1. 環境檢測主要檢測什麼
環境檢測儀器包括:大氣、職業衛生、雜訊、振動、輻射檢測儀器。
大氣環境監測儀器:
1、大氣采樣器:用於環境空氣、作業場所中的有毒有害氣體、甲醛、氨氣、TVOC、苯等采樣
2、顆粒物采樣器:捕集環境大氣中的總懸浮微粒(TSP)和可吸入微粒(PM10)或細顆粒(PM2.5)
3、大氣顆粒物綜合採樣器:採集環境大氣、室內空氣中各種有害氣體,捕集環境大氣中的總懸浮微粒(TSP)和可吸入微粒(PM10、PM2.5)
4、空氣氟化物采樣器:用於環境中氟化物和重金屬採集
5、揮發性有機物采樣器:環境空氣中揮發性有機物采樣,吸附管法
6、降水降塵采樣器:具有融雪,冷藏功能,降塵、降水
7、皂膜流量計:校準小流量采樣器,量程可選
職業衛生檢測儀器:
1、大氣采樣器:低流量、中流量、大流量不同流量要求的采樣儀器
2、防爆大氣采樣器:用於爆炸性氣體環境中採集氣體樣品的常規性儀器
3、粉塵采樣器:採集工作場所空氣中粉塵的采樣儀器
4、防爆粉塵采樣器:適合於爆炸危險性氣體的作業環境粉塵采樣
5、皂膜流量計:滿足不同流量采樣要求
6、輻射熱計:直接測出輻射熱溫度、空氣溫度和皮膚溫度、定向平均輻射溫度
7、照度計:進行光強度測量
8、WBGT指數儀:用來評價高溫車間氣象條件,它綜合考慮空氣溫度、空氣濕度、風速和輻射熱四個因素。
9、風速儀:用於任何處所以測量風速、溫度及相對濕度
10、粉塵檢測儀:粉塵濃度檢測儀器
11、防爆粉塵檢測儀:測定環境空氣中浮游粉塵濃度的儀器,用於煤礦井下及其它含有爆炸危險性氣體的作業場所
雜訊檢測儀器:
1、雜訊檢測儀:測試雜訊分貝的儀器
2、個體雜訊劑量計(包括防爆):個人聲暴露測量
3、防爆雜訊檢測儀:石油、化工、油庫、鋼鐵、焦化、煤礦等防爆場所的雜訊檢測
振動檢測儀器:環境振動檢測儀、機械振動檢測儀、多功能振動分析儀、手傳振動測定儀
輻射檢測儀器:
1、電磁場測定儀:測量1Hz-100kHz電磁場、高頻、超高頻、微波的設備
2、場強儀:主要用於測量高壓輸變電系統,配電室,感應爐,地鐵,電動機車,醫療設備,烘乾設備,計算機等具有電磁輻射作業場所的磁場強度
3、個人劑量報警儀:用來監測X射線和γ射線
4、中子劑量儀:用於中子劑量率檢測
5、хγ輻射檢測儀:測高能、低能γ射線外,還能對低能X射線進行准確的測量
6、測氡儀:測量土壤氡、空氣氡、水中氡濃度和氡析出率,滿足新國標
7、低本底αβ測量儀:αβ測量儀
8、α β γ表面污染測量儀:用於放射性表面污染測量,可同時對α、β、γ射線進行測量
2. 環境檢測需要什麼儀器
環境監測儀器包括:大氣、職業衛生、雜訊、振動、輻射檢測儀器。
大氣環境監測儀器:
1、大氣采樣器:用於環境空氣、作業場所中的有毒有害氣體、甲醛、氨氣、TVOC、苯等采樣
2、顆粒物采樣器:捕集環境大氣中的總懸浮微粒(TSP)和可吸入微粒(PM10)或細顆粒(PM2.5)
3、大氣顆粒物綜合採樣器:採集環境大氣、室內空氣中各種有害氣體,捕集環境大氣中的總懸浮微粒(TSP)和可吸入微粒(PM10、PM2.5)
4、空氣氟化物采樣器:用於環境中氟化物和重金屬採集
5、揮發性有機物采樣器:環境空氣中揮發性有機物采樣,吸附管法
6、降水降塵采樣器:具有融雪,冷藏功能,降塵、降水
7、皂膜流量計:校準小流量采樣器,量程可選
職業衛生檢測儀器:
1、大氣采樣器:低流量、中流量、大流量不同流量要求的采樣儀器
2、防爆大氣采樣器:用於爆炸性氣體環境中採集氣體樣品的常規性儀器
3、粉塵采樣器:採集工作場所空氣中粉塵的采樣儀器
4、防爆粉塵采樣器:適合於爆炸危險性氣體的作業環境粉塵采樣
5、皂膜流量計:滿足不同流量采樣要求
6、輻射熱計:直接測出輻射熱溫度、空氣溫度和皮膚溫度、定向平均輻射溫度
7、照度計:進行光強度測量
8、WBGT指數儀:用來評價高溫車間氣象條件,它綜合考慮空氣溫度、空氣濕度、風速和輻射熱四個因素。
9、風速儀:用於任何處所以測量風速、溫度及相對濕度
10、粉塵檢測儀:粉塵濃度檢測儀器
11、防爆粉塵檢測儀:測定環境空氣中浮游粉塵濃度的儀器,用於煤礦井下及其它含有爆炸危險性氣體的作業場所
雜訊檢測儀器:
1、雜訊檢測儀:測試雜訊分貝的儀器
2、個體雜訊劑量計(包括防爆):個人聲暴露測量
3、防爆雜訊檢測儀:石油、化工、油庫、鋼鐵、焦化、煤礦等防爆場所的雜訊檢測
振動檢測儀器:環境振動檢測儀、機械振動檢測儀、多功能振動分析儀、手傳振動測定儀
輻射檢測儀器:
1、電磁場測定儀:測量1Hz-100kHz電磁場、高頻、超高頻、微波的設備
