導航:首頁 > 知識科普 > 物料粒度測定方法有哪些

物料粒度測定方法有哪些

發布時間:2022-03-02 17:32:56

⑴ 手動篩分法測定粒度的步驟

1,選好不同孔徑的標准篩 越多測出的結果越好
2,稱量好每個篩子的質量
3,稱量一定質量樣品,從最大孔徑的篩子開始篩,篩完後稱量計算出篩上剩餘粉體質量,再換孔徑小一級的繼續篩上次篩下的粉,依序循環,直到篩完。
4這樣就計算出了不同孔徑對應粒度大小的粉體占整體重量(體積)的百分比

⑵ 粒度分布的計算方法

D50:一個樣品的累計粒度分布百分數達到50%時所對應的粒徑。它的物理意義是粒徑大於它的顆粒佔50%,小於它的顆粒也佔50%,D50也叫中位徑或中值粒徑。D50常用來表示粉體的平均粒度。

D90:一個樣品的累計粒度分布數達到90%時所對應的粒徑。它的物理意義是粒徑小於它的的顆粒佔90%。D90常用來表示粉體粗端的粒度指標。 其它如D16、D90等參數的定義與物理意義與D97相似。

D10:D10就是縱坐標累計分布10%所對應的橫坐標直徑值。

顆粒累計分布為10%的粒徑,即小於此粒徑的顆粒體積含量佔全部顆粒的10%。顆粒粒徑分布為50%的粒徑,即小於此粒徑的顆粒體積含量佔全部顆粒的50%。顆粒粒徑分布為90%的粒徑,即小於此粒徑的顆粒體積含量佔全部顆粒的90%。

產品種類豐富,其中激光衍射粒度分析儀可為干濕法分散提供快速、精確、便捷的粒徑分布測試。 該分析儀可在納米至毫米粒度范圍內進行測量,體積小巧、性能卓越、穩定可靠,可為所有用戶提供無需操作者干預的測量。

(2)物料粒度測定方法有哪些擴展閱讀:

數學方程式亦可用來描述粒度分布。雖曾有人嘗試將這類數學式與實際斷裂力學相聯系,但多數還是一些僅便於表述數據的經驗關系式。當數據必須處理時,數學式可能有用;但這往往要求使用計算機,而在這類條件下,實際數據的矩陣表示同樣方便,而且更可靠。

粒度數據的圖示法通常是以橫坐標(x軸)列出顆粒粒度,以縱坐標(y軸)列出測得的基準量。表示數量有兩種方法:一種是列出每一粒級中的量(絕對量,分數,或百分數),另一種方法是列出高於或低於某一粒度的累計量(分數或百分數)。

⑶ 粒度分析

粒度與搬運流體的性質及其力學特徵密切相關,它是判別環境的標志之一。目前國際上應用最廣的粒度分級標準是伍登-溫德華粒級。它是以1mm作為基數乘以或除以2來分級的。後經克倫賓將其轉化為φ值。轉換公式為:

φ=-log2d

式中:d為毫米直徑值。形成一個以1為基數,2為公比數的等比級數列。如表4-3所示。

表4-3 伍登-溫德華φ值粒度標准

*有些分界點記為0.05mm;**有些分界點記為0.005mm

沉積物粒度測量方法,主要包括放大鏡、照片分析、篩析、沉降分析、顯微鏡下粒度分析等方法。針對不同的顆粒選擇適用的方法進行測量,其中,礫石等顆粒級別較大的多用皮尺或測量規直接測量,用量筒測礫石的體積。可松解或疏鬆的細、中碎屑岩多採用篩析法。粉砂及黏土岩常用沉降法、流水法等方法測量。固結的無法松解的岩石多採用顯微鏡下粒度分析。不同的方法測出的結果,略有差別,需校正後才能互用,其中沉降粒徑和篩析粒徑之間的偏差小於或等於0.1φ,可以直接互用。但薄片顯微鏡下分析粒徑,因存在切片效應,需經過弗里德曼(1962)所提出的粒度的回歸校正方程:

D=0.3815+0.9027d

式中:D為校正後的篩析粒徑,d是薄片中測定的視長徑,均為φ單位。進行校正後才能與篩析法的結果相互用,一般校正後的平均粒徑最大偏差一般不超過1/4φ單位。

此外,在粒度測量中雜基校正是一項重要的工作,其方法是:顯微鏡測至7φ,測定或估出雜基含量。取其2/3~1/2為校正值,假定為Δ,將各累計頻率乘以(100-Δ),重新繪曲線。對於弱固結岩石,可用同一標本既做篩析也作薄片分析,通過實驗求出校正系數(100-Δ)的數值。

粒度分析的結果可獲取到大量的測值,這種大量的數字資料要用統計的方法加以處理,才能推斷其與流體力學性質和沉積環境之間的關系。主要的方法是:根據資料做出一些圖件,從這些圖件上做定量的解釋分析。或者直接通過計算,統計參數。兩種方法各有優劣,往往需綜合分析利用。

粒度分析圖主要包括直方圖、頻率曲線圖和累積曲線圖(累積百分含量圖)。其中最常用的是累積百分含量圖,是由維希爾(1969)根據采自現代和古代不同環境內的1500個樣品測得的粒度數據,以粒徑(φ值)為橫坐標,以累積概率值為縱坐標,用來表現大於一定粒級的百分含量統計圖。他通過分析得出了沉積物搬運方式與粒度分布之間的關系,以及一些環境的概率圖模式(圖4-1)。

圖4-1 搬運方式與粒度分布的關系

(據Visher,1969)

沉積物的粒度一般不是表現為單一的對數正態分布,因此,在概率分布圖上總是表現為幾個相交的直線段。每個直線段是不同搬運方式產生的響應。主要包括牽引負載、跳躍負載和懸浮負載三種。其中,懸浮負載的顆粒一般很細,粒徑在0.1mm左右,其負載顆粒的粗細變化取決於介質的擾動強度,在概率圖上的右上角形成懸浮次總體;跳躍負載是指靠近河床底部層,通過在動盪的水中或流水中對顆粒進行分選,粒徑一般在0.15~1.0mm之間,往往是沉積樣品中分選最好的組分,在概率圖的中部形成跳躍次總體,其不是一個粒度總體,而是由兩部分組成,如海灘砂;底部牽引負載是粗粒組分,因顆粒粗而在地面上滾動,形成的滾動次總體位於圖的左下方。沉積物因粒徑大小和分選性的不同,經歷了不同的搬運方式,在累積概率圖上形成了不同的次總體直線。直線的不同斜率代表不同的分選性,斜率越大代表分選越好,一定的粒度分布區間和斜率,表明不同的次總體具有一定的平均粒徑和標准偏差。各直線段的交點稱為交截點,有的樣品在兩個粒度次總體間有混合帶,在圖上表現為兩線段圓滑接觸。

大量的粒度數據通過計算獲得各種分析參數後,往往也通過作圖來進行定量分析,最常用的是弗里德曼(1961,1967)通過對現代海洋與河流、湖灘沉積所做的粒度分析,用粒度參數離散圖(採用10種粒度參數,作出19種圖)來區分河流與海(湖)灘沉積。離散圖能夠把不同成因的砂區別開來,是由於不同成因的砂具有不相同的結構參數。

此外,C-M圖也是另外一種常用的圖版(圖4-2),它是應用每個樣品的C值和M值繪成的圖形,由Passega(1957,1964)所提出。其中,C值是累積曲線上顆粒含量1%處對應的粒徑,M值是累積曲線上50%處對應的粒徑。C值與樣品中最粗顆粒的粒徑相當,代表了水動力攪動開始搬運的最大能量;M值是中值,代表了水動力的平均能量。該圖版對於每一個樣品都可以用其C值和M值,在以C值為縱坐標,以M值為橫坐標的雙對數坐標紙上投得一個點,研究沉積地層包含的由粗至細的全部粒度結構類型樣品在圖紙上會投得一個點群。根據點群的分布繪出的圖形形態、分布范圍,以及圖形與C-M基線的關系等特點,與已知沉積環境的典型C-M圖進行對比,再結合其岩性特徵,從而對該層沉積岩的沉積環境做出判斷。

