導航:首頁 > 方法技巧 > 如何理解以盈補虛的方法

如何理解以盈補虛的方法

發布時間:2022-04-18 18:00:26

1. 勾股定理是什麼

勾股定理:
在我國,把直角三角形的兩直角邊的平方和等於斜邊的平方這一特性叫做勾股定理或勾股弦定 古埃及人利用打結作RT三角形理,又稱畢達哥拉斯定理或畢氏定理(Pythagoras Theorem)。
定理:
如果直角三角形兩直角邊分別為a,b,斜邊為c,那麼 a^2+b^2=c^2; 即直角三角形兩直角邊的平方和等於斜邊的平方。
如果三角形的三條邊a,b,c滿足a^2+b^2=c^2,如:一條直角邊是3,一條直角邊是4,斜邊就是3×3+4×4=X×X,X=5。那麼這個三角形是直角三角形。(稱勾股定理的逆定理)
勾股定理的來源:
畢達哥拉斯樹畢達哥拉斯樹是一個基本的幾何定理,傳統上認為是由古希臘的畢達哥拉斯所證明。據說畢達哥拉斯證明了這個定理後,即斬了百頭牛作慶祝,因此又稱「百牛定理」。在中國,《周髀算經》記載了勾股定理的公式與證明,相傳是在商代由商高發現,故又有稱之為商高定理;三國時代的趙爽對《周髀算經》內的勾股定理作出了詳細注釋,又給出了另外一個證明[5]。法國和比利時稱為驢橋定理,埃及稱為埃及三角形。我國古代把直角三角形中較短的直角邊叫做勾,較長的直角邊叫做股,斜邊叫做弦。
有關勾股定理書籍
《數學原理》人民教育出版社
《探究勾股定理》同濟大學出版社
《優因培教數學》北京大學出版社
《勾股模型》 新世紀出版社
《九章算術一書》
《優因培揭秘勾股定理》江西教育出版社
畢達哥拉斯樹
畢達哥拉斯樹是由畢達哥拉斯根據勾股定理所畫出來的一個可以無限重復的圖形。又因為重復數次後的形狀好似一棵樹,所以被稱為畢達哥拉斯樹。
直角三角形兩個直角邊平方的和等於斜邊的平方。
兩個相鄰的小正方形面積的和等於相鄰的一個大正方形的面積。
利用不等式A2+B2≥2AB
三個正方形之間的三角形,其面積小於等於大正方形面積的四分之一,大於等於一個小正方形面積的二分之一。 [編輯本段]最早的勾股定理應用 從很多泥板記載表明,巴比倫人是世界上最早發現「勾股定理」的,這里只舉一例。例如公元前1700年的一塊泥板(編號為BM85196)上第九題,大意為「有一根長為5米的木樑(AB)豎直靠在牆上,上端(A)下滑一米至D。問下端(C)離牆根(B)多遠?」他們解此題就是用了勾股定理,如圖
設AB=CD=l=5米,BC=a,AD=h=1米,則BD=l-h=5-1米=4米
∴a=√[l-(l-h)]=√[5-(5-1)]=3米,∴三角形BDC正是以3、4、5為邊的勾股三角形。 [編輯本段]《周髀算經》中勾股定理的公式與證明《周髀算經》算經十書之一。約成書於公元前二世紀,原名《周髀》,它是我國最古老的天文學著作,主要闡明當時的蓋天說和四分歷法。唐初規定它為國子監明算科的教材之一,故改名《周髀算經》。
首先,《周髀算經》中明確記載了勾股定理的公式:「若求邪至日者,以日下為句,日高為股,句股各自乘,並而開方除之,得邪至日」(《周髀算經》上卷二)
而勾股定理的證明呢,就在《周髀算經》上卷一[1] ——
昔者周公問於商高曰:「竊聞乎大夫善數也,請問昔者包犧立周天歷度——夫天可不階而升,地不可得尺寸而度,請問數安從出?」
商高曰:「數之法出於圓方,圓出於方,方出於矩,矩出於九九八十一。故折矩,以為句廣三,股修四,徑隅五。既方之,外半其一矩,環而共盤,得成三四五。兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數之所生也。」
周公對古代伏羲(包犧)構造周天歷度的事跡感到不可思議(天不可階而升,地不可得尺寸而度),就請教商高數學知識從何而來。於是商高以勾股定理的證明為例,解釋數學知識的由來。
《周髀算經》證明步驟「數之法出於圓方,圓出於方,方出於矩,矩出於九九八十一。」:解釋發展脈絡——數之法出於圓(圓周率三)方(四方),圓出於方(圓形面積=外接正方形*圓周率/4),方出於矩(正方形源自兩邊相等的矩),矩出於九九八十一(長乘寬面積計算依自九九乘法表)。
「故折矩①,以為句廣三,股修四,徑隅五。」:開始做圖——選擇一個 勾三(圓周率三)、股四(四方) 的矩,矩的兩條邊終點的連線應為5(徑隅五)。