2、場強儀:主要用於測量高壓輸變電系統,配電室,感應爐,地鐵,電動機車,醫療設備,烘乾設備,計算機等具有電磁輻射作業場所的磁場強度
3、個人劑量報警儀:用來監測X射線和γ射線
4、中子劑量儀:用於中子劑量率檢測
5、хγ輻射檢測儀:測高能、低能γ射線外,還能對低能X射線進行准確的測量
6、測氡儀:測量土壤氡、空氣氡、水中氡濃度和氡析出率,滿足新國標
7、低本底αβ測量儀:αβ測量儀
8、α β γ表面污染測量儀:用於放射性表面污染測量,可同時對α、β、γ射線進行測量
3. 測量核輻射的方法、儀器及儀器圖片
方法:
半衰期:放射性核素數目衰減到原來數目一半所需要的時間的期望值。
放射性活度:表徵放射性核素特徵的物理量,單位時間內處於特定能態的一定量的核素發生自發核轉變數的期望值。A=dN/dt。
射氣系數:在某一時間間隔內,岩石或礦石析出的射氣量N1與同一時間間隔內該岩石或礦石中由衰變產生的全部射氣量N2的比值,即η*= N1/N2×100%。
原子核基態:處於最低能量狀態的原子核,這種核的能級狀態叫基態。
核衰變:放射性核素的原子核自發的從一個核素的原子核變成另一種核素的原子核,並伴隨放出射線的現象。
α衰變:放射性核素的原子核自發的放出α粒子而變成另一種核素的原子核的過程成為α衰變
衰變率:放射性核素單位時間內衰變的幾率。
軌道電子俘獲:原子核俘獲了一個軌道電子,使原子核內的質子轉變成中子並放出中微子的過程。
衰變常數:衰變常數是描述放射性核素衰變速度的物理量,指原子核在某一特定狀態下,經歷核自發躍遷的概率。
線衰減系數:射線在物質中穿行單位距離時被吸收的幾率。
質量衰減系數:射線穿過單位質量介質時被吸收的幾率或衰減的強度,也是線衰減系數除以密度。
鈾鐳平衡常數:表示礦(岩)石中鈾鐳質量比值與平衡狀態時鈾鐳質量比值之比。
吸收劑量:電力輻射授予某一點處單位質量物質的能量的期望值。D=dE/dm,吸收劑量單位為戈瑞(Gy)。
平均電離能:在物質中產生一個離子對所需要的平均能量。
碰撞阻止本領:帶電粒子通過物質時,在所經過的單位路程上,由於電離和激發而損失的平均能量。
核素:具有特定質量數,原子序數和核能態,而且其平均壽命長的足以已被觀察的一類原子
粒子注量:進入單位立體球截面積的粒子數目。
粒子注量率:表示在單位時間內粒子注量的增量
能注量:在空間某一點處,射入以該點為中心的小球體內的所有的粒子能量總和除以該球的截面積
能注量率:單位時間內進入單位立體球截面積的粒子能量總和
比釋動能:不帶電電離粒子在質量為dm的某一物質內釋放出的全部帶電粒子的初始動能總和
劑量當量:某點處的吸收劑量與輻射權重因子加權求和
同位素:具有相同的原子序數,但質量數不同,亦即中子數不同的一組核素
照射量:X=dq/dm,以X射線或γ射線產出電離本領而做出的一種量度
照射量率:單位質量單位時間內γ射線在空間一體積元中產生的電荷。
劑量當量指數:全身均勻照射的年劑量的極限值
同質異能素:具有相同質量數和相同原子序數而半衰期有明顯差別的核素
平均壽命:放射性原子核平均生存的時間.與衰變常熟互為倒數。
電離能量損耗率:帶電粒子通過物質時,所經過的單位路程上,由於電離和激發而損失的平均能量
平衡含量鈾:達到放射性平衡時的鈾含量
分辨時間: 兩個相鄰脈沖之間最短時間間隔
康普頓邊:發生康普頓散射時,當康普頓散射角為一百八十度時所形成的邊
康普頓坪:當康普頓散射角為零到一百八十度時所形成的平台
累計效應:指y光子在介質中通過多次相互作用所引起的y光子能量吸收
邊緣效應: 次級電子產生靠近晶體邊緣,他可能益處晶體以致部分動能損失在晶體外,所引起的脈沖幅度減小
和峰效應: 兩哥y光子同時被探測器晶體吸收產生幅度更大的脈沖,其對應能量為兩個光子能量之和
雙逃逸峰:指兩個湮沒光子不再進行相互作用就從探測器逃出去
響應函數: 探測器輸出的脈沖幅度與入射γ射線能量之間的關系的數學表達式
能量解析度: 表徵γ射線譜儀對能量相近的γ射線分辨本領的參數
探測效率:表徵γ射線照射量率與探測器輸出脈沖1. 峰總比:全能峰的脈沖數與全譜下的脈沖數之比
峰康比:全能峰中心道最大計數與康普頓坪內平均計數之比
峰總比:全能峰內的脈沖數與全譜下的脈沖數之比
入射本徵效率:指全譜下總脈沖數與射到晶體上的y光子數之比
本徵峰效率:全能峰內脈沖數與射到晶體上y光子數之比
源探測效率:全譜下總計數率與放射源的y光子發射率之比
源峰探測效率:全能峰內脈沖數與放射源y光子發射率之比
光電吸收系數:光子發生光電效應吸收幾率
光電截面:一個入射光子單位面積上的一個靶原子發生光電效應的幾率
原子核基態:原子核最低能量狀態
