⑴ 圓周率到底怎麼算啊
周率是數學上常用到的一個值....,約等於3.142592625.
⑵ 圓周率的計算方法
計算方法
圓周率
古人計算圓周率,一般是用割圓法。即用圓的內接或外切正多邊形來逼近圓的周長。阿基米德用正96邊形得到圓周率小數點後3位的精度;劉徽用正3072邊形得到5位精度;魯道夫用正262邊形得到了35位精度。這種基於幾何的演算法計算量大,速度慢,吃力不討好。隨著數學的發展,數學家們在進行數學研究時有意無意地發現了許多計算圓周率的公式。下面挑選一些經典的常用公式加以介紹。除了這些經典公式外,還有很多其它公式和由這些經典公式衍生出來的公式,就不一一列舉了。 1、馬青公式 π=16arctan1/5-4arctan1/239 這個公式由英國天文學教授約翰·馬青於1706年發現。他利用這個公式計算到了100位的圓周率。馬青公式每計算一項可以得到1.4位的十進制精度。因為它的計算過程中被乘數和被除數都不大於長整數,所以可以很容易地在計算機上編程實現。 還有很多類似於馬青公式的反正切公式。在所有這些公式中,馬青公式似乎是最快的了。雖然如此,如果要計算更多的位數,比如幾千萬位,馬青公式就力不從心了。 2、拉馬努金公式 1914年,印度天才數學家拉馬努金在他的論文里發表了一系列共14條圓周率的計算公式。這個公式每計算一項可以得到8位的十進制精度。1985年Gosper用這個公式計算到了圓周率的17,500,000位。 1989年,大衛·丘德諾夫斯基和格雷高里·丘德諾夫斯基兄弟將拉馬努金公式改良,這個公式被稱為丘德諾夫斯基公式,每計算一項可以得到15位的十進制精度。1994年丘德諾夫斯基兄弟利用這個公式計算到了4,044,000,000位。丘德諾夫斯基公式的另一個更方便於計算機編程的形式是: 3、AGM(Arithmetic-Geometric Mean)演算法 高斯-勒讓德公式:
圓周率
這個公式每迭代一次將得到雙倍的十進制精度,比如要計算100萬位,迭代20次就夠了。1999年9月,日本的高橋大介和金田康正用這個演算法計算到了圓周率的206,158,430,000位,創出新的世界紀錄。 4、波爾文四次迭代式: 這個公式由喬納森·波爾文和彼得·波爾文於1985年發表的。 5、ley-borwein-plouffe演算法 這個公式簡稱BBP公式,由David Bailey, Peter Borwein和Simon Plouffe於1995年共同發
丘德諾夫斯基公式
表。它打破了傳統的圓周率的演算法,可以計算圓周率的任意第n位,而不用計算前面的n-1位。這為圓周率的分布式計算提供了可行性。 6.丘德諾夫斯基公式 這是由丘德諾夫斯基兄弟發現的,十分適合計算機編程,是目前計算機使用較快的一個公式。以下是這個公式的一個簡化版本: 7.萊布尼茨公式 π/4=1-1/3+1/5-1/7+1/9-1/11+……
⑶ 圓周率是怎麼計算出來的
每年的3月14號對於大多數人來說只是平凡的一天,而在數學界可是非凡的一天,加拿大的一位音樂家更是更是將π譜成了樂曲,讓人們欣賞π的聲音,那你肯定也好奇圓周率π究竟是怎麼算出來的呢?
阿基米德的夾逼法
早在古時候人們就發現了一個神奇的規律,隨便畫幾個圓,無論圓的大小如何變化,而圓的周長與直徑的比值總是不變的,想要求出這個比值,就必須精確地算出圓的周長。
在電子計算機出現,更是讓圓周率計算突飛猛進的發展,在2019年3月14日,工程師愛瑪在谷歌雲平台的協助下,將圓周率精確到了小數點後31.4萬億位。
π其實就是一個無限不循環小數,在通常情況下有10位小數就能滿足幾乎所有的計算需要, 完全不必為了它的計算和背誦浪費時間。
⑷ 圓周率是怎麼計算出來的啊
圓周率π的值是怎樣計算出來的呢?
