① 我是一名初三的學生,我對十字相乘不太明白,希望高手能幫我講解,謝謝啦
把下列各式多分解因式:
1.x2+6x-72; 2.(x+y) 2-8(x+y)+48;
3.x4-7x2+18; 4.x2-10xy-56y2.
答:
1.(x+12)(x-6); 2.(x+y-12)(x+y+4);
3.(x+3)(x-3)(x2+2); 4.(x-14y)(x+4y).
我們已經學習了把形如x2+px+q的某些二次三項式分解因式,也學習了通過設輔助元的方法把能轉化為形如x2+px+q型的某些多項式分解因式.
對於二次項系數不是非曲直的二次三項式如何分解因式呢?這節課就來討論這個問題,即把某些形如ax2+bx+c的二次三項式分解因式.
二、新課
例1 把2x2-7x+3分解因式.
分析:先分解二次項系數,分別寫在十字交叉線的左上角和左下解,再分解常數項,分
別寫在十字交叉線的右上角和右下角,然後交叉相乘,求代數和,使其等於一次項系數.
分解二次項系數(只取正因數):
2=1×2=2×1;
分解常數項:
3=1×3=1×3==(-3)×(-1)=(-1)×(-3).
用畫十字交叉線方法表示下列四種情況:
1 1
�
2 3
1×3+2×1
=5
1 3
�
2 1
1×1+2×3
=7
1 -1
�
2 -3
1×(-3)+2×(-1)
=-5
1 -3
�
2 -1
1×(-1)+2×(-3)
=-7
經過觀察,第四種情況是正確的,這是因為交叉相乘後,兩項代數和恰等於一次項系數-7.
解 2x2-7x+3=(x-3)(2x-1).
一般地,對於二次三項式ax2+bx+c(a≠0),如果二次項系數a可以分解成兩個因數之積,即a=a1a2,常數項c可以分解成兩個因數之積,即c=c1c2,把a1,a2,c1,c2,排列如下:
a1 c1
�
a2 c2
a1a2+a2c1
按斜線交叉相乘,再相加,得到a1a2+a2c1,若它正好等於二次三項式ax2+bx+c的一次項系數b,即a1c2+a2c1=b,那麼二次三項式就可以分解為兩個因式a1x+c1與a2x+c2之積,即
ax2+bx+c=(a1x+c1)(a2x+c2).
像這種藉助畫十字交叉線分解系數,從而幫助我們把二次三項式分解因式的方法,通常
叫做十字相乘法.
例2 把6x2-7x-5分解因式.
分析:按照例1的方法,分解二次項系數6及常數項-5,把它們分別排列,可有8種不同的排列方法,其中的一種
2 1
�
3 -5
2×(-5)+3×1=-7
是正確的,因此原多項式可以用十字相乘法分解因式.
解 6x2-7x-5=(2x+1)(3x-5).
指出:通過例1和例2可以看到,運用十字相乘法把一個二次項系數不是1的二次三項式因式分解,往往要經過多次觀察,才能確定是否可以用十字相乘法分解因式.
對於二次項系數是1的二次三項式,也可以用十字相乘法分解因式,這時只需考慮如何把常數項分解因數.例如把x2+2x-15分解因式,十字相乘法是
1 -3
�
1 5
1×5+1×(-3)=2
所以x2+2x-15=(x-3)(x+5).
例3 把5x2+6xy-8y2分解因式.
分析:這個多項式可以看作是關於x的二次三項式,把-8y2看作常數項,在分解二次項及常數項系數時,只需分解5與-8,用十字交叉線分解後,經過觀察,選取合適的一組,即
1 2
�
5 -4
1×(-4)+5×2=6
解 5x2+6xy-8y2=(x+2y)(5x-4y).
指出:原式分解為兩個關於x,y的一次式.
例4 把(x-y)(2x-2y-3)-2分解因式.
分析:這個多項式是兩個因式之積與另一個因數之差的形式,只有先進行多項式的乘法運算,把變形後的多項式再因式分解.
問:兩上乘積的因式是什麼特點,用什麼方法進行多項式的乘法運算最簡便?
答:第二個因式中的前兩項如果提出公因式2,就變為2(x-y),它是第一個因式的二倍,然後把(x-y)看作一個整體進行乘法運算,可把原多項式變形為關於(x-y)的二次三項式,就可以用十字相乘法分解因式了.