軔致輻射:高速帶電粒子通過物質時與庫侖場作用而減速或加速時伴生的電磁輻射。
俄歇電子:在原子殼層中產生電子空穴後處於高能級的電子和躍遷到這一層,同時釋放能量,當釋放的能量傳遞到另一層的一個電子,這個嗲你脫離原子而發射出來,發射出來的電子稱為俄歇電子。
4. 放射性污染的監測方法
9.3.2.1 核事故污染的監測
核事故往往造成的污染范圍很大,而且給人民生命和國民經濟帶來巨大的損失,引起全世界的關注。針對核事故的地球物理監測工作大體上可分為兩大部分:一是在核事故發生後開始的大區域快速監測工作,及時了解逐日的污染擴散范圍和方向並採取相應的防範對策;二是對所有核設施的長年監測工作,以便一旦發生事故時,能夠了解原有的放射性背景以及追蹤事故後污染逐步消除的過程。
(1)切爾諾貝利核事故監測
早在核電站建成之前,蘇聯的烏克蘭科學院從20世紀60年代初期就通過在基輔的監測站對基輔周圍地區(包括切爾諾貝利地區)進行長期放射性環境監測。監測的參數包括γ輻射背景值(用輻射儀測量)、散落物的放射性活度測量(用面積40cm×40cm的平底盤採集,盤底鋪一張浸泡過甘油的濾紙,採集持續兩周,採集的樣品放在瓷坩堝內在電熱爐中加溫到500℃灰化,然後測定其β輻射強度)、土壤放射性污染檢測(在地表下5cm深處用正方形取樣器10cm×10cm取樣,樣品風干、磨碎、過篩後,測定其β輻射強度)。
事故發生前,γ輻射劑量率為10~12μR/h(背景值),1986年4月26日發生事故後,4月30日升高到5mR/h,比背景值高約500倍。在隨後幾天內γ輻射值變化強烈,與放射性物質的繼續泄漏和天氣變化有關。5月9日在反應堆再次爆炸後,γ輻射也再次出現高峰。1986年底,γ輻射降低到50μR/h,1992年(監測經過公布前)再次降低為16~18μR/h,接近事故前的背景值。
土壤中的β放射性活度(按土壤質量計)在事故前為550~740Bq/kg,事故後升高到29600Bq/kg。事故前放射性90Sr的質量活度為3.7~22.2Bq/kg,事故後升高了10倍。
為了了解污染的區域分布,瑞典地質調查所動用了兩架地球物理專用飛機,在150m的高度上進行了航空γ能譜測量,1986年5月1~6日的測量結果如圖9.12所示。在Gavle附近發現明顯的高值。後幾天的調查重點移向瑞典南部,以了解是否可以允許奶牛吃該地春天新生的牧草。5月5~8日在瑞典其他地區用100km線距的東西向測線覆蓋,發現污染區不斷向瑞典-挪威邊界的方向擴大。從5月9日~6月9日整個瑞典用50km線距的航空測量覆蓋,在一些異常區測線加密到2km。蘇聯在1986年4月28日以後,在國內面積為527400km的區域內進行過比例尺為1∶10萬、1∶20萬、1∶50萬的航空γ能譜測量,以監測放射性污染彌散的區域。
圖9.12瑞典航空γ射線照射量率等值線圖 (照射量率單位為μR/h)
(2)追蹤核動力衛星
由於衛星在進入大氣層後解體成多個碎片,因此監測工作要在降落軌道周圍廣闊地區內進行,主要依靠航空γ能譜測量,發現異常後再進行地面檢查。
蘇聯的用核反應堆作動力的宇宙-954衛星1977年底~1978年初在加拿大西北部隕落。1978年初加拿大國防部和美國能源部合作,追蹤衛星隕落的碎片在加拿大的散落位置。首先根據計算機預測的衛星隕落軌道,劃出一條長800km、寬50km隕落區域,由大奴湖東端至哈德遜灣附近的貝克爾湖,並將其分為14段。用4架C-130Heracles(大力神)飛機,以1.853km的線距、500m的離地高度作了航空γ能譜測量。加拿大地質調查所的能譜系統首先在大奴湖東端冰上的一號地段探測到放射源,到1月31日對全區作了普查,發現所有放射性碎片落在一個10km寬的帶內,在該帶內又以500m線距和250m離地高度作了詳查。鑒於大力神飛機的飛行高度不可能再進一步降低,還採用了一套直升機探測系統,在9號地段的冰上發現許多弱的放射源,它們都是在大力神的飛行高度上所不能發現的,後來對這些小片的分析表明它們是反應堆芯的一部分。此後,直升機系統又在沿大奴湖南岸一帶發現了更多的放射性碎片(圖9.13),這些碎片隨北風飄向預訂軌道的南側。到3月底又在大奴湖的冰上作了一次系統的直升機γ能譜測量,數據分析進一步證明反應堆芯在進入大氣層後已全部解體。同年夏天,加拿大原子能監控管理局做了進一步的監測和清理工作,以保證清除所有的有害物質,共回收約3500枚碎片,最遠的在衛星軌道以南480km。
9.3.2.2礦山探采和選冶污染的監測