在半徑為r的圓中,作一個內接正六邊形(如圖)。這時,正六邊形的邊長等於圓的半徑r,因此,正六邊形的周長等於6r。如果把圓內接正六邊形的周長看作圓的周長的近似值,然後把圓內接正六邊形的周長與圓的直徑的比看作為圓的周長與圓直徑的比,這樣得到的圓周率是3,顯然這是不精確的。
如果把圓內接正六邊形的邊數加倍,可以得到圓內接正十二邊形;再加倍,可以得到圓內接正二十四邊形……不難看出,當圓內接正多邊形的邊數不斷地成倍增加時,它們的周長就越來越接近於圓的周長,也就是說它們的周長與圓的直徑的比值,也越來越接近於圓的周長與圓的直徑的比值。根據計算,得到下列數據:
圓內接正多邊形的邊數
內接正多邊形
邊長
內接正多邊形
周長
內接正多邊形周長與圓直徑的比
6
12
24
48
96
192
384
768
……
1.r
0.r
0.r
0.r
0.r
0.r
0.r
0.r
……
6.r
6.r
6.r
6.r
6.r
6.r
6.r
6.r
……
3.
3.
3.
3.
3.
3.
3.
3.
……
對不起,我巴圖搞掉了.
這樣,我們就得到了一種計算圓周率π的近似值的方法。
早在一千七百多年前,我國古代數學家劉徽曾用割圓術求出圓周率是3.。繼劉徽之後,我國古代數學家祖沖之在推求圓周率的研究方面,又有了重要發展。他計算的結果共得到兩個數:一個是盈數(即過剩的近似值),為3.;另一個是(nǜ)數(即不足的近似值),為3.。圓周率的真值正好在盈兩數之間。祖沖之還採用了兩個分數值:一個是22/7(約等於3.14),稱之為「約率」;另一個是355/113(約等於3.),稱之為「密率」。祖沖之求得的密率,比外國數學家求得這個值,至少要早一千年。
⑴ 2∕π=√2∕2*√(2+√2)∕2*√(2+√(2+√2))∕2……
⑵ π∕2=2*2*4*4*6*6*8*8……∕(1*3*3*3*4*5*5*7*7……)
⑶ π∕4=4arctg(1∕5)-arctg(1∕239) (註:tgx=…………)
⑷ π=√10005∕(∑((6n)!*(n ))
∕((n!)*(3n)!*(-)^(3n)))
(0≤n→∞)
現代數學家計算圓周率大多採用此類公式,普通人是望塵莫及的。
而中國圓周率公式的使用就簡單多了,普通中學生使用常規計算工具就能輕松解決問題。
⑸ 圓周率是怎麼計算的
【圓周率簡介】
[編輯本段]
圓周率是指平面上圓的周長與直徑之比。用希臘字母 π (讀"Pài")表示。中國古代有圓率、周率、周等名稱。(在一般計算時π人們都把π這無限不循環小數化成3.14)
【圓周率的歷史】
[編輯本段]
古希臘歐幾里得《幾何原本》(約公元前3世紀初)中提到圓周率是常數,中國古算書《周髀算經》( 約公元前2世紀)中有「徑一而周三」的記載,也認為圓周率是常數。歷史上曾採用過圓周率的多種近似值,早期大都是通過實驗而得到的結果,如古埃及紙草書(約公元前1700)中取π=(4/3)^4≈3.1604 。第一個用科學方法尋求圓周率數值的人是阿基米德,他在《圓的度量》(公元前3世紀)中用圓內接和外切正多邊形的周長確定圓周長的上下界,從正六邊形開始,逐次加倍計算到正96邊形,得到(3+(10/71))<π<(3+(1/7)) ,開創了圓周率計算的幾何方法(亦稱古典方法,或阿基米德方法),得出精確到小數點後兩位的π值。
中國數學家劉徽在注釋《九章算術》(263年)時只用圓內接正多邊形就求得π的近似值,也得出精確到兩位小數的π值,他的方法被後人稱為割圓術。他用割圓術一直算到圓內接正192邊形。
南北朝時代數學家祖沖之進一步得出精確到小數點後7位的π值(約5世紀下半葉),給出不足近似值3.1415926和過剩近似值3.1415927,還得到兩個近似分數值,密率355/113和約率22/7。其中的密率在西方直到1573才由德國人奧托得到,1625年發表於荷蘭工程師安托尼斯的著作中,歐洲稱之為安托尼斯率。
阿拉伯數學家卡西在15世紀初求得圓周率17位精確小數值,打破祖沖之保持近千年的紀錄。
德國數學家柯倫於1596年將π值算到20位小數值,後投入畢生精力,於1610年算到小數後35位數,該數值被用他的名字稱為魯道夫數。