「②既方之,外半其一矩,環而共盤,得成三四五。」:這就是關鍵的證明過程——以矩的兩條邊畫正方形(勾方、股方),根據矩的弦外面再畫一個矩(曲尺,實際上用作直角三角),將「外半其一矩」得到的三角形剪下環繞復制形成一個大正方形,可看到其中有 邊長三勾方、邊長四股方、邊長五弦方 三個正方形。
「兩矩共長③二十有五,是謂積矩。」:此為驗算——勾方、股方的面積之和,與弦方的面積二十五相等——從圖形上來看,大正方形減去四個三角形面積後為弦方,再是 大正方形 減去 右上、左下兩個長方形面積後為 勾方股方之和。因三角形為長方形面積的一半,可推出 四個三角形面積 等於 右上、左下兩個長方形面積,所以 勾方+股方=弦方。
注意:
① 矩,又稱曲尺,L型的木匠工具,由長短兩根木條組成的直角。古代「矩」指L型曲尺,「矩形」才是「矩」衍生的長方形。
② 「既方之,外半其一矩」此句有爭議。清代四庫全書版定為「既方其外半之一矩」,而之前版本多為「既方之外半其一矩」。經陳良佐[2]、李國偉[3]、李繼閔[4]、曲安京[5]等學者研究,「既方之,外半其一矩」更符合邏輯。
③ 長指的是面積。古代對不同維度的量綱比較,並沒有發明新的術語,而統稱「長」。趙爽注稱:「兩矩者, 句股各自乘之實。共長者, 並實之數。
由於年代久遠,周公弦圖失傳,傳世版本只印了趙爽弦圖(造紙術在漢代才發明)。所以某些學者誤以為商高沒有證明(只是說了一段莫名其妙的話),後來趙爽才給出證明。
其實不然,摘錄趙爽注釋《周髀算經》時所做的《句股圓方圖》[1]——「句股各自乘, 並之為弦實, 開方除之即弦。案: 弦圖又可以句股相乘為朱實二, 倍之為朱實四, 以句股之差自相乘為中黃實, 加差實亦成弦實。」
趙爽弦圖注意「案」中的「弦圖又可以」、「亦成弦實」,「又」「亦」二字表示趙爽認為勾股定理還可以用另一種方法證明,於是他給出了新的證明。
下為趙爽證明——
青朱出入圖三角形為直角三角形,以勾a為邊的正方形為朱方,以股b為邊的正方形為青方。以盈補虛,將朱方、青放並成弦方。依其面積關系有a^2+b^2=c^2.由於朱方、青方各有一部分在玄方內,那一部分就不動了。
以勾為邊的的正方形為朱方,以股為邊的正方形為青方。以贏補虛,只要把圖中朱方(a2)的I移至I′,青方的II移至II′,III移至III′,則剛好拼好一個以弦為邊長的正方形(c……2 ).由此便可證得a^+b^2=c^2; [編輯本段]伽菲爾德證明勾股定理的故事1876年一個周末的傍晚,在美國首都華盛頓的郊外,有一位中年人正在散步,欣賞黃昏的美景,他就是當時美國俄亥俄州共和黨議員伽菲爾德。他走著走著,突然發現附近的一個小石凳上,有兩個小孩正在聚精會神地談論著什麼,時而大聲爭論,時而小聲探討。由於好奇心驅使,伽菲爾德循聲向兩個小孩走去,想搞清楚兩個小孩到底在干什麼。只見一個小男孩正俯著身子用樹枝在地上畫著一個直角三角形。於是伽菲爾德便問他們在干什麼?那個小男孩頭也不抬地說:「請問先生,如果直角三角形的兩條直角邊分別為3和4,那麼斜邊長為多少呢?」伽菲爾德答道:「是5呀。」小男孩又問道:「如果兩條直角邊分別為5和7,那麼這個直角三角形的斜邊長又是多少?」伽菲爾德不加思索地回答到:「那斜邊的平方一定等於5的平方加上7的平方.」小男孩說:「先生,你能說出其中的道理嗎?」伽菲爾德一時語塞,無法解釋了,心裡很不是滋味。,伽菲爾德不再散步,立即回家,潛心探討小男孩給他出的難題。他經過反復思考與演算,終於弄清了其中的道理,並給出了簡潔的證明方法。
如下:
解:在網格內,以兩個直角邊為邊長的小正方形面積和,等於以斜邊為邊長的的正方形面積。
勾股定理的內容:直角三角形兩直角邊a、b的平方和等於斜邊c的平方,
a的平方+b的平方=c的平方;
說明:我國古代學者把直角三角形的較短直角邊稱為「勾」,較長直角邊為「股」,斜邊稱為「弦」,所以把這個定理成為「勾股定理」。勾股定理揭示了直角三角形邊之間的關系。
舉例:如直角三角形的兩個直角邊分別為3、4,則斜邊c的平方;= a的平方+b的平方=9+16=25即c=5
則說明斜邊為5。
[編輯本段]勾股定理的種證明方法這個定理有許多證明的方法,其證明的方法可能是數學眾多定理中最多的。路明思(Elisha Scott Loomis)的 Pythagorean Proposition一書中總共提到367種證明方式。
有人會嘗試以三角恆等式(例如:正弦和餘弦函數的泰勒級數)來證明勾股定理,但是,因為所有的基本三角恆等式都是建基於勾股定理,所以不能作為勾股定理的證明(參見循環論證)。