除了鈾礦床外,許多有色金屬、貴金屬、稀有金屬、稀土元素和磷礦床等也都伴生有大量放射性元素,對這些礦床的勘探、開采、選礦和冶煉都會導致放射性污染。為了清除這些污染,了解清除的效果,都需要進行監測。
(1)尾礦場地的污染與監測
在地質勘探階段,礦床雖未交給工業部門開采,但是在勘探過程中使用了水平巷道、豎井和淺井等工程,使礦區受到天然放射性元素的污染。在礦床開采過程中,礦石和廢石的堆放與運輸造成更大面積的污染,選冶過程中產生的尾礦和爐渣也是不可忽視的污染源。
圖9.13大奴湖地區由宇宙-954衛星放射性碎片引起的γ射線總計數的分布
1979~1980年美國能源部在鹽湖谷作了航空放射性測量,以便劃定尾礦場地范圍,並指導地面調查。測量系統安裝在直升機上,探測器由20個NaI晶體組成,每個體積645.7cm3,航高46m,線距76m。根據測量數據繪出了照射量率等值線圖,如圖9.14(a)所示和高於背景值的226Ra含量分布范圍圖,如圖9.14(b)所示。背景照射量率變化於430~645fA/kg(1μR/h=71.667fA/kg)之間。尾礦堆的照射量率最高超過1×105fA/kg。在尾礦堆以北有兩個照射量率偏高的突出部分,西面的一個據認為是由尾礦受風吹動造成的,東面的一個沿鐵路分布,可能由測量時正在運輸的放射性物質或由沿鐵路運輸散落的礦石或尾礦引起。沿鐵路的其他輻射異常據推測也是由散落物引起的。
利用此次航空放射性測量數據,鹽湖城衛生局和猶他州衛生廳劃定出14個此前未知的放射性異常區,地面檢查發現9個地點屬於鈾選礦廠的尾礦、1個是鈾礦石、3個是放射性爐渣,還有1個是儲存的選礦設備。在20世紀80年代初查出的這些污染地段都得到了清理。
(2)採煤和燃煤的污染及監測
許多重要的採煤區在採煤過程中形成大面積的放射性污染。例如,德國的魯爾礦區發現,由煤礦抽向地面的水中226Ra含量所導致的活度濃度達13kBq/m3,流入地下坑道中的水達63kBq/m3。魯爾區所有煤礦每年抽出的水含226Ra導致的總活度共37GBq。在地面上放射性污染的分布在很大程度上與水的化學成分有關,共有兩類含鐳的水,A類含硫酸鹽甚少或不含硫酸鹽,但含Ba2+離子;B類水含大量硫酸鹽,但不含Ba2+離子。在B類水中鐳不沉澱,而A類水中的鐳,當其與硫酸鹽混合後,鐳與鋇同時沉澱,形成放射性沉積物。很多煤礦已採煤百年以上,在礦山廢水流經之處形成很厚的沉積層,質量活度達150kBq/kg,並導致土壤和植物的污染,土壤質量活度由0.2~31kBq/kg,在水道兩側的新鮮植物中含226Ra,其質量活度達1kBq/kg。
目前世界上許多發展中國家都以煤作為主要能源,因此粉煤灰成為一種量大面積的放射性污染源。據聯合國原子輻射效應科學委員會(UNSCEAR)的統計,一個每天燒煤10t的熱電廠,向大氣釋放的238U放射性活度達1850kBq,一個1000MW的熱電廠每年排放粉煤灰5×105t,其中1.4×105t排入大氣。調查表明,在熱電廠周圍由於粉煤灰放射性引起的癌症死亡率比在核電站周圍高30倍。
圖9.14鹽湖谷航空放射性測量
(3)石油開采及運輸中的放射性污染和監測
石油開發過程中的放射性污染主要來自放射性測井。在測井中使用的放射性物質主要有中子源、同位素等,如鎇鈹(241Am-Be)中子源,137Cs,226Ra,131Ba,131I,113Sn,113In伽馬源等。測井過程中的放射性污染主要是因操作不當造成的,如:由於操作不慎,配置的活化液濺入外環境;在開瓶分裝、稀釋及攪拌過程中,有131I氣溶膠逸出,造成空氣污染;在向注水井注入131I活化液時,由於操作不當,造成井場周圍的表面污染;測井過程中玷污井管和井下工具等。
在石油化工生產中,承壓設備(如鍋爐爐管、液化氣球罐、液化氣槽車、承壓容器、管線等)的探傷、液位控制、液位測量、密度測定、物料劑量、化學成分分析及醫療中的透視、拍片、疾病治療等,廣泛地採用了放射技術。在料位、液面、密度、物料劑量、化學成分分析方面的放射性同位素源的劑量、活度一般是幾個毫居里(mCi),很少超過1000mCi。不過,在正常工作情況下,不論是從事工業探傷的人員還是同位素儀表操作人員,身體健康均不會受到放射性損傷。
油田上放射性污染面積大的地方,甚至可以在1∶50萬的航空γ能譜測量中反映出來,污染物以鐳及其衰變產物為主,鈾、釷含量不超過土壤的背景值。該企業用路線汽車能譜測量在斯塔夫羅波爾邊區測過的40個油氣田,其地表全被放射性廢料污染,發現300多個污染地段,γ射線照射量率為60~3000μR/h,其中大部分在100~1000μR/h范圍內。
(4)磷肥的放射性污染及監測
