‘壹’ 怎样测量圆的周长,有几种方法
用1跟绳子围住这个圆,再测量绳子的长度, 把这个圆做好记号在地上滚,测量它所滚的距离。
圆周长是指绕圆一周的长度,在圆中内接一个正n边形,边长设为an,正边形的周长为n×an,当n不断增大的时候,正边形的周长不断接近圆的周长C的数学现象,即:n趋近于无穷,C=n×an。
在古代,这个问题几乎是依赖于对实验的归纳。人们在经验中发现圆的周长与直径有着一个常数的比,并把这个常数叫做圆周率。
后来的数学家们就想办法算出这个π的具体值,数学家刘徽用的是“割圆术”的方法,也就是用圆的内接正多边形和外切正多边形的周长逼近圆周长,求得圆接近192边型,求得圆周率大约是3.14。
‘贰’ 对古代王朝的时间的提问以及它的测量方法,(有兴趣的朋友可以来看看)
叫水漏吧,你查查。
漏壶是以漏壶滴水在刻箭上表示出时刻的记时器。漏壶一般由铜制成,它的历史可追溯到夏、商时期。
漏壶也叫漏刻。漏,是指漏壶;刻,是指刻箭。箭,则是标有时间刻度的标尺。漏刻是以壶盛水,利用水均衡滴漏原理,观测壶中刻箭上显示的数据来计算时间
早期的漏壶叫“沉箭壶”。它是这样制作的:在壶底部钻一个孔,壶的中间竖着一根标有刻度的箭杆。使用时,壶里装满水。随着壶里的水慢慢地从小孔里往下滴漏,壶里的水平面也逐渐地下降,箭杆露出水面的部分则越来越长。古人就用箭杆露出水面的长度来计算时间,水面上箭杆上的刻度就表示时间数字。但这种壶水位高时,压力大,水漏得快,水位低时压力小,水漏得很慢。漏速不均,记时也缺乏准确性。于是古人又发明了“浮箭壶”。这浮箭壶是在不同高度上放置三个壶,然后在它们的下面再放一个接水壶,有刻度的箭杆便放在这个接水壶中。使用时,最上面的漏壶里的水先滴入中间壶里,中间壶里的水又滴入下面的壶里,而下面壶里的水则滴入接水壶中。随着接水壶内水平面的升高,箭杆便逐渐上升,人们看箭杆上的刻度,就能知道具体时间。
漏壶的制造,据有关资料记载,我国在世界上是头一位。西方的水池钟和漏壶的功用一样,它是雅典法庭用来限制发言人的发言时间的。公元前159年传到罗马,现在雅典还存有这种遗制。但它的制造比我国的漏壶晚得多,据说它是公元前400年柏拉图时代的产物
‘叁’ 测量的方法
1.根据测量条件分为
(1)等精度测量:用相同仪表与测量方法对同一被测量进行多次重复测量
(2)不等精度测量:用不同精度的仪表或不同的测量方法, 或在环境条件相差很大时对同一被测量进行多次重复测量
2.根据被测量变化的快慢分为
(1)静态测量
(2)动态测量
1.直接测量法:不必测量与被测量有函数关系的其他量,而能直接得到被测量值的测量方法。
2.间接测量法:通过测量与被测量有函数关系的其他量来得到被测量值的测量方法。
3.定义测量法:根据量的定义来确定该量的测量方法。
4.静态测量方法:确定可以认为不随时间变化的量值的测量方法。
5.动态测量方法:确定随时间变化量值的瞬间量值的测定方法。
6.直接比较测量法:将被测量直接与已知其值的同种量相比较的测量方法。
7.微差测量法:将被测量与只有微小差别的已知同等量相比较,通过测量这两个量值间的差值来确定被测量值的测量方法。 (1)正态分布
随机误差具有以下特征:
① 绝对值相等的正误差与负误差出现的次数大致相等——对称性;
② 在一定测量条件下的有限测量值中,其随机误差的绝对值不会超过一定的界限——有界性;
③ 绝对值小的误差出现的次数比绝对值大的误差出现的次数多——单峰性;
④对同一量值进行多次测量,其误差的算术平均值随着测量次数n的增加趋向于零——抵偿性。(凡是具有抵偿性的误差原则上可以按随机误差来处理);
这种误差的特征符合正态分布
(2)随机误差的数字特征:如图所示:
(3)用测量的均值代替真值;
(4)有限次测量中,算术平均值不可能等于真值;
(5)正态分布随机误差的概率计算
当k=±1时, Pa=0.6827, 即测量结果中随机误差出现在-σ~+σ范围内的概率为68.27%, 而|v|>σ的概率为31.73%。出现在-3σ~+3σ范围内的概率是99.73%, 因此可以认为绝对值大于3σ的误差是不可能出现的, 通常把这个误差称为极限误差。 例题:见图所示:
(6)不等精度直接测量的权与误差
1.在不等精度测量时, 对同一被测量进行m组测量, 得到m组测量列(进行多次测量的一组数据称为一测量列)的测量结果及其误差, 它们不能同等看待。精度高的测量列具有较高的可靠性, 将这种可靠性的大小称为“权”。
2.“权”可理解为各组测量结果相对的可信赖程度。 测量次数多, 测量方法完善, 测量仪表精度高, 测量的环境条件好, 测量人员的水平高, 则测量结果可靠, 其权也大。权是相比较而存在的。 权用符号p表示, 有两种计算方法: ?