【證法1】(梅文鼎證明)
做四個全等的直角三角形,設它們的兩條直角邊長分別為a、b ,斜邊長為c. 把它們拼成如圖那樣的一個多邊形,使D、E、F在一條直線上. 過C作AC的延長線交DF於點P.
∵ D、E、F在一條直線上, 且RtΔGEF ≌ RtΔEBD,
∴ ∠EGF = ∠BED,
∵ ∠EGF + ∠GEF = 90°,
∴ ∠BED + ∠GEF = 90°,
∴ ∠BEG =180°―90°= 90°
又∵ AB = BE = EG = GA = c,
∴ ABEG是一個邊長為c的正方形.
∴ ∠ABC + ∠CBE = 90°
∵ RtΔABC ≌ RtΔEBD,
∴ ∠ABC = ∠EBD.
∴ ∠EBD + ∠CBE = 90°
即 ∠CBD= 90°
又∵ ∠BDE = 90°,∠BCP = 90°,
BC = BD = a.
∴ BDPC是一個邊長為a的正方形.
同理,HPFG是一個邊長為b的正方形.
設多邊形GHCBE的面積為S,則
,
∴ .
【證法2】(項明達證明)
做兩個全等的直角三角形,設它們的兩條直角邊長分別為a、b(b>a) ,斜邊長為c. 再做一個邊長為c的正方形. 把它們拼成如圖所示的多邊形,使E、A、C三點在一條直線上.
過點Q作QP∥BC,交AC於點P.
過點B作BM⊥PQ,垂足為M;再過點
F作FN⊥PQ,垂足為N.
∵ ∠BCA = 90°,QP∥BC,
∴ ∠MPC = 90°,
∵ BM⊥PQ,
∴ ∠BMP = 90°,
∴ BCPM是一個矩形,即∠MBC = 90°.
∵ ∠QBM + ∠MBA = ∠QBA = °,
∠ABC + ∠MBA = ∠MBC = 90°,
∴ ∠QBM = ∠ABC,
又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,
∴ RtΔBMQ ≌ RtΔBCA.
同理可證RtΔQNF ≌ RtΔAEF.
【證法3】(趙浩傑證明)
做兩個全等的直角三角形,設它們的兩條直角邊長分別為a、b(b>a) ,斜邊長為c. 再做一個邊長為c的正方形. 把它們拼成如圖所示的多邊形.
分別以CF,AE為邊長做正方形FCJI和AEIG,
∵EF=DF-DE=b-a,EI=b,
∴FI=a,
∴G,I,J在同一直線上,
∵CJ=CF=a,CB=CD=c,
∠CJB = ∠CFD = 90°,
∴RtΔCJB ≌ RtΔCFD ,
同理,RtΔABG ≌ RtΔADE,
∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE
∴∠ABG = ∠BCJ,
∵∠BCJ +∠CBJ= 90°,
∴∠ABG +∠CBJ= 90°,
∵∠ABC= 90°,
∴G,B,I,J在同一直線上,
【證法4】(歐幾里得證明)
做三個邊長分別為a、b、c的正方形,把它們拼成如圖所示形狀,使H、C、B三點在一條直線上,連結
BF、CD. 過C作CL⊥DE,
交AB於點M,交DE於點L.
∵ AF = AC,AB = AD,
∠FAB = ∠GAD,
∴ ΔFAB ≌ ΔGAD,
∵ ΔFAB的面積等於,
ΔGAD的面積等於矩形ADLM
的面積的一半,
∴ 矩形ADLM的面積 =.
同理可證,矩形MLEB的面積 =.
∵ 正方形ADEB的面積
= 矩形ADLM的面積 + 矩形MLEB的面積