解 (x-y)(2x-2y-3)-2
=(x-y)[2(x-y)-3]-2
=2(x-y) 2-3(x-y)-2
=[(x-y)-2][2(x-y)+1]
=(x-y-2)(2x-2y+1).
1 -2
�
2 +1
1×1+2×(-2)=-3
指出:把(x-y)看作一個整體進行因式分解,這又是運用了數學中的「整體」思想方法.
三、課堂練習
1.用十字相乘法分解因式:
(1)2x2-5x-12; (2)3x2-5x-2;
(3)6x2-13x+5; (4)7x2-19x-6;
(5)12x2-13x+3; (6)4x2+24x+27.
2.把下列各式分解因式:
(1)6x2-13xy+6y2; (2)8x2y2+6xy-35;
(3)18x2-21xy+5y2; (4)2(a+b) 2+(a+b)(a-b)-6(a-b) 2.
答案:
1.(1)(x-4)(2x+3); (2)(x-2)(3x+1);
(3)(2x-1)(3x-5); (4)(x-3)(7x+2);
(5)(3x-1)(4x-3); (6)(2x+3)(2x+9).
2.(1)(2x-3y)(3x-2y); (2)(2xy+5)(4xy-7);
(3)(3x-y)(6x-5y); (4)(3a-b)(5b-a).
四、小結
1.用十字相乘法把某些形如ax2+bx+c的二次三項式分解因式時,應注意以下問題:
(1)正確的十字相乘必須滿足以下條件:
a1 c1
在式子 � 中,豎向的兩個數必須滿足關系a1a2=a,c1c2=c;在上式中,斜向的
a2 c2
兩個數必須滿足關系a1c2+a2c1=b.
(2)由十字相乘的圖中的四個數寫出分解後的兩個一次因式時,圖的上一行兩個數中,a1是第一個因式中的一次項系數,c1是常數項;在下一行的兩個數中,a2是第二個因式中的一次項的系數,c2是常數項.
(3)二次項系數a一般都把它看作是正數(如果是負數,則應提出負號,利用恆等變形把它轉化為正數,)只需把它分解成兩個正的因數.
2.形如x2+px+q的某些二次三項式也可以用十字相乘法分解因式.
3.凡是可用代換的方法轉化為二次三項式ax2+bx+c的多項式,有些也可以用十字相乘法分解因式,如例4.
五、作業
1.用十字相乘法分解因式:
(1)2x2+3x+1; (2)2y2+y-6;
(3)6x2-13x+6; (4)3a2-7a-6;
(5)6x2-11xy+3y2; (6)4m2+8mn+3n2;
(7)10x2-21xy+2y2; (8)8m2-22mn+15n2.
2.把下列各式分解因式:
(1)4n2+4n-15; (2)6a2+a-35;
(3)5x2-8x-13; (4)4x2+15x+9
(5)15x2+x-2; (6)6y2+19y+10;
(7)20-9y-20y2; (8)7(x-1) 2+4(x-1)(y+2)-20(y+2) 2.
答案:
1.(1)(2x+1)(x+1); (2)(y+2)(2y-3);
(3)(2x-3)(3x-2); (4)(a-3)(3a+2);
(5)(2x-3y)(3x-y); (6)(2m+n)(2m+3n);
(7)(x-2y)(10x-y); (8)(2m-3n)(4m-5n).
2.(1)(2n-3)(2n+5); (2)(2a+5)(3a-7);
(3)(x+1)(5x-13); (4)(x+3)(4x+3);
(5)(3x-1)(5x+2); (6)(2y+5)(3y+2);
(7)-(4y+5)(5y-4); (8)(x+2y+3)(7x-10y-27).