在天然環境中磷和鈾之間有著穩定的共生關系,磷肥的原料———磷礦石含有偏高的鈾,磷肥的副產品中則含有較多的鈾衰變產物,這些都會給磷肥廠周圍的環境造成放射性污染。
在西班牙西南部奧迭爾河和廷托河匯合入海處附近有一個大型磷酸廠,用於製造磷酸鹽肥料,其原料為磷灰岩,含有大量鈾系放射性核素。在西班牙生產磷酸的方法是用硫酸來處理原岩,在此過程中形成硫酸鈣沉澱(CaSO4·2H2O),稱為磷石膏,這種副產物或者直接排入奧迭爾河,或者堆在廠房周圍。因此,需要估算該廠每年排入周圍環境的核素數量。此外,還測定了西班牙西南部幾種商品肥料的放射性元素含量,以估計其對農田的放射生態影響。
所有的調查工作均基於測定固體和液體樣的U同位素、226Ra和210Po及40K的含量。知道每年產出的磷石膏量及其中U,226Ra,210Po的質量活度平均值,得出工廠附近每年排出的U同位素總活度約0.6TBq,210Po總活度為1.8TBq,226Ra總活度為1.8TBq,各種放射性核素總量的80%存留在磷石膏堆中,其他直接排入奧迭爾河,存放的磷石膏也逐漸被水溶解流入河中。到達廷托河的水238U活度濃度為40Bq/L,226Ra為0.9Bq/L,210Po為9Bq/L。為研究河流的污染,還取了水系沉積物樣,樣品濕重數千克,烘乾、磨碎、混合後在高純鍺探測器上測量,探測器覆蓋10cm厚的鉛屏,內有2mm的銅襯,以便測得較低的質量活度。
磷肥廠的環境放射性污染在我國亦有發現。核工業總公司在上海市郊進行航空γ能譜測量時,曾發現10×10-6的鈾異常,是背景值的45倍,經查是由化肥廠的磷礦粉引起的。
9.3.2.3建築材料的放射性污染及監測
除了房屋地基的岩石、土壤會逸出氡外,建築材料中也可能含有某些放射性元素,因此也可能成為放射性污染源。當建築材料中鐳的質量活度高於37Bq/kg時,會成為室內空氣中氡的重要來源。有些地方用工業廢料作為製造建築材料的原料,可能將工業廢料中的放射性污染物帶入室內。例如利用粉煤灰或煤渣製造建築材料曾被認為是廢物利用的好辦法,但是當煤的放射性元素含量偏高時,會導致嚴重的後果。我國核工業總公司曾經對石煤渣所建房屋的室內吸收劑量率做過調查,發現石煤渣磚房屋的γ輻射吸收劑量率比對照組的房屋高出3~9倍。我國用白雲鄂博尾礦、礦渣做原料製造水泥的工廠,用其生產的水泥建造的房屋時室內氡的濃度比對照組高出4~6倍。而美國對常用建築材料放射性的調查結果表明,木材輻射出的氡最少,混凝土最多。
我國居民住宅多用磚作建築材料,其中放射性40K質量活度最高為148Bq/kg,Ra為37~185Bq/kg,釷為37~185Bq/kg。對於天然建築材料,建材行業標准(JC518-93)將其分三類,見表9.4。
表9.4我國天然建築材料核輻射分級標准
俄羅斯勘探地球物理研究所提出用以下參數對建築材料的輻射室內居民輻射劑量進行監測。
9.3.2.4 核廢料處理場地的選址和勘察
各國根據自己的條件來選擇適於儲存核廢料的地質體,但迄今研究得最多的是兩種:鹽體和深成結晶岩體。鹽體被認為是儲存核廢料得最好地質介質,其優點是未經破壞的鹽層乾燥,鹽體中產生的裂隙易於癒合,鹽比其他岩石更易吸收核廢料釋放的熱,鹽屏蔽射線的能力強,鹽的抗壓強度大,而且一般位於地震活動少的地區。而另外一些國家,因為各自的地質條件,主要研究利用深成結晶岩儲存核廢料。如加拿大和瑞典等國家,大部分領土屬於前寒武紀地質,它們研究的對象包括片麻岩、花崗岩、輝長岩等。這些岩體能否儲存核廢料主要取決於其中地下水的活動情況。由於結晶岩中地下水的唯一通道是裂隙,所以圈定裂隙帶並研究其含水性是重要的任務。在具體選擇儲存場地時考慮以下幾個條件:地勢平坦、因而水力梯度小,主要裂隙帶不要穿過場地,小裂隙帶應盡可能少,要避開可能有礦的地點。
其他研究的地質體還有粘土、玄武岩、凝灰岩、頁岩、砂岩、石膏,碳酸鹽也是可以考慮的目標。一般來說,碳酸鹽岩是不適合的,但由不透水岩石包圍的碳酸鹽岩透鏡體是值得研究的。除了陸地上的地質體外,對海底岩石的研究也已經開始。
(1)鹽體選址勘察中的地球物理工作
A.鹽體普查
為了儲存核廢料,首先要了解鹽層的深度、厚度和構造,圈出適合儲存的鹽體,一般傾向於把核廢料儲存在鹽丘里。
重力測量。重力法對鹽丘能進行有效的勘察。鹽的密度穩定,為2.1×103kg/m3,往往低於圍岩(2.2×103~2.4×103kg/m3),在鹽丘上可測到n×10~n×100g.u.的重力低。當鹽丘上部有厚層石膏時,由於石膏密度大,結果形成弱重力低背景上的重力高。當鹽丘為緻密火成岩環繞(火成岩在鹽丘形成過程中侵入)時,則在重力低的邊緣出現環狀重力高。鹽丘表面起伏可用高精度重力和地震測量綜合研究。當鹽丘地區的重力場非常復雜時(重力場為鹽上、鹽下層位、鹽層和基底的綜合反映),採用最小化法進行解釋:首先根據地質-地球物理資料提出模型,然後自動選擇與觀測重力異常最吻合的模型曲線,使兩者偏差的平方和等於最小值。