∴ 即a的平方+b的平方=c的平方
【證法5】歐幾里得的證法
《幾何原本》中的證明
在歐幾里得的《幾何原本》一書中提出勾股定理由以下證明後可成立。 設△ABC為一直角三角形,其中A為直角。從A點劃一直線至對邊,使其垂直於對邊上的正方形。此線把對邊上的正方形一分為二,其面積分別與其餘兩個正方形相等。
在正式的證明中,我們需要四個輔助定理如下:
如果兩個三角形有兩組對應邊和這兩組邊所夾的角相等,則兩三角形全等。(SAS定理) 三角形面積是任一同底同高之平行四邊形面積的一半。 任意一個正方形的面積等於其二邊長的乘積。 任意一個四方形的面積等於其二邊長的乘積(據輔助定理3)。 證明的概念為:把上方的兩個正方形轉換成兩個同等面積的平行四邊形,再旋轉並轉換成下方的兩個同等面積的長方形。
其證明如下:
設△ABC為一直角三角形,其直角為CAB。 其邊為BC、AB、和CA,依序繪成四方形CBDE、BAGF和ACIH。 畫出過點A之BD、CE的平行線。此線將分別與BC和DE直角相交於K、L。 分別連接CF、AD,形成兩個三角形BCF、BDA。 ∠CAB和∠BAG都是直角,因此C、A 和 G 都是線性對應的,同理可證B、A和H。 ∠CBD和∠FBA皆為直角,所以∠ABD等於∠FBC。 因為 AB 和 BD 分別等於 FB 和 BC,所以△ABD 必須相等於△FBC。 因為 A 與 K 和 L是線性對應的,所以四方形 BDLK 必須二倍面積於△ABD。 因為C、A和G有共同線性,所以正方形BAGF必須二倍面積於△FBC。 因此四邊形 BDLK 必須有相同的面積 BAGF = AB^2。 同理可證,四邊形 CKLE 必須有相同的面積 ACIH = AC^2。 把這兩個結果相加, AB^2+ AC^2; = BD×BK + KL×KC 由於BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由於CBDE是個正方形,因此AB^2 + AC^2= BC^2。 此證明是於歐幾里得《幾何原本》一書第1.47節所提出的 [編輯本段]勾股定理的別名勾股定理,是幾何學中一顆光彩奪目的明珠,被稱為「幾何學的基石」,而且在高等數學和其他學科中也有著極為廣泛的應用。正因為這樣,世界上幾個文明古國都已發現並且進行了廣泛深入的研究,因此有許多名稱。
我國是發現和研究勾股定理最古老的國家之一。我國古代數學家稱直角三角形為勾股形,較短的直角邊稱為勾,另一直角邊稱為股,斜邊稱為弦,所以勾股定理也稱為勾股弦定理。在公元前1000多年,據記載,商高(約公元前1120年)答周公曰「故折矩,以為句廣三,股修四,徑隅五。既方之,外半其一矩,環而共盤,得成三四五。兩矩共長二十有五,是謂積矩。」.因此,勾股定理在我國又稱「商高定理」.在公元前7至6世紀一中國學者陳子,曾經給出過任意直角三角形的三邊關系即「以日下為勾,日高為股,勾、股各乘並開方除之得邪至日。
在法國和比利時,勾股定理又叫「驢橋定理」。還有的國家稱勾股定理為「平方定理」。
在陳子後一二百年,希臘的著名數學家畢達哥拉斯發現了這個定理,因此世界上許多國家都稱勾股定理為「畢達哥拉斯」定理.為了慶祝這一定理的發現,畢達哥拉斯學派殺了一百頭牛酬謝供奉神靈,因此這個定理又有人叫做「百牛定理」.
前任美國第二十屆總統伽菲爾德證明了勾股定理(1876年4月1日)。