無窮乘積式、無窮連分數、無窮級數等各種π值表達式紛紛出現,π值計算精度也迅速增加。1706年英國數學家梅欽計算π值突破100位小數大關。1873 年另一位英國數學家尚可斯將π值計算到小數點後707位,可惜他的結果從528位起是錯的。到1948年英國的弗格森和美國的倫奇共同發表了π的808位小數值,成為人工計算圓周率值的最高紀錄。
電子計算機的出現使π值計算有了突飛猛進的發展。1949年美國馬里蘭州阿伯丁的軍隊彈道研究實驗室首次用計算機(ENIAC)計算π值,一下子就算到2037位小數,突破了千位數。1989年美國哥倫比亞大學研究人員用克雷-2型和IBM-VF型巨型電子計算機計算出π值小數點後4.8億位數,後又繼續算到小數點後10.1億位數,創下新的紀錄。至今,最新紀錄是小數點後12411億位。
除π的數值計算外,它的性質探討也吸引了眾多數學家。1761年瑞士數學家蘭伯特第一個證明π是無理數。1794年法國數學家勒讓德又證明了π2也是無理數。到1882年德國數學家林德曼首次證明了π是超越數,由此否定了困惑人們兩千多年的「化圓為方」尺規作圖問題。還有人對π的特徵及與其它數字的聯系進行研究。如1929年蘇聯數學家格爾豐德證明了eπ 是超越數等等。
【圓周率的計算】
[編輯本段]
古今中外,許多人致力於圓周率的研究與計算。為了計算出圓周率的越來越好的近似值,一代代的數學家為這個神秘的數貢獻了無數的時間與心血。
十九世紀前,圓周率的計算進展相當緩慢,十九世紀後,計算圓周率的世界紀錄頻頻創新。整個十九世紀,可以說是圓周率的手工計算量最大的世紀。
進入二十世紀,隨著計算機的發明,圓周率的計算有了突飛猛進。藉助於超級計算機,人們已經得到了圓周率的2061億位精度。
歷史上最馬拉松式的計算,其一是德國的Ludolph Van Ceulen,他幾乎耗盡了一生的時間,計算到圓的內接正262邊形,於1609年得到了圓周率的35位精度值,以至於圓周率在德國被稱為Ludolph數;其二是英國的威廉·山克斯,他耗費了15年的光陰,在1874年算出了圓周率的小數點後707位。可惜,後人發現,他從第528位開始就算錯了。
把圓周率的數值算得這么精確,實際意義並不大。現代科技領域使用的圓周率值,有十幾位已經足夠了。如果用魯道夫算出的35位精度的圓周率值,來計算一個能把太陽系包起來的一個圓的周長,誤差還不到質子直徑的百萬分之一。以前的人計算圓周率,是要探究圓周率是否循環小數。自從1761年蘭伯特證明了圓周率是無理數,1882年林德曼證明了圓周率是超越數後,圓周率的神秘面紗就被揭開了。
現在的人計算圓周率, 多數是為了驗證計算機的計算能力,還有,就是為了興趣。
【圓周率的計算方法】
[編輯本段]
古人計算圓周率,一般是用割圓法。即用圓的內接或外切正多邊形來逼近圓的周長。阿基米德用正96邊形得到圓周率小數點後3位的精度;劉徽用正3072邊形得到5位精度;魯道夫用正262邊形得到了35位精度。這種基於幾何的演算法計算量大,速度慢,吃力不討好。隨著數學的發展,數學家們在進行數學研究時有意無意地發現了許多計算圓周率的公式。下面挑選一些經典的常用公式加以介紹。除了這些經典公式外,還有很多其它公式和由這些經典公式衍生出來的公式,就不一一列舉了。
1、馬青公式
π=16arctan1/5-4arctan1/239
這個公式由英國天文學教授約翰·馬青於1706年發現。他利用這個公式計算到了100位的圓周率。馬青公式每計算一項可以得到1.4位的十進制精度。因為它的計算過程中被乘數和被除數都不大於長整數,所以可以很容易地在計算機上編程實現。
還有很多類似於馬青公式的反正切公式。在所有這些公式中,馬青公式似乎是最快的了。雖然如此,如果要計算更多的位數,比如幾千萬位,馬青公式就力不從心了。
2、拉馬努金公式
1914年,印度天才數學家拉馬努金在他的論文里發表了一系列共14條圓周率的計算公式。這個公式每計算一項可以得到8位的十進制精度。1985年Gosper用這個公式計算到了圓周率的17,500,000位。