電法測量。鹽比圍岩電阻率高,是電性基準層,以往鹽層構造用直流電測深研究,近年來則愈來愈多地採用大地電流法和磁大地電流法。採用大地電流法確定鹽體埋藏深度時,利用大地電流平均場強與鹽層深度之間的統計關系,因此要掌握少量鑽探和地震資料。平均場強的高值區對應於鹽丘和鹽垣,這樣圈出的局部構造很多已被地震或鑽探所證實。
地震測量。在構造比較簡單的沉積岩區地震反射和折射法探測鹽層起伏是很有效的。例如丹麥為儲存核廢料選擇的莫爾斯鹽丘,其位置和形態就是根據反射面的分布確定的。在某些情況下地面地震法只能確定鹽丘頂部平緩部分的位置。而側壁的形態和位置難以確定,這可以採用井中地震。
總之,在選址時,為了研究鹽層構造,一般先利用重力和電法,兩者結合起來能更詳細地確定鹽層構造在平面上的大小和形態。根據重力和電法結果布置地震測網,通過地震法可准確確定鹽體深度,而利用井中地震則可准確確定鹽體側壁的位置和形態。
B.研究鹽體的內部結構
為了確定鹽體是否適應於儲存核廢料,必須研究鹽體內部結構,即其所含雜質(夾層)數量、含水性和裂隙發育程度。
確定雜質(夾層)的數量。鹽的相對純度是影響其能否儲存核廢料的一個重要因素,雜質的出現會使鹽層的抗壓強度減小,屏蔽射線的能力降低。鹽體所含雜質包括泥質組分、石膏等,泥質組分有的形成單獨的夾層,有的與鹽混在一起,形成泥鹽。美國得克薩斯州的帕洛杜羅盆地用天然γ測井和密度γ-γ測井評價了中上二疊系鹽層的純度。γ射線強度與泥質含量有關,因為泥質組分中的釷量較高。γ-γ測井求得的密度則與石膏的百分含量之間存在著線性相關關系。計算了每個鑽孔每個鹽層的γ強度平均值。不到30ft的夾層,其γ強度與鹽層一起平均,當夾層厚於30ft時,就把鹽層作為兩個單獨的層處理,據此編制了不同旋迴的γ射線強度的等值線圖,它實質上就是泥質含量分布圖,從中可以選擇泥質含量最低的地區作為儲存核廢料的地點。
在美國鹽谷地區還曾利用垂直地震剖面法,根據波速的不同劃分鹽中的夾層。而在丹麥的莫爾斯鹽丘則用井中重力研究了鹽內的夾層。
研究含水性。鹽體含水對建立核廢料是一個潛在的危險,它使部分鹽溶解成為鹵水,減小鹽的機械強度並腐蝕廢料容器。測量鹽體的含水量可以採用中子測井,以255Cf為中子源。試驗表明,在釋放的γ射線譜線上氫本身的峰很弱,不能用作評價含水量的尺度,但可利用快中子與Na和Cl原子核的相互作用,以下列參數衡量含水量:Na中子非彈性散射峰與Cl中子俘獲峰的比值。非彈性散射是指Na的原子核吸收一個中子並放出一個中子和γ射線,γ射線峰的位置在138keV;中子俘獲是指Cl的原子核俘獲一個中子並放出γ射線,其峰的位置在789keV。上述比值與水的含量呈正比。美國曾利用瞬變電磁法來確定鹵水的位置,在實際探測時發現,鹵水的位置與瞬變電磁法一維反演的低阻層位置相當吻合。
了解裂隙發育程度。為了保證核廢料庫的安全,必須了解鹽層的裂隙發育程度。主要方法為井中電法(特別是無線電波法)和聲波測井。鹽的電阻率高,電磁波傳播的損耗小,無線電波法的探測距離大,夾層或裂隙的電阻率或介電常數與鹽不同,這些都是應用無線電波法的有利條件。無線電波法包括透視和反射法,透視法測孔間信號的衰減,而反射法的發射和接收天線位於同一孔內,測電磁脈沖的走時和反射層的特徵。均勻的鹽不會產生明顯反射,裂隙增多則反射亦增多。無裂隙的鹽電阻率高、衰減小,多裂隙的鹽則電阻率低、衰減大。因此,衰減小、反射少的鹽體更適於儲存核廢料。
用聲波測井確定裂隙帶的位置時可以利用不同的參數,如反射波幅度、聲波速度和區間時間。
(2)深成結晶岩體選址和勘察中的地球物理工作
核廢料擬儲存於花崗岩深成結晶岩體500~1000m深度上類似於礦山的處理洞穴中。在深成結晶岩體的選址和勘察過程中,地球物理工作分為三個階段,即場地篩選、場地評價和洞穴開挖過程中的勘察。
A.場地篩選
首先開展區域普查來篩選幾個地區,作為候選的處理場地,每個地區的面積可達上千平方千米。在篩選過程中,了解深成岩體的形態和深度、周圍地質環境、主要不連續面的位置和走向,蓋層的特徵、岩石的完整性等都是很重要的。由於場地篩選是區域性調查,涉及面積很大,所以要選用快速普查性的地球物理方法,尤其是航空地球物理方法。航空磁測曾被用來確定深成岩體的邊界以及岩體中的岩石與構造界面,一般與航空磁測同時開展的航空γ能譜測量也可用於劃分花崗岩體的邊界,花崗岩體鈾的含量可達8×10-6,而圍岩往往低於2×10-6。航空電磁法用來填繪裂隙帶在近地表的投影以及覆蓋層的特徵。湖區的裂隙帶則可採用船載聲吶設備圈定。岩石的完整性可以通過測量岩石的整體電阻率來評價,採用的方法有大地電磁法(MT)、音頻大地電磁法(AMT)、瞬變電磁法(TEM)和直流電阻率法等。