2. 以贏補虛求三角形面積



15×2=30(厘米)
20×30=600(平方厘米)
答:三角形ABC的面積是600平方厘米.

3. 一句話概括以盈補虛發的體會和感受

把圖形分割成若干塊,那麼各部分面積的和等於原來圖形的面積。
感受:是金子總會發光的。

4. 出入相補原理是我國著名數學家吳文俊先生提出的,他認為這個原理

出入相補(又稱以盈補虛)積是古中國數學中一條用於推證幾何圖形的面積或體積的基本原理。其內容有四:一、一個幾何圖形,可以切割成任意多塊任何形狀的小圖形,總面積或體積維持不變=所有小圖形面積或體積之和。 二、一個幾何圖形,可以任意旋轉,倒置、移動、復制,面積或體積不變。 三、多個幾何圖形,可以任意拼合,總面積或總體積不變。 四、幾何圖形與其復制圖形拼合,總面積或總體加倍。 出入相補原理最早由三國時代魏國數學家劉徽創建。

5. 請求翻譯下列古文

可不可以講一下大概? 因為那些公式一般人都知道了。就算不知道,你上網查一下就行了。況且,字數有限。
你這是《九章算術》方田章,《九章算術》方田章主要論述平面圖形直線形和圓的面積計算方法,平面圖形面積的量法及演算法,如矩形、三角形、圓、弧形、環形等的田地的求積公式,及分數演算法,包括加減乘除法、約分[將分母,分子用輾轉相除法求出它的最大公約數再作約分]、分數大小的比較及求幾個分數的算術平均數等。
下面是我的理解和一些資料——
首先講一下它的結構。①序號(第幾提)。②題目(這里一般都是,現在有一個田+已知條件+問題。和一般應用題差不多,很簡約。)③答案(荅曰)④方法(術曰)。
第二十一題~第二十四題是關於分數演算法,題目很簡單,小學水平,我不多說了。
第二十五、二十六題是等腰三角形面積。圭田(guitian)一種演算法,指等腰三角形。「圭田術曰:半廣以乘正從。」也就是說,三角形的面積等於高與底邊邊長乘積的一半。劉徽注稱:「半廣者,以盈補虛為直田也。亦可半正從以乘廣。」即如圖根據「出入相補」原理、採用「以盈補虛」的方法將三角形化為與之等積的長方形,再利用「方田術」計算其面積。
第二十七、二十八題把直角梯形稱為「邪田」(即斜田)它的面積公式是:「術曰:並兩邪(即兩斜,應理解為梯形兩底)而半之,以乘正從……,又可半正從……以乘並。」劉徽在注中說明他的證法仍是「出入相補」法。在方田章第二十九、三十題把一般梯形稱為「箕田」,上、下底分別稱為「舌」、「踵」,面積公式是:「術曰:並踵舌而半之,以乘正從」。
至於圓面積,在《九章算術》方田章第三十一、三十二題中,它的面積計算公式為:「半周半徑相乘得積步」。這里「周」是圓周長,「徑」是指直徑。這個圓面積計算公式是正確的。只是當時取徑一周三(即π≈3)。於是由此計算所得的圓面積就不夠精密。
第三十三、三十四題是球帽形面積。公式請君查。
第三十五、三十六題是弧形面積。公式請君查。
第三十七、三十八題是環形面積。公式請君查。
見諒啊,公式這種東西,我覺得,你應該是自己能找來的。實在又不懂的話,來找我吧。
我很好奇的是,你要這個翻譯做什麼?急功近利一點的說,考試不考的吧。