圖4-2 牽引流的C-M圖像及粒度類型

(據Passega,1964)

在C-M圖中,Ⅰ,Ⅱ,Ⅲ,Ⅸ 段表示C>1000μm,Ⅳ,Ⅴ,Ⅵ,Ⅶ,Ⅷ段表示C<1000μm。1表示牽引流沉積,2表示濁流沉積,「T」代表靜水懸浮沉積。「S」形圖是以河流沉積為例的完整C-M圖,可劃分為N—O—P—Q—R—S段。其中從左至右:

N—O段基本上由滾動顆粒組成,C值一般大於1mm(1000μm),常構成河流的砂壩礫石堆積物。

O—P段是滾動物質與間歇懸浮物質(跳躍)混合,物質組分中滾動組分與懸浮組分相混合。C值一般大於800μm,但由於滾動組分中有懸浮物質的參加,從而使M值有明顯的變化。C值稍微變化即會使M 值發生重大改變,即粒度分布極不對稱,粗細首尾不均。

P—Q段是以間歇懸浮質為主,粗粒滾動質減少。由上游至下游C值變化而M值不變,說明隨著流體搬運能力的減弱,越向下游滾動組分的顆粒越小。但由於滾動顆粒的數量並不多,因此M值基本不變。P點附近的C值以Cr表示,它代表著最易作滾動搬運的顆粒直徑。

Q—R段為遞變懸浮段,沉積物的特點是C值與M值相應變化,顯示出與C=M線平行的結果,主要搬運方式為遞變懸浮搬運,懸浮物質組分在流體中由下向上粒度逐漸變細,密度逐漸變低。它一般位於水流底部,常是由於渦流發育造成的。該段C的最大值以Cs表示。

R—S段為均勻懸浮段,是粒徑和密度不隨深度變化的完全懸浮,隨著M值向S端逐漸變小,C值基本不變,最大C值即Cu,它代表均勻懸浮搬運的最大粒級。搬運方式常是遞變懸浮之上的上層水流搬運,不受底流搬運分選,物質組成主要為粉砂和泥質混合物,最粗的粒度為細砂。表示在河流中從上游至下游沉積物的粒度成分變化不大,只是粗粒級含量相對減少。