地面重力法曾被用來確定深成岩體的形態和深度及其地質環境。圖9.15顯示一條南北向跨過岩基的39km長的重力剖面,圖上包括實測和模型重力曲線以及根據當地常見岩石單元作出的解釋剖面。與岩基有關的100g.u.的重力低非常明顯,疊加在重力低上的局部重力高很可能是由高密度的包裹體引起。
B.場地評價
場地評價是在經過篩選的較小區域內進行更詳細的調查,每個區域的面積可達100km2,總的目標是圈定主要裂隙帶,確定其幾何形態,進行岩性填圖並了解覆蓋層的特徵。
應用高解析度地震反射法了解裂隙帶的深部情況以及發現深埋的裂隙帶。可以探測到寬於地震波主波長1/8的目標,例如在P波速度約5500m/s的花崗岩中,若採用150Hz左右的工作頻率,就可以探測到5m寬的裂隙帶。但是要求探測離地表1000m以內的反射體意味著有用的反射包含在地震記錄的第1s內,然而對高解析度地震常用的炮檢距來說,在這一時間段內也有地滾波到達,為了減小地滾波的影響,需要採用頻率濾波、f-k濾波、減小炸葯量以保留信號的高頻成分,並且選擇適當的檢波器距使地滾波在疊加時盡量減小。
目前還提出了三種應用地球物理方法估算裂隙的水壓滲透性的途徑:一是利用裂隙空間的電導率;二是利用裂隙內聲波能量的損耗;三是利用地震波通過時鑽孔對裂隙壓縮的響應。
對於准備開挖的場地來說,層析方法的作用更大,因為在這樣的地點鑽孔的數目要控制在最低限度,以防在岩體中形成新的地下水通道。
C.開挖階段的勘察工作
開挖儲存核廢料洞穴的工作開始以後,需要了解洞穴周圍岩體的水文地質條件和地質力學條件。由於本階段研究的目標減小,所以要採用高解析度,因而是高頻的地球物理方法。雷達、超聲波和聲輻射方法都曾得到有效的應用。
圖9.15跨過岩基的一條南北向重力剖面圖和二維重力模型(右側為北)
利用超聲波可以確定開挖破壞帶的厚度。利用聲輻射測量可以監測開挖的安全性,聲輻射參數的變化可以用來預測可能產生的岩爆並確定其位置。此外,聲輻射測量還用於追蹤向裂隙帶內灌漿的進程,這時在裂隙帶附近的一系列鑽孔內放置加速度計,在灌漿過程中記錄的聲輻射強度是同灌漿的進展相關的。
總之,在深成結晶岩地區核廢料處理場地選址和勘察工作中,地球物理方法既能快速而經濟地做到對大片區域的地質構造進行全面的了解,又能對候選場地進行詳細評價和勘察。表9.5將各個階段的地球物理工作加以總結。但在各個階段的工作中,除地球物理方法外,還應綜合應用其他方法,尤其是水文地質、地球化學、地質和岩石力學方法等。由於地球物理方法在解釋上的多解性,還應通過鑽探來驗證。
表9.5深成結晶岩區核廢料地質處理中的地球物理工作
5. 表面沾污儀 原理是什麼 什麼叫表面沾污
Inspector EXP手持式α、β、γ和X多功能沾污計量儀(α、β、γ和X輻射檢測儀)為您提供了快速、 精確、便捷的輻射檢測手段。它帶有很長的外接G-M 計數管探頭,有效的保護了測量人員的安全,既可做輻射劑量率檢測又能用於表面污染測量,本產品採用GM探測方法,用以監測放射性工作場所和表面 ,實驗室的工作檯面、地板、牆壁、手、衣服、鞋的α、β、γ和X放射性污染計數測量以及環境劑量率,是一款性價比高的輻射測量儀器。
常用於:
1.檢查局部的輻射泄露和核輻射污染;
2.檢查周圍環境的氡輻射;
3.檢查石材等建築材料的放射性;
4.檢查有核輻射危險的填埋地和垃圾場;
5.檢測從醫用到工業用的X射線儀器的X射線輻射強度;
6.檢查地下水鐳污染;
7.檢查地下鑽管和設備的放射性;
8.監視核反應堆周圍空氣和水質的污染;
9.檢查個人的貴重財產和珠寶的有害輻射;
10.檢查瓷器餐具玻璃杯等的放射性;
11.精確定位輻射源;
12.家居裝飾的檢測。
技術性能與特點:
1、四位液晶顯示
2、檢測α、β、γ和X射線
3、計數測量、總計數測量和劑量率測量
4、1分-24小時定時測量
5、最低響應能量:20Kev(γ射線),對Cs-137源為5.8Cps/μSv/h;
探測下限:對I-125是0.02微居;
6、效率(4π):接觸下:對Sr-90源約38%,C-14源約5.3%;P32源約33%;Co-60源約3%
7、外接G-M 計數管探頭,有效直徑45mm,雲母窗密度1.5-2.0mg/Cm³;