6. 劉徽怎樣利用出入相補原理來計算平面圖形的面積

所謂出入相補原理,簡單地說,就是指:一個平面圖形從一處移至他處,面積不變,假如把圖形分割成若干塊,那麼各部分面積的和等於原來圖形的面積,因而圖形轉移前後各部分面積的和、差有簡單的相等關系。

立體的情形也是這樣。舉幾個簡單的例子,如圖:

(6)如何理解以盈補虛的方法擴展閱讀:

在「九章算術注」中,劉徽發展了中國古代「率」的思想和「出入相補」原理。用「率」統一證明「九章算術」的大部分演算法和大多數題目,用「出入相補」原理證明了勾股定理以及一些求面積和求體積的公式。

劉徽的工作,不僅對中國古代數學發展產生了深遠影響,而且在世界數學史上也確立了崇高的歷史地位。鑒於劉徽的巨大貢獻,不少書上把他稱作「中國數學史上的牛頓」。

7. 數學中的勾股定理中的「以贏補虛」是什麼意思

三角形為直角三角形,以勾a為邊的正方形為朱方,以股b為邊的正方形為青方。以盈補虛,將朱方、青放並成弦方。依其面積關系有a^+b^=c^.由於朱方、青方各有一部分在弦方內,那一部分就不動了。

為了證明勾股定理,這里即要滿足以勾為邊的正方形的面積加上以股為邊的正方形面積等於以弦為邊的正方形面積。兩個小正方形有一部分的面積在大正方形內,就不動了。而有一些部分在大正方形外,就是「贏」。以贏補虛就是以在大正方形外的部分補充它們在大正方形內空缺的部分。從而證明它們的總面積就是大正方形的面積。

8. 以勾為邊的正方形為朱方,以股為邊的正方形為青方,勾是哪個股呢邊呢 以盈補虛什麼意思 青朱入出怎麼得出

http://..com/question/250380893.html
http://ke..com/view/823719.htm

9. 出入相補原理是什麼

出入相補(又稱以盈補虛)原理:一個幾何圖形(平面的或立體的)被分割成若幹部分後,面積或體積的總和保持不變。出入相補原理最早由三國時代魏國數學家劉徽創建。「勾股各自乘,並,而開方之,即弦。

勾自乘為朱方,股自乘為青方,另出入相補,各從其類,因就其餘不移動也,合成弦方之冪,開方除之,即弦也。」

主要起源

田畝丈量和天文觀測是我國幾何學的主要起源,這和外國沒有什麼不同,二者導出面積問題和勾股測量問題。稍後的計算容積、土建工程又導出體積問題。

我國古代幾何學的特色之一是,依據這些方面的經驗成果,總結提高成一個簡單明白、看起來似乎極不足道的一般原理——出入相補原理,並且把它應用到形形色色多種多樣的不同問題上去。

閱讀全文

與如何理解以盈補虛的方法相關的資料

熱點內容
室內隔熱條的安裝方法 瀏覽:541
紫草油寶寶使用方法 瀏覽:292
沙漠空氣取水方法圖片 瀏覽:383
治療香港腳的方法 瀏覽:270
鄭強教學方法有哪些 瀏覽:196
研究方法中的測驗 瀏覽:651
黨校開展課題研究的方法 瀏覽:969
ecco護理劑使用方法 瀏覽:242
棗庄女人月經不調治療方法 瀏覽:750
除蟎最快方法圖片 瀏覽:561
如何用簡單的方法拆手機 瀏覽:95
檢測抗紅細胞抗體方法 瀏覽:604
列印機緩存文件夾在哪裡設置方法 瀏覽:763
食用營養膏使用方法 瀏覽:521
經測定蛋白質含量的方法有哪些 瀏覽:934
蘋果輸入法的聲音怎麼設置在哪裡設置方法 瀏覽:347
找到簡單的方法英語 瀏覽:525
水的潔治常用的方法有哪些 瀏覽:905
如何去液毛的方法18歲以下 瀏覽:49
簡單死亡方法 瀏覽:397