C-M圖也可用來研究水深、分選性、古流速和碎屑岩分類等,它是一種多功能綜合圖。

⑷ 高等無機化學測定納米材料粒徑大小的主要方法有哪些

高等無機化學測定納米材料粒徑大小的主要方法:
1、XRD線寬法:一般可通過XRD圖譜,利用Scherrer公式進行納米顆粒尺寸的計算。XRD線寬法測量得到的是顆粒度而不是晶粒度。該方法是測定微細顆粒尺寸的最好方法。測量的顆粒尺寸范圍為≤100nm。
2、激光粒度分析法:測量精度高,測量速度快,重復性好,可測粒徑范圍廣以及可進行非接觸測量等。激光粒度分析有衍射式和散射式兩種。衍射式對於粒徑在5μm以上的樣品分析較准確,而散射式則對粒徑在5μm以下的納米、亞微米顆粒樣品分析准確。利用激光粒度分析法進行粒度分析時必須對被分析體系的粒度范圍預先有所了解,否則分析結果會不準確。該方法是建立在顆粒為球形、單分散條件上的,而實際被測顆粒多為不規則形狀並呈多分散性。因此顆粒的形狀和粒徑分布特性對最終粒度分析結果影響較大,顆粒形狀越不規則,粒徑分布越寬,分析結果的誤差就越大。
3、沉降粒度分析法是通過顆粒在液體中的沉降速度來測量粒度分布的方法。主要有重力沉降式和離心沉降式兩種光透沉降粒度分析方式,適合納米顆粒度分析的方法主要是離心式分析法。該方法具有操作方便、價格低、運行成本低、樣品用量少、測試范圍寬(一般可達0,1-200μm)、對環境要求不高等特點;但該方法也存在著檢測速度慢、重復性差、對非球形粒子誤差大、不適於混合物料等缺點。
4、電超聲粒度分析法:該方法測量的粒度范圍為5nm-100μm。電超聲粒度分析法在分析中需要粒子和液體的密度、液體的黏度、粒子的質量分數及熱膨脹系數等參數。該方法的優點是可測高濃度分散體系和乳液的顆粒尺寸,不需要稀釋,避免了激光粒度分析法不能分析高濃度分散體系粒度的缺陷,且分析精度高,分析范圍更寬。
5、對於特定材料的納米粉,無論是氧化物、氮化物還是金屬粉末,沒有規定用特殊的方法來測量其顆粒尺寸。主要根據材料的顆粒性質來決定採用的分析方法,通常均採用TEM觀察法;若材料是由微細的晶粒組成,則常採用XRD線寬法來測定其晶粒粒徑的大小。若採用這兩種方法不能得到滿意的結果,那麼,可根據估測的粒徑范圍來選用本文第三部分介紹的方法。這些方法得到的粒徑結果不僅准確,而且還能得到顆粒的形狀,但這些方法成本高,應根據需要來選用。

⑸ 粒度分析方法

粒度分析方法視碎屑岩顆粒大小和岩石緻密程度而異。

1.礫岩的粒度分析方法

礫岩的粒度分析主要在野外進行,一般採用篩析和直接測量兩種方法。對膠結不太堅固的礫石和疏鬆的礫石層,先用孔徑為10 mm和1 mm的篩子過篩,小於1 mm的基質和膠結物,可帶回室內進行再細分;10~1 mm的細礫部分若是含量多且差異大者,要用篩析方法進行細分;10 mm以上的礫石,一般在野外用尺子直接測量,然後將各粒級的礫石分別稱重,記錄於粒度分析表中。采樣過程中應選擇有代表性的取樣地點,而且樣品質量不少於25~30 kg,否則誤差就會相當大。對於膠結堅固的礫岩,可在風化帶上進行粒度測量;或采標本回室內,先進行膠結處理,將礫石分開,再進行粒度測量。

2.砂岩和粉砂岩的粒度分析方法

砂岩和粉砂岩的粒度分析常採用篩析法、沉速法和薄片法,常用的沉速法有阿茲尼法、沙巴寧法和羅賓遜法等。篩析法和沉速法適用於未固結的疏鬆岩石,如粗碎屑岩一般只用篩析法;而中—細粒碎屑岩由於常常含有較多的粉砂和黏土,常將沉速法與篩析法結合使用。薄片法主要用於固結堅硬的岩石。一般來說,篩析法適用於大於0.25 mm的顆粒,亦可用於大於0.1 mm的顆粒,而沉速法適用於小於0.25 mm的顆粒。

3.顆粒粒級的劃分

一般採用伍登-溫德華標准,它是以毫米為單位的一種分類方案,後來克魯賓(1934)提出了一種對數換算(表3-1),稱其為Φ值:

沉積學原理

其中,D為顆粒直徑。

表3-1 粒級劃分標准對比表

4.薄片粒度分析

篩析法只適用於現代沉積的沙和古代固結疏鬆的砂岩,對不能松解的砂岩不再適用。固結的岩石,特別是硅質膠結岩石的粒度分析,只能在薄片內進行。薄片粒度分析的精度較篩析法差,因薄片內計算的顆粒比篩析的量少得多,同時分析速度慢,分析結果不能與篩析法直接對比。下面簡單介紹一下薄片粒度分析的方法,薄片的制備與普通岩石薄片的制備方法相同,疏鬆的砂岩用膠浸煮後磨片。用作粒度分析的薄片要稍大些(3.0 cm×2.0 cm),尤其是粗粒砂岩,以便在薄片內可測量到足夠的顆粒數。用作磨製薄片的標本,必須在所採集的岩層內是有代表性的。

