‘壹’ 如何解不等式方程 解不等式方程的一些方法
解不等式的时候,可以将不等式看成是方程,解得方程的解,也就是不等式划分区间的区间界,然后再根据题目中的意思,选取不同的区间就可以了.
比如x^2≥9,把这按方程解得x=±3,也就是±3将(-∞,+∞)分成三个区间,即
(-∞,-3],[-3,+3],[3,+∞),然后再根据不等式的符号,选取这三个区间中的某几个就行了,得出x^2≥9的解集是(-∞,-3],[3,+∞).
‘贰’ 如何解不等式和方程
[思路分析]
一元一次不等式和不等式组
【不等式】
用不等号(“<”或“>”或“≠”)表示不相等关系的式子,叫做不等式。
【不等式的基本性质】
性质1 不等式两边都加上(或减去)同一个数或同一个整式,不等号方向不变。
性质2 不等式两边都乘以(或除以)同一个正数,不等号方向不变。
性质3 不等式两边都乘以(或除以)同一个负数,不等号方向改变。
【不等式的解集】
一个含有未知数的不等式的所有解, 组成这个不等式解的集合, 简称这个不等式的解集。
【解不等式】
求不等式的解集的过程,叫做解不等式。
*【同解不等式】
如果两个不等式的解集相同,那么这两个不等式叫做同解不等式。
*【不等式的同解原理】
原理1 不等式两边都加上(或减去)同一个数或同一个整式,所得的不等式与原不等式是同解不等式。
性质2 不等式两边都乘以(或除以)同一个正数,所得的不等式与原不等式是同解不等式。
性质3 不等式两边都乘以(或除以)同一个负数,并且把不等号改变方向后,所得的不等式与原不等式是同解不等式。
【一元一次不等式】
只含有一个未知数, 并且未知数的次数是1, 系数不等于0的不等式叫做一元一次不等式。
【一元一次不等式的标准形式】
ax + b<0 或 ax + b>0 (a≠0)
【解一元一次不等式的步骤】
⑴去括号
⑵移项
⑶合并同类项
⑷不等式两边同除以未知数的系数
说明 在步骤⑴和⑵中,如果不等式两边都乘以(或除以)同一个负数时,不等号的方向要改变。
[解题过程]
一元一次不等式组】
几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
【一元一次不等式组的解集】
几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集。
【解不等式组】
求不等式组的解集的过程,叫做解不等式组。
【解一元一次不等式组的步骤】
⑴求出这个不等式组中各个不等式的解集;
⑵利用数轴求出这些不等式组中解集的公共部分,即求出了这个不等式组的解集。
说明 如果一元一次不等式组中各个一元一次不等式的解集没有公共部分, 那么这个一元一次不等式组无解; 如果不一个不等式无解, 那么含有这个不等式的不等式组也无解.
‘叁’ 不等式方程怎么解
不等式与方程
不等式的一个极端状态即为方程,解集的一个极端即为方程的解,因此,下题也可以这样做:
已知关于x的不等式
﹤
的解集为x﹤7,求a的值.
解:由题意可知x=7是方程
=
的解,把x=7代入方程中,即得a=5.
解不等式组的方法与前面学过的解二元一次方程组的方法有所不同。在解二元一次方程组的时候,两个方程不是孤立存在的,两者相互关联,而解不等式组是独立地解其中每一个不等式,在解的过程中,各不等式彼此不发生关系,“组”的作用在最后,即在每一个不等式的解集都求出来之后,才利用数轴从“公共部分”的角度去求“组”的解集.
因此,解一元一次不等式组通常采用“分开解,集中判”的方法.
由两个一元一次不等式组成的不等式组的解集,最终可归结为下述四种基本类型来判定:(不妨设a﹤b)
x﹥a
x﹤a
x﹥a
x﹤a
x﹥b
x﹤b
x﹤b
x﹥b
可用顺口溜来帮助记忆结果:同大取大,同小取小,大(于)小(的)小(于)大(的)取中间,大(于)大(的)小(于)小(的)解无边(即无解)。
解不等式组是中考命题的要点,解不等式(组)、求不等式(组)的特殊解及应用是中考命题的热点,关于不等式(组)的应用题也作为中考重点搬上了试卷,主要考查对数学的应用能力,利用不等式(组)取定最佳方案、获得最大收益、确定最优工作途径等,这类题目表现形式十分丰富,常作为压轴题。
中考中关于不等式(组)的基础题,以填空、选择、解不等式(组)及列不等式(组)解应用题的形式出现,这也是今后中考必考的内容。
如:(山西)商场出售的A型冰箱每台售价为2190元,每日耗电量为1度,而B型节能冰箱每台售价虽比A型冰箱高出10%,但每日耗电量却为0.55度.现将A型冰箱打折出售(打一折后的售价为原价的1/10),问商场至少打几折,消费者购买才合算(按使用期为10年,每年365天,每度电0.40元计算)?
解:
设商场将A型冰箱按x折出售,则由题意
2190x
十365x10xlx0.4≤2190x(1+10%)+365x10x0.55x0.4∵x≤8,因此至少打8折.