1989年,大衛·丘德諾夫斯基和格雷高里·丘德諾夫斯基兄弟將拉馬努金公式改良,這個公式被稱為丘德諾夫斯基公式,每計算一項可以得到15位的十進制精度。1994年丘德諾夫斯基兄弟利用這個公式計算到了4,044,000,000位。丘德諾夫斯基公式的另一個更方便於計算機編程的形式是:
3、AGM(Arithmetic-Geometric Mean)演算法
高斯-勒讓德公式:
這個公式每迭代一次將得到雙倍的十進制精度,比如要計算100萬位,迭代20次就夠了。1999年9月,日本的高橋大介和金田康正用這個演算法計算到了圓周率的206,158,430,000位,創出新的世界紀錄。
4、波爾文四次迭代式:
這個公式由喬納森·波爾文和彼得·波爾文於1985年發表,它四次收斂於圓周率。
5、ley-borwein-plouffe演算法
這個公式簡稱BBP公式,由David Bailey, Peter Borwein和Simon Plouffe於1995年共同發表。它打破了傳統的圓周率的演算法,可以計算圓周率的任意第n位,而不用計算前面的n-1位。這為圓周率的分布式計算提供了可行性。
6、丘德諾夫斯基公式
這是由丘德諾夫斯基兄弟發現的,十分適合計算機編程,是目前計算機使用較快的一個公式。以下是這個公式的一個簡化版本:
【圓周率的計算歷史】
[編輯本段]
時間 紀錄創造者 小數點後位數 所用方法
前2000 古埃及人 0
前1200 中國 0
前500 《聖經》 0(周三徑一)
前250 阿基米德 3
263 劉徽 5 古典割圓術
480 祖沖之 7
1429 Al-Kashi 14
1593 Romanus 15
1596 魯道夫 20 古典割圓術
1609 魯道夫 35
1699 夏普 71 夏普無窮級數
1706 馬青 100 馬青公式
1719 (法)德·拉尼 127(112位正確)夏普無窮級數
1794(奧地利)喬治·威加 140 歐拉公式
1824 (英)威廉·盧瑟福 208(152位正確)勒讓德公式
1844 Strassnitzky & Dase 200
1847 Clausen 248
1853 Lehmann 261
1853 Rutherford 440
1874 威廉·山克斯 707(527位正確)
20世紀後
年 月 紀錄創造者 所用機器 小數點後位數
1946 (英)弗格森 620
1947 1 (英)弗格森 710
1947 9 Ferguson & Wrench 808
1949 Smith & Wrench 1,120
1949 Reitwiesner et al ENIAC 2,037
1954 Nicholson & Jeenel NORC 3,092
1957 Felton Pegasus 7,480
1958 1 Genuys IBM704 10,000
1958 5 Felton Pegasus 10,021
1959 Guilloud IBM 704 16,167
1961 Shanks & Wrench IBM 7090 100,265
1966 Guilloud & Filliatre IBM 7030 250,000
1967 Guilloud & Dichampt CDC 6600 500,000
1973 Guilloud & Bouyer CDC 7600 1,001,250
1981 Miyoshi & Kanada FACOM M-200 2,000,036
1982 Guilloud 2,000,050
1982 Tamura MELCOM 900II 2,097,144
1982 Tamura & Kanada HITACHI M-280H 4,194,288
1982 Tamura & Kanada HITACHI M-280H 8,388,576
1983 Kanada, Yoshino & Tamura HITACHI M-280H 16,777,206
1985 10 Gosper Symbolics 3670 17,526,200
1986 1 Bailey CRAY-2 29,360,111
1986 9 Kanada & Tamura HITACHI S-810/20 33,554,414