(1)在薄片上測定粒度的方法

在薄片上採用什麼方法選擇欲測量的顆粒稱為抽樣方法,一般常用的系統抽樣方法為點計法和線計法,此外,還有一種方法為帶記法。

點計法 常用有網格的目鏡進行測量,每一方格的邊長應大於薄片中顆粒的最大視直徑,應用機械台使薄片通過顯微鏡視域,測量網格結點所觸遇的顆粒粒徑(圖3-1)。

線計法 用機械台在垂直目鏡微尺的方向移動薄片,凡為十字絲豎絲觸遇的顆粒都要測量。量完一行,平行橫絲將薄片移動一定距離,再按上述方法測量,一直測到足夠的顆粒為止。測線間隔要大於薄片內顆粒的最大視直徑(圖3-2)。

不同抽樣方法所得出的結果不同,線計法測量時,與測線相交的顆粒的概率與測線垂直方向上的顆粒直

圖3-1 薄片粒度分析的點計法

徑成比例;點計法測量時,與點相遇的顆粒的概率與顆粒的可見表面積成比例。

帶計法 將薄片放在機械台上,固定橫坐標,使薄片垂直目鏡微尺慢慢移動,凡是顆粒中心在目鏡微尺一定讀數之間的顆粒,都要按大小分類計數(圖3-3)。這個帶的寬度應等於或大於樣品內顆粒的最大視直徑。有人通過實驗證明,帶計法測得的結果最近似於樣品內真正的粒度分布。

圖3-2 薄片粒度分析的線計法

圖3-3 薄片粒度分析的帶計法

由於不同抽樣方法所得的結果不能直接對比,因而不同的樣品要用統計方法比較的話,必須在每個細節上使用同樣的抽樣方法和測定方法。最後,將測得結果填入薄片粒度統計表(表3-2)。

表3-2 薄片粒度統計表

(2)各種測定直徑的對比與換算

用粒度資料解釋沉積環境的工作開始於對現代沉積物的研究。對於古代岩石的沉積環境分析,也可藉助於岩石粒度分析同現代沉積物粒度分析加以比較。

現代沉積物的粒度分析一般採用常規篩析法,所得結果為不同粒度的顆粒質量百分比。而古代岩石目前大部分只能用薄片分析法,所得結果為不同粒度的顆粒數百分比。兩者不能直接對比,如果需要對比則必須進行換算。即使在同一方法中,也只能進行統計對比,絕不能進行單顆粒對比。

篩析直徑與沉速分析直徑之間,平均值偏差<0.1Φ,兩種方法一般不經換算可以互相使用,但在精確研究工作中則必須換算。薄片分析視直徑與篩析直徑之間的偏差可達到0.25Φ或更大,在任何情況下均不可互用或直接對比。將視直徑換算為篩析直徑的方法很多,其中G.M.Friedman通過統計分析進行的線性回歸換算較為簡便、准確,任意粒度的回歸換算方程為

沉積學原理

式中:D是換算後的篩析直徑;d是薄片中測定的視長直徑,均以Φ值計。經換算後,換算值同實際篩析值的平均直徑最大偏差一般不超過0.25Φ,這個精度高於0.25Φ分組間隔,可滿足一般沉積學研究。

對於切片視直徑與真直徑的對比,根據實驗可知,等直徑的球狀集合體的切面上所測得的視直徑平均值為真直徑的0.765倍,即在顆粒集合體的切片中,顆粒視直徑平均值小於真直徑,這種現象稱為切片效應。

(3)薄片粒度測量的要求

粒度測量是粒度分析的基礎,故對其測量要求很高,而測量工作卻非常煩瑣、效率很低。薄片粒度分析是研究固結樣品的唯一方法,可使用偏光顯微鏡和掃描電子顯微鏡。近年來出現的圖像分析儀使薄片粒度分析基本實現自動化,效率大為提高。薄片統計數據為顆粒數。