② 初三十字相乘法全面分析!~~
十字相乘法能把某些二次三項式ax2+bx+c(a≠0)分解因式。這種方法的關健是把二次項的系數a分解成兩個因數a1,a2的積a1•a2,把常數項c分解成兩個因數c1,c2的積c1•c2,並使a1c2+a2c1正好是一次項系數b,那麼可以直接寫成結果:ax^2+bx+c=(a1x+c1)(a2x+c2),在運用這種方法分解因式時,要注意觀察,嘗試,並體會它實質是二項式乘法的逆過程。當首項系數不是1時,往往需要多次試驗,務必注意各項系數的符號。
例:x^2+2x-15
分析:常數項(-15)<0,可分解成異號兩數的積,可分解為(-1)(15),或(1)(-15)或(3)
(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和為2。
=(x-3)(x+5)
③ 數學十字相乘的技巧和方法
、十字相乘法的方法:十字左邊相乘等於二次項系數,右邊相乘等於常數項,交叉相乘再相加等於一次項系數。 2、十字相乘法的用處:(1)用十字相乘法來分解因式。(2)用十字相乘法來解一元二次方程。 3、十字相乘法的優點:用十字相乘法來解題的速度比較快,能夠節約時間,而且運用算量不大,不容易出錯。 4、十字相乘法的缺陷:1、有些題目用十字相乘法來解比較簡單,但並不是每一道題用十字相乘法來解都簡單。2、十字相乘法只適用於二次三項式類型的題目。3、十字相乘法比較難學。 5、十字相乘法解題實例: 1)、 用十字相乘法解一些簡單常見的題目 例1把m+4m-12分解因式 分析:本題中常數項-12可以分為-1×12,-2×6,-3×4,-4×3,-6×2,-12×1當-12分成-2×6時,才符合本題 解:因為 1 -2 1 ╳ 6 所以m+4m-12=(m-2)(m+6) 例2把5x+6x-8分解因式 分析:本題中的5可分為1×5,-8可分為-1×8,-2×4,-4×2,-8×1。當二次項系數分為1×5,常數項分為-4×2時,才符合本題 解: 因為 1 2 5 ╳ -4 所以5x+6x-8=(x+2)(5x-4) 例3解方程x-8x+15=0 分析:把x-8x+15看成關於x的一個二次三項式,則15可分成1×15,3×5。 解: 因為 1 -3 1 ╳ -5 所以原方程可變形(x-3)(x-5)=0 所以x1=3 x2=5 例4、解方程 6x-5x-25=0 分析:把6x-5x-25看成一個關於x的二次三項式,則6可以分為1×6,2×3,-25可以分成-1×25,-5×5,-25×1。 解: 因為 2 -5 3 ╳ 5 所以 原方程可變形成(2x-5)(3x+5)=0 所以 x1=5/2 x2=-5/3 2)、用十字相乘法解一些比較難的題目 例5把14x-67xy+18y分解因式 分析:把14x-67xy+18y看成是一個關於x的二次三項式,則14可分為1×14,2×7, 18y可分為y.18y , 2y.9y , 3y.6y 解: 因為 2 -9y 7 ╳ -2y 所以 14x-67xy+18y= (2x-9y)(7x-2y) 例6 把10x-27xy-28y-x+25y-3分解因式 分析:在本題中,要把這個多項式整理成二次三項式的形式 解法一、10x-27xy-28y-x+25y-3 =10x-(27y+1)x -(28y-25y+3) 4y -3 7y ╳ -1 =10x-(27y+1)x -(4y-3)(7y -1) =[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1) 5 ╳ 4y - 3 =(2x -7y +1)(5x +4y -3) 說明:在本題中先把28y-25y+3用十字相乘法分解為(4y-3)(7y -1),再用十字相乘法把10x-(27y+1)x -(4y-3)(7y -1)分解為[2x -(7y -1)][5x +(4y -3)] 解法二、10x-27xy-28y-x+25y-3 =(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y =[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y =(2x -7y+1)(5x -4y -3) 2 x -7y 1 5 x - 4y ╳ -3 說明:在本題中先把10x-27xy-28y用十字相乘法分解為(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解為[(2x -7y)+1] [(5x -4y)-3]. 例7:解關於x方程:x- 3ax + 2a–ab -b=0 分析:2a–ab-b可以用十字相乘法進行因式分解 解:x- 3ax + 2a–ab -b=0 x- 3ax +(2a–ab - b)=0 x- 3ax +(2a+b)(a-b)=0 1 -b 2 ╳ +b [x-(2a+b)][ x-(a-b)]=0 1 -(2a+b) 1 ╳ -(a-b) 所以 x1=2a+b x2=a-b 兩種相關聯的變數之間的二次函數的關系,可以用三種不同形式的解析式表示:一般式、頂點式、交點式 交點式. 