① 用各组测量列的测量次数n的比值表示, 并取测量次数较小的测量列的权为1,则有
p1∶p2∶…∶pm=n1∶n2∶…∶nm
② 用各组测量列的误差平方的倒数的比值表示, 并取误差较大的测量列的权为1, 则有
p1∶p2∶…∶pm=(1/σ1)^2:(1/σ2)^2:(1/σ3)^2:……(1/σm)^2 (1)系统误差产生的原因
①传感器、仪表不准确(刻度不准、放大关系不准确)②测量方法不完善(如仪表内阻未考虑)③安装不当④环境不合⑤操作不当;
(2)系统误差的判别
①实验对比法,例如一台测量仪表本身存在固定的系统误差,即使进行多次测量也不能发现,只有用更高一级精度的测量仪表测量时,才能发现这台测量仪表的系统误差;
②残余误差观察法(绘出先后次序排列的残差);
③准则检验法
马利科夫判据是将残余误差前后各半分两组, 若“Σvi前”与“Σvi后”之差明显不为零, 则可能含有线性系统误差。
阿贝检验法则检查残余误差是否偏离正态分布, 若偏离, 则可能存在变化的系统误差。将测量值的残余误差按测量顺序排列,且设A=v12+v22+…+vn2, B=(v1-v2)2+(v2-v3)2?+…+(vn-1-vn)2+(vn-v1)2。
若|B/2A-1|>1/n^1/2,则可能含有变化的系统误差。
(3)系统误差的消除
在测量结果中进行修正 已知系统误差, 变值系统误差, 未知系统误差
消除系统误差的根源根源
在测量系统中采用补偿措施
实时反馈修正 剔除坏值的几条原则:
(1)3σ准则(莱以达准则):如果一组测量数据中某个测量值的残余误差的绝对值|vi|>3σ时, 则该测量值为可疑值(坏值), 应剔除。
(2)肖维勒准则:假设多次重复测量所得n个测量值中, 某个测量值的残余误差|vi|>Zcσ,则剔除此数据。实用中Zc<3, 所以在一定程度上弥补了3σ准则的不足。
(3)格拉布斯准则:某个测量值的残余误差的绝对值|vi|>Gσ, 则判断此值中含有粗大误差, 应予剔除。 G值与重复测量次数n和置信概率Pa有关。
解题步骤:如图所示: (1)误差的合成:如图所示:
绝对误差的合成(例题):
用手动平衡电桥测量电阻RX。已知R1=100Ω, R2=1000Ω, RN=100Ω,各桥臂电阻的恒值系统误差分别为ΔR1=0.1Ω, ΔR2=0.5Ω, ΔRN=0.1Ω。求消除恒值系统误差后的RX.