在沉積環境研究中使用薄片粒度分析時,對岩石樣品的基本要求是:砂岩中石英碎屑含量應大於70%,至少石英和長石含量要大於70%,溶蝕交代與次生加大現象越弱越好,切片方向可垂直層面或平行層面,隨研究目的和要求的精度而定。在碳酸鹽岩研究中,取樣密度可達1 點/cm,可平行紋層切片。測定時一般採用線計法抽取顆粒,凡在線上的顆粒都要測量,不能有任何主觀取捨,每個薄片計200~500顆粒即可,碳酸鹽岩需測1000顆粒以上。

在薄片內,需要測定多少顆粒才能代表全薄片的粒度分布,這在開始分析之前必須確定。測定的顆粒太少,不能代表薄片內的粒度分布;測定的顆粒太多,又會浪費時間,而且對精確度無所增益。根據砂岩樣品的實驗,分別測量100、200、300、400、500顆粒,繪制粒度累積頻率曲線,從計數400顆粒起,粒度累積曲線的形狀基本保持不變,因而可確定薄片內計數400~500顆粒是達到精度要求的最小計數。

薄片分析視直徑換算成篩析直徑時,還要考慮「雜基」的存在。薄片分析若不做雜基校正,往往無懸浮總體尾端,而是跳躍總體直接穿過3~4Φ的截點呈直線延伸,不出現轉折,在平均值小於2Φ的中細砂岩、粉砂岩中經常出現這種情況,這是因為4~7Φ的顆粒細小,被測機會增多,或者全被歸並到4.5Φ或5Φ的顆粒而造成細粒數增加,實質上是一種統計截尾效應(截尾點不同,其分布也不同)(圖3-4)。

圖3-4 截尾效應

雜基校正的方法是將顯微鏡調至6Φ後測定或估計出雜基含量。薄片雜基量由於切片效應和成岩後生作用,值一般偏高,取其2/3~1/2為校正值,假定為Δ,將各累積頻率乘以(100—Δ),重新繪一曲線。對於弱固結岩石,可用同一標本既做篩析,又做薄片分析,通過實驗求出校正系數(100—Δ)的數值。

⑹ 各種粒度測試方法的優缺點有哪些

1)篩分 原理:以來篩孔大小的機械分離作用。
優點:簡單直觀。動態范圍較小,常用於大於40mm的顆粒測定。
缺點:速度慢,一次只能測量一個篩余值,不足以反映粒度分布;微小篩孔製作困 難;誤差大,通常達到10%~20%;小顆粒由於團聚作用通過篩孔困難;有人為誤 差,導致可信度下降。
2)沉降 原理:斯托克斯定律。
優勢:可測試。
缺點:動態范圍窄;小粒子沉降速度很慢,對非球型粒子誤差大;由於密度一致性 差,不適用於混合物料;重力沉降儀適用於10微米以上的粉體,如果顆粒很細則 需要離心沉降。
3)庫爾特電阻法 原理:顆粒通過小孔時產生的電阻脈沖計數。
優點:可以測定顆粒總數,等效概念明確;操作簡便。
缺點:動態范圍小,1:20左右;對介質的電性能有嚴格要求;容易出現 堵塞小孔現象。
4)顯微鏡法 原理:光學成像。
優點:簡單直觀;可作部分形貌分析。
缺點:動態范圍窄,1:20;測量時間長,約20分鍾;樣品制備操作較復雜; 采樣的代表性差;對超微細粒分散有一定的難度,受衍射極限的限制,無法檢測超 細顆粒。
5)電鏡 原理:電子成像。
優點:直觀;解析度高。
缺點:取樣量少,沒有代表性,樣品雜;儀器價格昂貴。
6)激光粒度儀 原理:激光衍射/散射。
優點:測量速度快,約1分鍾;動態范圍大,約1:1000以上;重復型號; 准確度高,解析度高;操作簡便;客隊動態顆粒群進行跟蹤測試分析,是目 前最先進的粒度儀,也是粒度儀發展方向。