利用配方法,把二次函數的一般式變形為 Y=a[(x+b/2a)^2-(b^2-4ac)/4a^2] 應用平方差公式對右端進行因式分解,得 Y=a[x+b/2a+√b^2-4ac/2a][x+b/2a-√b^2-4ac/2a] =a[x-(-b-√b^2-4ac)/2a][x-(-b+√b^2-4ac)/2a] 因一元二次方程ax^2+bx+c=0的兩根分別為x1,2=(-b±√b^2-4ac)/2a 所以上式可寫成y=a(x-x1)(x-x2),其中x1,x2是方程ax^2+bx+c=0的兩個根 因x1,x2恰為此函數圖象與x軸兩交點(x1,0),(x2,0)的橫坐標,故我們把函數y=a(x-x1)(x-x2)叫做函數的交點式. 在解決與二次函數的圖象和x軸交點坐標有關的問題時,使用交點式較為方便. 二次函數的交點式還可利用下列變形方法求得: 設方程ax^2+bx+c=0的兩根分別為x1,x2 根據根與系數的關系x1+x2=-b/a,x1x2=c/a, 有b/a=-(x1+x2),a/c=x1x2 ∴y=ax^2+bx+c=a[x^2+b/a*x+c/a] =a[x^2-(x1+x2)x+x1x2]=a(x-x1)(x-x2) 參考資料: http://..com/question/13484053.html?si=1
④ 誰會初三數學十字相乘法
、十字相乘法的方法:十字左邊相乘等於二次項系數,右邊相乘等於常數項,交叉相乘再相加等於一次項系數。
2、十字相乘法的用處:(1)用十字相乘法來分解因式。(2)用十字相乘法來解一元二次方程。
3、十字相乘法的優點:用十字相乘法來解題的速度比較快,能夠節約時間,而且運用算量不大,不容易出錯。
4、十字相乘法的缺陷:1、有些題目用十字相乘法來解比較簡單,但並不是每一道題用十字相乘法來解都簡單。2、十字相乘法只適用於二次三項式類型的題目。3、十字相乘法比較難學。
5、十字相乘法解題實例:
1)、 用十字相乘法解一些簡單常見的題目
例1把m²+4m-12分解因式
分析:本題中常數項-12可以分為-1×12,-2×6,-3×4,-4×3,-6×2,-12×1當-12分成-2×6時,才符合本題
解:因為 1 -2
1 ╳ 6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本題中的5可分為1×5,-8可分為-1×8,-2×4,-4×2,-8×1。當二次項系數分為1×5,常數項分為-4×2時,才符合本題
解: 因為 1 2
5 ╳ -4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成關於x的一個二次三項式,則15可分成1×15,3×5。
解: 因為 1 -3
1 ╳ -5
所以原方程可變形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x²-5x-25=0
分析:把6x²-5x-25看成一個關於x的二次三項式,則6可以分為1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解: 因為 2 -5
3 ╳ 5
所以 原方程可變形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比較難的題目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一個關於x的二次三項式,則14可分為1×14,2×7, 18y²可分為y.18y , 2y.9y , 3y.6y
解: 因為 2 -9y
7 ╳ -2y
所以 14x²-67xy+18y²= (2x-9y)(7x-2y)
例6 把10x²-27xy-28y²-x+25y-3分解因式
分析:在本題中,要把這個多項式整理成二次三項式的形式
解法一、10x²-27xy-28y²-x+25y-3
=10x²-(27y+1)x -(28y²-25y+3) 4y -3
7y ╳ -1
=10x²-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
說明:在本題中先把28y²-25y+3用十字相乘法分解為(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解為[2x -(7y -1)][5x +(4y -3)]
解法二、10x²-27xy-28y²-x+25y-3
=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y
=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y
=(2x -7y+1)(5x -4y -3) 2 x -7y 1
5 x - 4y ╳ -3
說明:在本題中先把10x²-27xy-28y²用十字相乘法分解為(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解為[(2x -7y)+1] [(5x -4y)-3].
例7:解關於x方程:x²- 3ax + 2a²–ab -b²=0
分析:2a²–ab-b²可以用十字相乘法進行因式分解
解:x²- 3ax + 2a²–ab -b²=0
x²- 3ax +(2a²–ab - b²)=0
x²- 3ax +(2a+b)(a-b)=0 1 -b
2 ╳ +b
[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)
1 ╳ -(a-b)
所以 x1=2a+b x2=a-b
兩種相關聯的變數之間的二次函數的關系,可以用三種不同形式的解析式表示:一般式、頂點式、交點式
交點式.