1986 10 Kanada & Tamura HITACHI S-810/20 67,108,839
1987 1 Kanada, Tamura & Kubo et al NEC SX-2 134,217,700
1988 1 Kanada & Tamura HITACHI S-820/80 201,326,551
1989 5 Chudnovskys CRAY-2 & IBM-3090/VF 480,000,000
1989 6 Chudnovskys IBM 3090 525,229,270
1989 7 Kanada & Tamura HITACHI S-820/80 536,870,898
1989 8 Chudnovskys IBM 3090 1,011,196,691
1989 11 Kanada & Tamura HITACHI S-820/80 1,073,741,799
1991 8 Chudnovskys 2,260,000,000
1994 5 Chudnovskys 4,044,000,000
1995 8 Takahashi & Kanada HITACHI S-3800/480 4,294,967,286
1995 10 Takahashi & Kanada 6,442,450,938
1997 7 Takahashi & Kanada 51,539,600,000
1999 4 Takahashi & Kanada 68,719,470,000
1999 9 Takahashi & Kanada HITACHI SR8000 206,158,430,000
2002 Takahashi Team 1,241,100,000,000
【圓周率的最新計算紀錄】
[編輯本段]
1、新世界紀錄
圓周率的最新計算紀錄由日本人金田康正的隊伍所創造。他們於2002年算出π值1,241,100,000,000 位小數,這一結果打破了他們於1999年9月18日創造的206,000,000,000位小數的世界紀錄。
2、個人計算圓周率的世界紀錄
在一個現場解說驗證活動中,一名59歲日本老人Akira Haraguchi將圓周率π算到了小數點後的83431位,這名孜孜不倦的59歲老人向觀眾講解了長達13個小時,最終獲得認同。這一紀錄已經被收入了Guinness世界大全中。據報道,此前的紀錄是由一名日本學生於1995年計算出的,當時的精度是小數點後的42000位。
⑹ 圓周率是怎樣計算出來的
古希臘大數學家阿基米德開創了人類歷史上通過理論計算圓周率近似值的先河。
阿基米德從單位圓出發,先用內接正六邊形求出圓周率的下界為3,再用外接正六邊形並藉助勾股定理求出圓周率的上界小於4。
接著,他對內接正六邊形和外接正六邊形的邊數分別加倍,將它們分別變成內接正12邊形和外接正12邊形,再藉助勾股定理改進圓周率的下界和上界。他逐步對內接正多邊形和外接正多邊形的邊數加倍,直到內接正96邊形和外接正96邊形為止。
最後,他求出圓周率的下界和上界分別為223/71 和22/7, 並取它們的平均值3.141851 為圓周率的近似值。
(6)圓周率的方法視頻擴展閱讀:
圓周率用希臘字母 π(讀作pài)表示,是一個常數(約等於3.141592654),是代表圓周長和直徑的比值。它是一個無理數,即無限不循環小數。在日常生活中,通常都用3.14代表圓周率去進行近似計算。而用十位小數3.141592654便足以應付一般計算。即使是工程師或物理學家要進行較精密的計算,充其量也只需取值至小數點後幾百個位。
⑺ 數學中的圓周率是怎麼算出來的
圓周率是用圓的周長除以它的直徑計算出來的。
「圓周率」即圓的周長與其直徑之間的比率。關於它的計算問題,歷來是中外數學家極感興趣、孜孜以求的問題。德國的一位數學家曾經說過:「歷史上一個國家所算得的圓周率的准確程度,可以作為衡量這個國家當時數學發展的一個標志。」我國古代在圓周率的計算方面長期領先於世界水平,這應當歸功於魏晉時期數學家劉徽所創立的新方法——「割圓術」。