以上是微納總結

⑺ 什麼是粒度分析

礦粒(或礦塊)的大小稱為粒度。破碎、磨碎和選別過程中所處理的物料,都是粒度不同的各種礦粒的混合物。將礦粒混合物按粒度分成若干級別,這些級別叫做粒級。物料中各粒級的相對含量叫做粒度組成。粒度組成的測定工作叫做粒度分析。 粒度組成的測定是一項很重要的工作,在許多工業部門都常遇到。例如水泥工業、冶金工業、煤粉制備、土工試驗、甚至食品加工等部門,都會用到粒度分析,也是選礦試驗中必不可少的一個檢測項目,原礦和產品都常需進行粒度分析。 沒有一個粒度分析方法,可以適用於一切粒度范圍,一般都是按粒度大小不同採用不同的測定方法。目前應用的各種測定方法及其適用范圍如表1所示。其中有的方法得出的是粒度分布,有的方法得出的是平均直徑;有的是直接測量粒度(如篩析和顯微鏡測定);有的則是根據其他參數換算(如沉降速度和比表面);有的是在氣相中進行的干法,有的則是在液相中進行的濕法。表1 粒度測定方法及其所適用的粒度范圍 選礦生產和試驗研究中經常採用的粒度分析方法是篩分分析、水析和顯微鏡分析。 對於粉狀物料常常直接測定比表面(指單位重量的礦粒群的總表面積)。從比表面的測定數據可在一定假定條件下,求出平均粒度(直徑)。測定比表面的主要方法有吸附法、滲透法(液體滲透法;氣體滲透法)。 幾種粒度測定方法比較如下:篩析法的優點是設備便宜、堅固、易制、易操作,適於測定粗粒。一般干篩可篩至100微米(150目),再細建議釤濕篩,現今用光電技術製造的微孔篩可以濕篩細到10微米,但實際上小於40-60微米多半用沉降分析,前者測得的是幾何尺寸,後者是具有相同沉降速度的當量球徑。篩析法受顆粒形狀影響很大。顯微鏡法直觀測出顆粒尺寸和形狀,因此常用於校準其它測量方法,其最佳測量范圍為0.5-20微米之間,當粒度擴大到40微米以上,則易引起偏差。沉降法測量粒度的最大優點是統計性和重復性好,但受顆粒形狀和結構影響很大,適用於1-75微米,不能直接觀測顆粒的大小和形狀。吸附法的特點是測定范圍較大,但不能測出粒度分布曲線,只能間接換算出一個增均尺寸,而且受環境影響較大。滲透法是一種經濟簡便的粒度測量法,但可靠性和重復性差。

⑻ 破碎後物料粒度的表達方式有哪些

粉碎有何意義?物料粉碎的作用有哪些?提高物料流動性,便於儲存於運輸;提高物料的均勻程度;提高烘乾效率,反應速率;降低入磨物料的粒度,提高磨機產量,降低電耗;增加物料的比表面積,提高烘乾效率。 什麼是粉碎?什麼是粉磨?什麼是破碎比?粉碎粉碎是指在外力作用下,固體物質克服各質點間的內聚力,使其破裂的過程。粉磨:物料在外力的作用下,通過沖擊、擠壓、研磨作用,使塊狀物料變成細粉的過程。破碎比:物料被破碎前、後的顆粒大小。尺寸之比。常用的粉碎方法有哪幾種?各有什麼特徵? 擠壓粉碎:物料在兩個工作面之間受到緩慢增長的壓力,當物料的應力達到其任碎強度極限時而被破碎,主要用於粉磨大塊硬質物料。劈裂粉碎:物料在兩個帶有尖校狀的金屬表面之間擠壓,發生較大裂縫,物料中便產生拉應力,當它達到拉伸強度極限時,則被劈裂而破碎,主要用於破碎脆性物料。折斷粉碎:物料在兩個帶有相互錯開的凸校金屬表面之間擠壓,物料產生彎曲,當它的應力達到彎曲強度極限時則被破碎,主要用於破碎硬脆性物料。 研磨破碎:物料在兩個金屬平面或各種形狀的研磨體之間作相對移動,受到剪切力的作用,當物料的應力達到剪切強度極限時而被磨碎,用於小塊物料的研磨。 沖擊破碎:物料在瞬間受到外來沖擊力,由動能轉變為物料變形能因產生很大的應力集中而導致物料破碎,主要用於脆性物料破碎。