利用配方法,把二次函數的一般式變形為
Y=a[(x+b/2a)^2-(b^2-4ac)/4a^2]
應用平方差公式對右端進行因式分解,得
Y=a[x+b/2a+√b^2-4ac/2a][x+b/2a-√b^2-4ac/2a]
=a[x-(-b-√b^2-4ac)/2a][x-(-b+√b^2-4ac)/2a]
因一元二次方程ax^2+bx+c=0的兩根分別為x1,2=(-b±√b^2-4ac)/2a
所以上式可寫成y=a(x-x1)(x-x2),其中x1,x2是方程ax^2+bx+c=0的兩個根
因x1,x2恰為此函數圖象與x軸兩交點(x1,0),(x2,0)的橫坐標,故我們把函數y=a(x-x1)(x-x2)叫做函數的交點式.
在解決與二次函數的圖象和x軸交點坐標有關的問題時,使用交點式較為方便.
二次函數的交點式還可利用下列變形方法求得:
設方程ax^2+bx+c=0的兩根分別為x1,x2
根據根與系數的關系x1+x2=-b/a,x1x2=c/a,
有b/a=-(x1+x2),a/c=x1x2
∴y=ax^2+bx+c=a[x^2+b/a*x+c/a]
=a[x^2-(x1+x2)x+x1x2]=a(x-x1)(x-x2)
參考資料:http://..com/question/13484053.html?si=1
⑤ 初三數學,十字相乘法怎麼搞啊謝謝大家
十字相乘法——藉助畫十字交叉線分解系數,從而把二次三項式分解因式的方法叫做十字相乘法。十字相乘法能把某些二次三項式分解因式。對於形如ax^2+bx+c=(a1x+c1)(a2x+c2)的整式來說,方法的關鍵是把二次項系數a分解成兩個因數a1,a2的積a1·a2,把常數項c分解成兩個因數c1,c2的積c1·c2,並使a1c2+a2c1正好是一次項的系數b,那麼可以直接寫成結果:ax^2+bx+c=(a1x+c1)(a2x+c2)。在運用這種方法分解因式時,要注意觀察,嘗試,並體會它實質是二項式乘法的逆過程。當首項系數不是1時,往往需要多次試驗,務必注意各項系數的符號。基本式子:x^2+(p+q)χ+pq=(χ+p)(χ+q)。
.因式分解的一般步驟
(1) 如果多項式的各項有公因式時,應先提取公因式;
(2) 如果多項式的各項沒有公因式,則考慮是否能用公式法來分解;
(3) 對於二次三項式的因式分解,可考慮用十字相乘法分解;
(4) 對於多於三項的多項式,一般應考慮使用分組分解法進行。
在進行因式分解時,要結合題目的形式和特點來選擇確定採用哪種方法。以上這四種方法是彼此有聯系的,並不是一種類型的多項式就只能用一種方法來分解因式,要學會具體問題具體分析。
在我們做題時,可以參照下面的口訣:
首先提取公因式,然後考慮用公式;
十字相乘試一試,分組分得要合適;
四種方法反復試,最後須是連乘式。
十字相乘法雖然比較難學,但是一旦學會了它,用它來解題,會給我們帶來很多方便。
1、十字相乘法的方法:十字左邊相乘等於二次項系數,右邊相乘等於常數項,交叉相乘再相加等於一次項系數。
2、十字相乘法的用處:(1)用十字相乘法來分解因式。(2)用十字相乘法來解一元二次方程。
3、十字相乘法的優點:用十字相乘法來解題的速度比較快,能夠節約時間,而且運用算量不大,不容易出錯。
4、十字相乘法的缺陷:1、有些題目用十字相乘法來解比較簡單,但並不是每一道題用十字相乘法來解都簡單。2、十字相乘法只適用於二次三項式類型的題目。3、十字相乘法比較難學。
望採納,若不懂,請追問。
⑥ 怎麼十字相乘,技巧
a2,把常數項c分解成兩個因數c1,並使a1c2+a2c1正好是一次項b,那麼可以直接寫成結果,c2的積c1乘c2,右邊相乘等於常數項,往往需要多次試驗,務必注意各項系數的符號。
基本式子:x^2+(p+q)χ+pq=(χ+p)(χ+q)所謂十字相乘法,就是運用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab的逆運算來進行因式分解.