所謂「割圓術」,是用圓內接正多邊形的周長去無限逼近圓周並以此求取圓周率的方法。這個方法,是劉徽在批判總結了數學史上各種舊的計算方法之後,經過深思熟慮才創造出來的一種嶄新的方法。
中國古代從先秦時期開始,一直是取「周三徑一」(即 )的數值來進行有關圓的計算。但用這個數值進行計算的結果,往往誤差很大。正如劉徽所說,用「周三徑一」計算出來的圓周長,實際上不是圓的周長而是圓內接正六邊形的周長,其數值要比實際的圓周長小得多。東漢的張衡不滿足於這個結果,他從研究圓與它的外切正方形的關系著手得到圓周率。這個數值比「周三徑一」要好些,但劉徽認為其計算出來的圓周長必然要大於實際的圓周長,也不精確。劉徽以極限思想為指導,提出用「割圓術」來求圓周率,既大膽創新,又嚴密論證,從而為圓周率的計算指出了一條科學的道路。
在劉徽看來,既然用「周三徑一」計算出來的圓周長實際上是圓內接正六邊形的周長,與圓周長相差很多;那麼我們可以在圓內接正六邊形把圓周等分為六條弧的基礎上,再繼續等分,把每段弧再分割為二,做出一個圓內接正十二邊形,這個正十二邊形的周長不就要比正六邊形的周長更接近圓周了嗎?如果把圓周再繼續分割,做成一個圓內接正二十四邊形,那麼這個正二十四邊形的周長必然又比正十二邊形的周長更接近圓周。這就表明,越是把圓周分割得細,誤差就越少,其內接正多邊形的周長就越是接近圓周。如此不斷地分割下去,一直到圓周無法再分割為止,也就是到了圓內接正多邊形的邊數無限多的時候,它的周長就與圓周「合體」而完全一致了。
按照這樣的思路,劉徽把圓內接正多邊形的面積一直算到了正3072邊形,並由此而求得了圓周率 為3.14和 3.1416這兩個近似數值。這個結果是當時世界上圓周率計算的最精確的數據。劉徽對自己創造的這個「割圓術」新方法非常自信,把它推廣到有關圓形計算的各個方面,從而使漢代以來的數學發展大大向前推進了一步。
以後到了南北朝時期,祖沖之在劉徽的這一基礎上繼續努力,終於求得了圓周率:精確到了小數點以後的第七位。在西方,這個成績是由法國數學家韋達於1593年取得的,比祖沖之要晚了一千一百多年。祖沖之還求得了圓周率的兩個分數值,一個是「約率」22/7 ,另一個是「密率」355/113,其中 355/113 這個值,在西方是由德國的奧托和荷蘭的安東尼茲在16世紀末才得到的,都比祖沖之晚了一千一百年。劉徽所創立的「割圓術」新方法對中國古代數學發展的重大貢獻,歷史是永遠不會忘記的。
⑻ 圓周率怎麼算的
3.
π=4∑(k=0,..∞)(-1)^k/(2k+1)
圓周率即圓的周長與其直徑之間的比率。關於它的計算問題,歷來是中外數學家極感興趣、孜孜以求的問題。德國的一位數學家曾經說過:「歷史上一個國家所算得的圓周率的准確程度,可以作為衡量這個國家當時數學發展的一個標志。」我國古代在圓周率的計算方面長期領先於世界水平,這應當歸功於魏晉時期數學家劉徽所創立的新方法——「割圓術」。
所謂「割圓術」,是用圓內接正多邊形的周長去無限逼近圓周並以此求取圓周率的方法。這個方法,是劉徽在批判總結了數學史上各種舊的計算方法之後,經過深思熟慮才創造出來的一種嶄新的方法。
⑼ 圓周率是怎麼算出來的
圓周率的計算方法
古人計算圓周率,一般是用割圓法。即用圓的內接或外切正多邊形來逼近圓的周長。Archimedes用正96邊形得到圓周率小數點後3位的精度;劉徽用正3072邊形得到5位精度;Ludolph Van Ceulen用正262邊形得到了35位精度。這種基於幾何的演算法計算量大,速度慢,吃力不討好。隨著數學的發展,數學家們在進行數學研究時有意無意地發現了許多計算圓周率的公式。下面挑選一些經典的常用公式加以介紹。除了這些經典公式外,還有很多其他公式和由這些經典公式衍生出來的公式,就不一一列舉了。
http://www.jason314.com/palgorithm.htm
這個公式由英國天文學教授John Machin於1706年發現。他利用這個公式計算到了100位的圓周率。Machin公式每計算一項可以得到1.4位的十進制精度。因為它的計算過程中被乘數和被除數都不大於長整數,所以可以很容易地在計算機上編程實現。
Machin.c 源程序