⑼ 細度檢測方法

細度與礦漿質量分數一樣也是選礦過程中一個重要指標。細度雖然與粒度關系密切,但其含意不同,所謂細是指物料中小於某一粒度的所有粒子的質量,在全部物料中的百分含量,而粒度則指顆粒的實際大小。
細度多用-200目含量來表示。細度的測定方法有多種,選礦生產中常用的有直接測定法和間接測定法。
(1)直接測定法。直接測定法是礦漿取樣後過濾、烘乾,取出一定質量q0(g)的干樣(取樣質量要有代表性),然後用指定的篩子(如200目篩)進行完全篩分(干法、濕法或干濕聯合法,一般篩分0.5h以上),稱得篩上產物質量q2或篩下產物質量q1,則細度
或者
這種測定方法結果准確,但測定時間長難以指導生產,一般將其結果用於生產統計報表。
(2)間接測定法。該法是通過測礦漿質量分數來求細度。也稱為快速篩析法。即用標定好的質量分數壺採取礦槳樣並稱重,得出篩分前的礦漿質量Q1(g),求得礦漿質量分數K1(%),然後將礦漿在指定的篩子上(通常用200目)濕法篩分,篩後將篩上殘留物裝回原質量分數壺,加滿水再稱重得篩上物加水的質量Q2(g),同樣求出篩上產物加水後的礦漿質量分數K2(%),則細度

例如,測某閉路磨礦作業的螺旋分級機分級溢流細度:取樣後稱得礦漿質量Q1=1540g,求得其質量分數為K1=38%,然後用200目篩子濕法篩分,篩後篩上產物倒入質量分數壺加水後再稱其質量Q2為750g,相應質量分數為K2=15%,則細度
=80.78%

⑽ 粉體顆粒分布常用檢測方法有哪些

大概有以下幾種方法: 1、篩分法,這個通過查看篩餘量,過篩率等來判斷粉體粒度的分布,優點是成本低,缺點是只能給出點的粒徑,不能給出全部粉體的粒度分布。 2、沉降法,一般是利用斯托克原理,通過懸浮液體客戶的在重力作用下的沉降速度來判定顆粒的大小。可以給出粒度分布表等,但對於粒徑較小的顆粒,沉降速度比較慢,測試耗時較多。 3、激光散射法,目前使用較多,比較適合測試粒度分布較寬的粉體,測試成本相對較高,儀器價格從國產的幾萬元到國外的幾十萬元不等。更多相關問題,可關注<粉體圈>網路

閱讀全文

與物料粒度測定方法有哪些相關的資料

熱點內容
矛盾與解決方法作文 瀏覽:379
排列三計算方法視頻 瀏覽:332
正宗的干條燕窩食用方法 瀏覽:889
米蕎的食用方法是什麼 瀏覽:647
論工作分析的基本方法 瀏覽:90
前列腺癌治療新方法上海 瀏覽:755
怎麼股癬治療方法 瀏覽:97
化學消毒劑的方法有哪些 瀏覽:620
越南蒸雞肉的正確方法 瀏覽:488
自動水管安裝方法圖解 瀏覽:74
仁和雪蓮精華使用方法 瀏覽:76
降血糖的方法圖片 瀏覽:569
色漿的製作方法和步驟 瀏覽:245
治療失眠的好方法周教授 瀏覽:752
三星手機恢復出廠設置的方法 瀏覽:829
如何改善唇深的方法 瀏覽:203
地球計算方法最新2012 瀏覽:491
兒童游泳的正確方法圖解 瀏覽:637
如何用卡紙做燈籠手工製作方法 瀏覽:346
滅蟻靈分析方法 瀏覽:953