簡單地說:ax^2+bx+c=(a1x+c1)(a2x+c2),在運用這種方法分解因式時,要注意觀察,嘗試,並體會它實質是二項式乘法的逆過程。當首項系數不是1時:十字左邊相乘等於二次項系數十字相乘法的方法簡單點來講就是:十字左邊相乘等於二次項系數,右邊相乘等於常數項,交叉相乘再相加等於一次項系數。
十字相乘法能把某些二次三項式分解因式。這種方法的關鍵是把二次項系數a分解成兩
十字相乘法個因數a1,a2的積a1
⑦ 數學「十字相乘」的方法
十字相乘法雖然比較難學,但是一旦學會了它,用它來解題,會給我們帶來很多方便,以下是我對十字相乘法提出的一些個人見解。
1、十字相乘法的方法:十字左邊相乘等於二次項系數,右邊相乘等於常數項,交叉相乘再相加等於一次項系數。
2、十字相乘法的用處:(1)用十字相乘法來分解因式。(2)用十字相乘法來解一元二次方程。
3、十字相乘法的優點:用十字相乘法來解題的速度比較快,能夠節約時間,而且運用算量不大,不容易出錯。
4、十字相乘法的缺陷:1、有些題目用十字相乘法來解比較簡單,但並不是每一道題用十字相乘法來解都簡單。2、十字相乘法只適用於二次三項式類型的題目。3、十字相乘法比較難學。
5、十字相乘法解題實例:
1)、 用十字相乘法解一些簡單常見的題目
例1把m²+4m-12分解因式
分析:本題中常數項-12可以分為-1×12,-2×6,-3×4,-4×3,-6×2,-12×1當-12分成-2×6時,才符合本題
解:因為 1 -2
1 ╳ 6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本題中的5可分為1×5,-8可分為-1×8,-2×4,-4×2,-8×1。當二次項系數分為1×5,常數項分為-4×2時,才符合本題
解: 因為 1 2
5 ╳ -4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成關於x的一個二次三項式,則15可分成1×15,3×5。
解: 因為 1 -3
1 ╳ -5
所以原方程可變形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x²-5x-25=0
分析:把6x²-5x-25看成一個關於x的二次三項式,則6可以分為1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解: 因為 2 -5
3 ╳ 5
所以 原方程可變形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比較難的題目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一個關於x的二次三項式,則14可分為1×14,2×7, 18y²可分為y.18y , 2y.9y , 3y.6y
解: 因為 2 -9y
7 ╳ -2y
所以 14x²-67xy+18y²= (2x-2y)(7x-9y)
例6 把10x²-27xy-28y²-x+25y-3分解因式
分析:在本題中,要把這個多項式整理成二次三項式的形式
解法一、10x²-27xy-28y²-x+25y-3
=10x²-(27y+1)x -(28y²-25y+3) 4y -3
7y ╳ -1
=10x²-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
說明:在本題中先把28y²-25y+3用十字相乘法分解為(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解為[2x -(7y -1)][5x +(4y -3)]
解法二、10x²-27xy-28y²-x+25y-3
=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y
=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y
=(2x -7y+1)(5x -4y -3) 2 x -7y 1
5 x - 4y ╳ -3
說明:在本題中先把10x²-27xy-28y²用十字相乘法分解為(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解為[(2x -7y)+1] [(5x -4y)-3].
例7:解關於x方程:x²- 3ax + 2a²–ab -b²=0
分析:2a²–ab-b²可以用十字相乘法進行因式分解
解:x²- 3ax + 2a²–ab -b²=0
x²- 3ax +(2a²–ab - b²)=0
x²- 3ax +(2a+b)(a-b)=0 1 -b
2 ╳ +b
[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)
1 ╳ -(a-b)
所以 x1=2a+b x2=a-b
注意
1.用十字相乘法把某些形如ax2+bx+c的二次三項式分解因式時,應注意以下問題:
(1)正確的十字相乘必須滿足以下條件:
a1 c1
在式子 � 中,豎向的兩個數必須滿足關系a1a2=a,c1c2=c;在上式中,斜向的
a2 c2
兩個數必須滿足關系a1c2+a2c1=b.
(2)由十字相乘的圖中的四個數寫出分解後的兩個一次因式時,圖的上一行兩個數中,a1是第一個因式中的一次項系數,c1是常數項;在下一行的兩個數中,a2是第二個因式中的一次項的系數,c2是常數項.
(3)二次項系數a一般都把它看作是正數(如果是負數,則應提出負號,利用恆等變形把它轉化為正數,)只需把它分解成兩個正的因數.
2.形如x+px+q的某些二次三項式也可以用十字相乘法分解因式.
3.凡是可用代換的方法轉化為二次三項式ax+bx+c的多項式,有些也可以用十字相乘法分解因式,如例4.