還有很多類似於Machin公式的反正切公式。在所有這些公式中,Machin公式似乎是最快的了。雖然如此,如果要計算更多的位數,比如幾千萬位,Machin公式就力不從心了。下面介紹的演算法,在PC機上計算大約一天時間,就可以得到圓周率的過億位的精度。這些演算法用程序實現起來比較復雜。因為計算過程中涉及兩個大數的乘除運算,要用FFT(Fast Fourier Transform)演算法。FFT可以將兩個大數的乘除運算時間由O(n2)縮短為O(nlog(n))。
*********************************
http://www.sdxcx.com/a/a278/text/278zs_10.htm
**********************************************
在我國,首先是由數學家劉徽得出較精確的圓周率。公元263年前後,劉徽提出著名的割圓術,得出 π =3.14,通常稱為「徽率」,他指出這是不足近似值。雖然他提出割圓術的時間比阿基米德晚一些,但其方法確有著較阿基米德方法更美妙之處。割圓術僅用內接正多邊形就確定出了圓周率的上、下界,比阿基米德用內接同時又用外切正多邊形簡捷得多。另外,有人認為在割圓術中劉徽提供了一種絕妙的精加工辦法,以致於他將割到192邊形的幾個粗糙的近似值通過簡單的加權平均,竟然獲得具有4位有效數字的圓周率 π =3927/1250 =3.1416。而這一結果,正如劉徽本人指出的,如果通過割圓計算得出這個結果,需要割到3072邊形。這種精加工方法的效果是奇妙的。這一神奇的精加工技術是割圓術中最為精彩的部分,令人遺憾的是,由於人們對它缺乏理解而被長期埋沒了。
恐怕大家更加熟悉的是祖沖之所做出的貢獻吧。對此,《隋書·律歷志》有如下記載:「宋末,南徐州從事祖沖之更開密法。以圓徑一億為丈,圓周盈數三丈一尺四寸一分五厘九毫二秒七忽,朒數三丈一尺四寸一分五厘九毫二秒六忽,正數在盈朒二限之間。密率:圓徑一百一十三,圓周三百五十五。約率,圓徑七,周二十二。」
這一記錄指出,祖沖之關於圓周率的兩大貢獻。其一是求得圓周率
3.1415926 < π < 3.1415927
其二是,得到 π 的兩個近似分數即:約率為22/7;密率為355/113。
他算出的 π 的8位可靠數字,不但在當時是最精密的圓周率,而且保持世界記錄九百多年。以致於有數學史家提議將這一結果命名為「祖率」。
這一結果是如何獲得的呢?追根溯源,正是基於對劉徽割圓術的繼承與發展,祖沖之才能得到這一非凡的成果。因而當我們稱頌祖沖之的功績時,不要忘記他的成就的取得是因為他站在數學偉人劉徽的肩膀上的緣故。後人曾推算若要單純地通過計算圓內接多邊形邊長的話,得到這一結果,需要算到圓內接正12288邊形,才能得到這樣精確度的值。祖沖之是否還使用了其它的巧妙辦法來簡化計算呢?這已經不得而知,因為記載其研究成果的著作《綴術》早已失傳了。這在中國數學發展史上是一件極令人痛惜的事。
中國發行的祖沖之紀念郵票
祖沖之的這一研究成果享有世界聲譽:巴黎「發現宮」科學博物館的牆壁上著文介紹了祖沖之求得的圓周率,莫斯科大學禮堂的走廊上鑲嵌有祖沖之的大理石塑像,月球上有以祖沖之命名的環形山……
對於祖沖之的關於圓周率的第二點貢獻,即他選用兩個簡單的分數尤其是用密率來近似地表示 π 這一點,通常人們不會太注意。然而,實際上,後者在數學上有更重要的意義。
密率與 π 的近似程度很好,但形式上卻很簡單,並且很優美,只用到了數字1、3、5。數學史家梁宗巨教授驗證出:分母小於16604的一切分數中,沒有比密率更接近 π 的分數。在國外,祖沖之死後一千多年,西方人才獲得這一結果。
可見,密率的提出是一件很不簡單的事情。人們自然要追究他是採用什麼辦法得到這一結果的呢?他是用什麼辦法把圓周率從小數表示的近似值化為近似分數的呢?這一問題歷來為數學史家所關注。由於文獻的失傳,祖沖之的求法已不為人知。後人對此進行了各種猜測。
http://www.oursci.org/magazine/200301/030126.htm
參考資料:http://www.jason314.com/palgorithm.htm
參考資料:http://ke..com/view/3287.htm