‘肆’ 怎么解不等式方程
x²-3x+2<0
∴(x-1)(x-2)<0
∴1<X<2
∴解集为﹛X│1<X<2﹜
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
①如果x>y,那么y<x;如果y<x,那么x>y;
②如果x>y,y>z;那么x>z;
③如果x>y,而z为任意实数或整式,那么x+z>y+z;
④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;
⑤如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z<y÷z。
(4)解不等式方程的方法步骤扩展阅读:
解不等式组步骤:
1.分别将不等式组中的各不等式设上①②③....
2.分别解出不等式
格式为:解①得....解②得...
3.可以在数轴上分别表示出来。
4.将原来的解联立起来形成解集。
5.若无解,则写上:此不等式组无解。
如果不等式F(x)<G(x) 的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)<G(x)与不等式H(x)F(x)<H( x )G(x) 同解;如果H(x)<0,那么不等式F(x)<G(x)与不等式H (x)F(x)>H(x)G(x)同解。
‘伍’ 如何解不等式
解不等式利用的法则,类似于解方程
利用等式的性质(变形成不等式的性质)
不等式的性质1:两边同时加上或减去相同的数或式子,不等式符号的方向不变
即a>b,则a+c>b+c;a-c>b-c
不等式的性质1:两边同时被一个相同的数或式子减,不等式符号的方向改变
即a>b,则c-a<c-b
不等式的性质3:两边同时乘以或除以一个大于零的数或式子,不等式符号的方向不变
即a>b,且c>0,则ac>bc,a/c>b/c
不等式的性质4:两边同时乘以或除以一个小于零的数或式子,不等式符号的方向改变
即a>b,且c<0,则ac<bc,a/c<b/c
不等式的性质5:不等式两边不等于零,两边同时被一个大于零的数除,不等式符号的方向改变
即ab不等于0,a>b,且c>0,则c/a<c/b
不等式的性质6:不等式两边不等于零,两边同时被一个小于零的数除,不等式符号的方向不变
即ab不等于0,a>b,且c<0,则c/a>c/b
利用这些性质,可以对不等式进行去分母,去括号,移项,合并同类项,最后解出不等式的解集。
‘陆’ 解不等式(详细步骤)
不等式就是用不等式符号把一个式子连接起来的算式;不等式和等式主要的区别就是他们的符号不同,一个是“=”,一个是“>、<、≥、≤”。但解不等式是完全可以用等式的性质来解。下面我就以一道例题来讲一下解不等式的标准步骤。
第一步、如果是应用题就要先理清楚思路,然后列出不等式,最后再解不等式;如果是解不等式的计算题,就直接写“解”,开始写出计算过程。
(6)解不等式方程的方法步骤扩展阅读:
1、如果x>y,则y<x;如果y<x,则x>y(对称性)
2、如果x>y,y>z;则x>z(传递性)
3、如果x>y,而z为任意实数或整式,则x+z>y+z;(同向不等式可加性)
4、如果x>y,z>0,则xz>yz;如果x>y,z<0,则xz<yz;(乘法原则)
5、如果x>y,m>n,则x+m>y+n;(充分不必要条件)
6、如果x>y>0,m>n>0,则xm>yn;
7、如果x>y>0,则x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n为负数)。
8、不等式的基本性质的另一种表达方式有:①对称性;②传递性;③加法单调性,即同向不等式可加性;④乘法单调性。
‘柒’ 解不等式(详细步骤)
摘要 解:(1)当a=0时,原式变为:bx+c>0
‘捌’ 解不等式的解法步骤是什么
步骤如下
1、找出未知数的项、常数项,该化简的化简。
2、未知数的项放不等号左边,常数项移到右边。
2、不等号两边进行加减乘除运算。
3、不等号两边同除未知数的系数,注意符号的改变。
一般地,用纯粹的大于号“>”、小于号“<”表示大小关系的式子,叫作不等式。用“≠”表示不等关系的式子也是不等式。
其中,两边的解析式的公共定义域称为不等式的定义域。
整式不等式:
整式不等式两边都是整式。
一元一次不等式:含有一个未知数(即一元),并且未知数的次数是1次(即一次)的不等式。如3-x>0
同理,二元一次不等式:含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式。
‘玖’ 解不等式组 详细步骤
解不等式组,可以先把其中的不等式逐条算出各自的解集,然后分别在数轴上表示出来。由两条不等式组成的不等式组,以下是解不等式组的方法:
1、若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”。
2、若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”。
3、若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集。若x表示不等式的解集,此时一般表示为a<x<b,或a≤x≤b。此乃“相交取中”。
4、若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解。此乃“向背取空”。
(9)解不等式方程的方法步骤扩展阅读:
基本不等式中常用公式:
(1)√来((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。(当且仅当a=b时,等源号成立)
(2)√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立)
(3)a²+b²≥2ab。(当且仅当a=b时,等号成立)
(4)ab≤(a+b)²/4。(当且仅当a=b时,等号成立)
(5)||a|-|b| |≤|a+b|≤|a|+|b|。(当且仅当a=b时,等号成立)