⑧ 初三數學十字相乘法。詳細。
1、十字相乘法的方法:十字左邊相乘等於二次項系數,右邊相乘等於常數項,交叉相乘再相加等於一次項系數。
2、十字相乘法的用處:(1)用十字相乘法來分解因式。(2)用十字相乘法來解一元二次方程。
3、十字相乘法的優點:用十字相乘法來解題的速度比較快,能夠節約時間,而且運用算量不大,不容易出錯。
4、十字相乘法的缺陷:1、有些題目用十字相乘法來解比較簡單,但並不是每一道題用十字相乘法來解都簡單。2、十字相乘法只適用於二次三項式類型的題目。3、十字相乘法比較難學。
5、十字相乘法解題實例:
1)、 用十字相乘法解一些簡單常見的題目
例1把m²+4m-12分解因式
分析:本題中常數項-12可以分為-1×12,-2×6,-3×4,-4×3,-6×2,-12×1當-12分成-2×6時,才符合本題
解:因為 1 -2
1 ╳ 6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本題中的5可分為1×5,-8可分為-1×8,-2×4,-4×2,-8×1。當二次項系數分為1×5,常數項分為-4×2時,才符合本題
解: 因為 1 2
5 ╳ -4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成關於x的一個二次三項式,則15可分成1×15,3×5。
解: 因為 1 -3
1 ╳ -5
所以原方程可變形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x²-5x-25=0
分析:把6x²-5x-25看成一個關於x的二次三項式,則6可以分為1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解: 因為 2 -5
3 ╳ 5
所以 原方程可變形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比較難的題目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一個關於x的二次三項式,則14可分為1×14,2×7, 18y²可分為y.18y , 2y.9y , 3y.6y
解: 因為 2 -9y
7 ╳ -2y
所以 14x²-67xy+18y²= (2x-9y)(7x-2y)
例6 把10x²-27xy-28y²-x+25y-3分解因式
分析:在本題中,要把這個多項式整理成二次三項式的形式
解法一、10x²-27xy-28y²-x+25y-3
=10x²-(27y+1)x -(28y²-25y+3) 4y -3
7y ╳ -1
=10x²-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
說明:在本題中先把28y²-25y+3用十字相乘法分解為(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解為[2x -(7y -1)][5x +(4y -3)]
解法二、10x²-27xy-28y²-x+25y-3
=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y
=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y
=(2x -7y+1)(5x -4y -3) 2 x -7y 1
5 x - 4y ╳ -3
說明:在本題中先把10x²-27xy-28y²用十字相乘法分解為(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解為[(2x -7y)+1] [(5x -4y)-3].
例7:解關於x方程:x²- 3ax + 2a²–ab -b²=0
分析:2a²–ab-b²可以用十字相乘法進行因式分解
解:x²- 3ax + 2a²–ab -b²=0
x²- 3ax +(2a²–ab - b²)=0
x²- 3ax +(2a+b)(a-b)=0 1 -b
2 ╳ +b
[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)
1 ╳ -(a-b)
所以 x1=2a+b x2=a-b
⑨ 十字相乘法有什麼技巧
a²+a-42
首先,我們看看第一個數,是a²,代表是兩個a相乘得到的,則推斷出(a + ?)×(a -?),
然後我們再看第二項,+a 這種式子是經過合並同類項以後得到的結果,所以推斷出是兩項式×兩項式。
再看最後一項是-42 ,-42是-6×7 或者6×-7也可以分解成 -21×2 或者21×-2。
首先,21和2無論正負,通過任意加減後都不可能是1,只可能是-19或者19,所以排除後者。
然後,再確定是-7×6還是7×-6。
(a+(-7))×(a+6)=a²x²-ax-42(計算過程省略)
得到結果與原來結果不相符,原式+a 變成了-a。
再算:
(a+7)×(a+(-6))=a²+a-42
正確,所以a²+a-42就被分解成為(a+7)×(a-6),這就是通俗的十字分解法分解因式。
具體應用
雙十字分解法是一種因式分解方法。對於型如 Ax²+Bxy+Cy²+Dx+Ey+F 的多項式的因式分解,常採用的方法是待定系數法。這種方法運算過程較繁。對於這問題,若採用「雙十字分解法」(主元法),就能很容易將此類型的多項式分解因式。
例:3x²+5xy-2y²+x+9y-4=(x+2y-1)(3x-y+4)
因為3=1×3,-2=2×(-1),-4=(-1)×4,
而1×(-1)+3×2=5,2×4+(-1)(-1)=9,1×4+3×(-1)=1
要訣:把缺少的一項當作系數為0,0乘任何數得0,
例:ab+b²+a-b-2
=0×1×a²+ab+b²+a-b-2
=(0×a+b+1)(a+b-2)
=(b+1)(a+b-2)
提示:設x²=y,用拆項法把cx²拆成mx²與ny之和。
例:2x^4+13x^3+20x²+11x+2
=2y²+13xy+15x²+5y+11x+2
=(2y+3x+1)(y+5x+2)
=(2x²+3x+1)(x²+5x+2)
=(x+1)(2x+1)(x²+5x+2)
分解二次三項式時,我們常用十字分解法.對於某些二元二次六項式(ax²+bxy+cy²+dx+ey+f),我們也可以用十字分解法分解因式。
例如,分解因式2x²-7xy-22y²-5x+35y-3.我們將上式按x降冪排列,並把y當作常數,於是上式可變形為
2x²-(5+7y)x-(22y²-35y+3),
可以看作是關於x的二次三項式.
