入端(-)和同向输入端(+) 如将同箱输入端接地,反向输入端加信号,则输出信号和输入信号反相,一般运算放大器的开环放大倍数非常高,加入负反馈可限制放大,使其稳定,频率特性得到改善。图中是运算放大器电路。由于Vo未达饱和前,反向输入端Vi与同向输入端的电压V相等(都是零),因此I=Vi/R1,再由于流入反向端的电流为零,因此V2=I ×R2 =(Vi ×R2)/R1 ,因此Vo=-V2=-(R2/R1) ×Vi .R2如改为可变电阻,可任意调整电压放大的倍数,但输出波形和输入反相。详细请咨询:微波网
‘陆’ 电路图上怎么分析放大器的串联,并联,电压,电流的负反馈方法
就运算放大器电路而言:
反馈信号与输入信号都加在同一个输入端(同相或反相端)的,是并联反馈,而分别加在不同输入端(一个在同相端,一个在反相端)的,是串联反馈;
反馈信号取自放大器输出端所接的负载上的电压,就是电压反馈;
反馈信号取自放大器输出端所接的负载上的电流,就是电流反馈;
‘柒’ 反相放大器的电路设计
用一个集成运放、一个51K电阻、一个255K电阻、一个18K电阻和一个82K电阻构成一个带有部分正反馈的反向比例运算放大器。引入部分正反馈可以实现高增益放大,具体结构描述如下:
1.组成基本负反馈放大器部分:51K电阻一头接输入端,另一头接在运放的反向输入端,255K电阻一头接在运放反向输入端,另一头接在运放输出端。18K电阻一头接在运放的同向输入端,另一头接地,基本负反馈放大器部分的增益为5。
2.进一步组成带有部分正反馈的反向比例运算放大器:在上述基本负反馈放大器基础上再添加一个 82K正反馈电阻,电阻一头接在运放的同向输入端,另一头接在运放输出端即可,它的正反馈系数为K=18/(18+82)=0.18.这样的话输入电阻约 为51K(如果觉得输入电阻太大,则可用49.9K和249K电阻分别取代51K和255K电阻)放大倍数为A/(1-A*K)=5 /(1-5*0.18)=5/0.1=50。
‘捌’ 试比较和分析反相比例放大器和同相比例放大器的基本电路图,并写出计算它们放大倍数和平衡电阻的表达式
反向比例放大器:输入阻抗是反馈电阻和输入电阻的并联,阻抗比较小,放大倍数它们是运算放大器。我查了些资料,希望能对你有所帮助。 同相放大器:如图
‘玖’ 运放电路分析,万分感谢
运放电路分析如下:
1、关于虚短和虚断
由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80dB以上。而运放的输出电压是有限的,一般在10V~14V。因此运放的差模输入电压不足1mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。
2、示例分析。如图,是常见的反相比例运算放大电路,下面用虚短和虚断的方法来分析电路。
由于电路存在虚短,运放的净输入电压vI=0,反相端为虚地。
vI=0,vN=0…………………………………………a
反相端输入电流iI=0的概念,通过R2与R1的电流之和等于通过Rf的电流故(Vs1–V-)/R1+(Vs2–V-)/R2=(V-–Vo)/Rf…………b.
如果取R1=R2=R3,由a,b两式解得-Vout=Vs1+Vs2.
式中负号为反相输入所致,若再接一级反相电路,可消去负号,虚短是运放正输入端和负输入端的电压相等,近似短路;虚断是流入正负输入端的电流为0。只要 掌握了这一点,在运用欧姆定律,即可很容易的分析同相比例放大电路,反向比例放大电路等常用的运放放大电路。