(2)最小二乘法的应用:
推导过程,如图册所示:
最小二乘法应用例子:如图册所示:
5.用经验公式拟合实验数据——回归分析
用经验公式拟合实验数据,工程上把这种方法称为回归分析。回归分析就是应用数理统计的方法,对实验数据进行分析和处理,从而得出反映变量间相互关系的经验公式,也称回归方程。
‘肆’ 表面粗糙度都有哪些测量方法
比较测量法:将被测表面与标准粗糙度样板作比较,评定粗糙度等级。粗糙度样板(又称粗糙度标准块),是以不同的加工方法(车、刨、平铣、立铣、磨等)制成的一组金属块。
比较法测量简便,使用于车间现场测量,常用于中等或较粗糙表面的测量。方法是将被测量表面与标有一定数值的粗糙度样板比较来确定被测表面粗糙度数值的方法。比较时可以采用的方法:Ra>1.6μm时用目测,Ra1.6~Ra0.4μm时用放大镜,Ra。
比较法
表面经磨、车、镗、铣、刨等切削加工,电铸或其他铸造工艺等加工而具有不同的表面粗糙度。有时可直接从工件中选出样品经过测量并评定合格后作为样块。利用样块根据视觉和触觉评定表面粗糙度的方法虽然简便,但会受到主观因素影响,常不能得出正确的表面粗糙度数值。
表面粗糙度测量是将表面粗糙度比较样块(简称样块)根据视觉和触觉与被测表面比较,判断被测表面粗糙度相当于那一数值,或测量其反射光强变化来评定表面粗糙度(见激光测长技术)。
以上内容参考:网络-表面粗糙度测量
‘伍’ 测量方的方法有哪些
从不同观点出发,可以将测量方法进行不同的分类,常见的方法有:
1、直接测量、间接测量和组合测量
直接测量是将被测量与与标准量进行比较,得到测量结果。
间接测量是测得与被测量有一定函数关系的量,然后运用函数求得被测量。
组合测量是对若干同名被测量的不同组合形式分别测量,然后用最小二乘法解方程组,求得被测量。
2、绝对测量、相对测量
绝对测量是所用量器上的示值直接表示被测量大小的测量。
相对测量是将被测量同与它只有微小差别的同类标准量进行比较,测出两个量值之差的测量法。
3、接触测量、非接触测量
这是从对被测物体的瞄准方式不同加以区分的。接触测量的敏感元件在一定测量力的作用下,与被测物体直接接触,而非接触测量敏感元件与被测对象不发生机械接触。
4、单项测量与综合测量
单项测量是对多参数的被测物体的各项参数分别测量,综合测量是对被测物体的综合参数进行测量。
5、自动测量和非自动测量
自动测量是指测量过程按测量者所规定的程序自动或半自动地完成。非自动测量又叫手工测量,是在测量者直接操作下完成的。
6、静态测量和动态测量
静态测量是对在一段时间间隔内其量值可认为不变的被测量的测量。动态测量是为确定随时间变化的被测量瞬时值而进行的测量。
7、主动测量与被动测量
在产品制造过程中的测量是主动测量,它可以根据测量结果控制加工过程,以保证产品质量,预防废品产生。
被动测量是在产品制造完成后的测量,它不能预防废品产生,只能发现边挑出废品。
‘陆’ 风速仪的测量方法有那些呢
风速探头为敏感部件,当一恒定电流流过其加热线圈时,其敏感部件内,温度升高并于静止空气中达到一定数值。此时,其内测量元件热电偶产生相应的热电势,并被传送到测量指示系统,此热电势与电路中产生之基准反电势互相抵消,使输出信号为零,仪表指针也相应指于零点。若风速探头端部的热敏感部件暴露于空气流中时,由于进行热交换,此时将引起热电偶热电势变化,并与基准反电势比较后产生微弱差值信号,此信号被测量指示仪表系统放大并推动电表,由指针示值即可读出被测风速大小。
热敏风速仪
(1)将仪器水平放好,使直键开关处于原位(向上)。
(2)调节电表机械零点,使表针指于零位。
(3)将探头测杆垂直向上放置,使其热敏感部件全部按入测杆管内,并将风速探头之插头插入“探头”插座。
(4)按下“电源”直键(左起第一)调节“放大器调零”,电位器使指针指于零点。
(5)按下“1m/s”直键开关(左起第二)调节“零点调节”电位器使指针指于零点。
(6)预热十分钟,并重复上述步骤,方可进行测量。
(7)低风速段(0.05~1m/s)经预热,校准后,可将风速探头测杆端部热敏感部件拉出,使其暴露于被测气流中,注意使测杆垂直,并使其有顶丝一面对准气流吹来方向(如图3)所示,即可由电表指标值读取风速。
(8)高风速段(1m/s~30m/s) (1m/s~10m/s) 风速超过lm/s,按下“30m/s”“10m/s”,直键开关(左起第三)即可读数。(此时按键全部处于按下状态)。
(9)使用完毕应将直键开关所有键从左至右依次复位。风速探头热敏感部件测杆拉出部分全部按入测杆管内,并拨下插头放入仪器盒原位置。
(10)电池安装;
使用机内电池,安装时必须注意极性不能放错。
使用外接电源供电时,需注意插头联线与插接均应正确无误,电源电压应符合4.5V~6V要求
实验数据
测试者根据实际风速测量情况,选择低速或高速调节按钮,并至少测试三次以上,剔除其中粗大数据,取平均值为最后风速数值。