對於常數項而言,它是關於y的二次三項式,也可以用十字分解法,分解為
即
-22y²+35y-3=(2y-3)(-11y+1).
再利用十字分解法對關於x的二次三項式分解
所以
原式=〔x+(2y-3)〕〔2x+(-11y+1)〕
=(x+2y-3)(2x-11y+1).
(x+2y)(2x-11y)=2x2-7xy-22y2;
(x-3)(2x+1)=2x2-5x-3;
(2y-3)(-11y+1)=-22y²+35y-3.
這就是所謂的雙十字分解法.也是俗稱的「主元法」
用雙十字分解法對多項式ax²+bxy+cy²+dx+ey+f進行因式分解的步驟是:
⑴用十字分解法分解ax²+bxy+cy²,得到一個十字相乘圖(有兩列);
⑵把常數項f分解成兩個因式填在第三列上,要求第二、第三列構成的十字交叉之積的和等於原式中的ey,第一列、第三列構成的十字交叉之積的和等於原式中的dx.
我們把形如anx^n+a(n-1)x^(n-1)+…+a1x+a0(n為非負整數)的代數式稱為關於x的一元多項式,並用f(x),g(x),…等記號表示,如
f(x)=x²-3x+2,g(x)=x^5+x²+6,…,
當x=a時,多項式f(x)的值用f(a)表示.如對上面的多項式f(x)
f⑴=12-3×1+2=0;
f(-2)=(-2)²-3×(-2)+2=12.
若f(a)=0,則稱a為多項式f(x)的一個根.
定理1(因式定理) 若a是一元多項式f(x)的根,即f(a)=0成立,則多項式f(x)至少有一個因式x-a.
根據因式定理,找出一元多項式f(x)的一次因式的關鍵是求多項式f(x)的根.對於任意多項式f(x),要求出它的根是沒有一般方法的,然而當多項式f(x)的系數都是整數時,即整系數多項式時,經常用下面的定理來判定它是否有有理根。
怎樣進行分解因式
例 7x + (-8x) =-x
解:原式=(x+7)(x-8)
例2
-2x+(-8x)=-10x
解:原式=(x-2)(x-8)
例3、
分析:該題雖然二次項系數不為1,但也可以用十字分解法進行因式分解。
因為
9y + 10y=19y
解:原式=(2y+3)(3y+5)
例4、 因式分解。
分析:因為
21x + (-18x)=3x
解:原式=(2x+3)(7x-9)
例5、 因式分解。
分析:該題可以將(x+2)看作一個整體來進行因式分解。
因為
-25(x+2)+[-4(x+2)]= -29(x+2)
解:原式=[2(x+2)-5][5(x+2)-2]
=(2x-1)(5x+8)
例6、因式分解。
分析:該題可以先將()看作一個整體進行十字分解法分解,接著再套用一次十字相乘。
因為
-2+[-12]=-14 a + (-2a)=-a 3a +(-4a)=-a
解:原式=[-2][ -12]
=(a+1)(a-2)(a+3)(a-4)
⑩ 十字相乘法的技巧
十字相乘法的技巧,他主要看十字相稱,以後得出的結果能否等於一次性未知數的系數,如果等於一致性未知數的系數,那麼就可以分解因式