8、精度μSv/h:≤500μSv/h;范圍時≤15%,在500-1000μSv/h范圍≤20%;
CPS:≤2500 CPS范圍時≤15% , 在2500-5000CPS范圍≤20%;
9、測量單位:該檢測儀常用單位(Mr/h或CPM)或SI單位(μSv/h或CPS)
測量范圍:
0.001-100mR/hr
0.001-1000000μR/hr
0.001-1000μSv/hr
0-300000 CPM
0-9999000 總計數
精 度:±15%
電 源:9V層疊電池
外形尺寸:145×72 ×38mm
產 地:美國
6. 環境監測包括哪些
環境檢測的介質對象大致可分為水質檢測、空氣檢測、土壤檢測、固體廢物檢測、生物檢測、雜訊和振動檢測、電磁輻射檢測、放射性檢測、熱檢測、光檢測、衛生檢測等。環境檢測項目包括哪些?環境檢測做什麼項目?環境檢測對象包括哪些?環境檢測項目內容包括哪些?下面就環境檢測項目匯總如下:
1,水檢測:污水檢測、廢水檢測、生活飲用水檢測、直飲水、自來水檢測、凈水檢測、井水檢測、回用水檢測、工業用水檢測、山泉水檢測、江海湖泊水檢測、水源水檢測、海水檢測、游泳池水檢測、地表水檢測、地下水檢測等。
2,氣檢測:室內空氣檢測、室內空氣質量檢測、廢氣檢測、工業廢氣檢測、鍋爐窯爐廢氣檢測、發電機廢氣檢測、食堂廢氣檢測、食堂火煙檢測、食堂油煙廢氣檢測、車間廢氣檢測、環境空氣檢測、工作場所空氣檢測、空氣質量檢測等。
3,聲檢測:廠界雜訊檢測、工作崗位雜訊檢測、生活雜訊檢測、交通雜訊檢測、工業雜訊檢測、機械雜訊檢測、車間雜訊檢測、區域雜訊檢測等
4,污泥土壤檢測:江海湖泊底泥檢測、污泥檢測、土壤檢測、土壤重金屬檢測、土壤氡濃度檢測等。
5,環境影響評價監測:大氣環境質量現狀監測、環境空氣質量現狀監測、地表水環境質量現狀監測、地下水環境質量現狀監測、聲環境質量現狀監測、土壤環境質量現狀監測等。
7. 表面污染測量儀
主要技術指標
1 、測量范圍:
劑量率 0.01 — 1000 μ Sv/h , 0.01 ~ 100mR/h
計數率 0 — 50000 CPM , 0 — 8000 CPS :
2 、探 測 器:進口薄窗型蓋革計數管,有效直徑: 45mm
3 、能量范圍: 40KeV ~ 7MeV
4 、探測效率:
Sr-90(546kev,2.3MeV β max) 約 75%
Am-241(5.5MeV α ) 約 36%
5 、靈 敏 度: 3500CPM/ mR/h (對於 Cs-137 )
6 、儀器本底: ≤ 60CPM
7 、相對誤差:≤ 15%
8 、供電電源: 3 節普通 5 號電池
9 、功 耗:整機電流≤ 20mA
10 、溫度范圍: -15 ℃ ~ 50 ℃
11 、濕度范圍:相對濕度≤ 90% ( 40 ℃ )
12 、尺寸重量: 0.5kg ; 200 × 100 × 35mm
13 、 RenRiCont 軟體提供文字和圖形顯示。
上海仁日
8. 輻射一般通過哪些方式可以檢測出輻射量有多大
輻射檢測儀器有場強儀、電離輻射檢測儀、電磁輻射檢測儀。
一、場強檢測儀:
1、高頻近區電磁場測定儀、高頻電場測定儀、工頻電場測定儀,主要用於測量高壓輸變電系統,配電室,感應爐,地鐵,電動機車,醫療設備,烘乾設備,計算機等具有電磁輻射作業場所的電場強度。
二、電離輻射檢測儀
1、個人劑量報警儀:主要用來監測X射線和γ射線,在測量范圍內,可任意設定報警閾值,當達到報警閾值時,發出警報及時提醒工作人員注意安全。廣泛應用於輻照加工企業、衛生防疫、放射治療、核實驗室、核電站、進出口商檢、建材、石油化工、地質普查、廢鋼鐵、工業無損探傷等存在電離輻射環境下。
2、中子劑量儀:廣泛應用於加速器、核燃料生產廠、中子輻照裝置等場所
3、α β γ表面污染測量儀:主要用於放射性表面污染測量,可同時對α、β、γ射線進行測量。該儀器可廣泛應用於環保部門、醫院放射性科室、高等院校核物理實驗室、科研單位放射性實驗室、核電站、放射性計量站以及其它放射性場所的人員手部、衣物以及使用的試驗台、試驗設備的α、β、γ表面污染測量,以便及時去污,從而保護工作人員的安全。
4、αβ表面污染測量儀:同測αβ,也可單測α或β,主要應用於核醫學、環境放射性監測、核設施退役、核廢物處理,以及核電站和部隊核輻射探測方面。
5、χ、γ劑量儀:測高能、低能γ射線外,也可以對低能X射線進行准確的測量,廣泛用於環保、冶金、石油化工、化工、衛生防疫、進出口商檢、放射性試驗室、廢鋼鐵、商檢、各種放射性工作場所等需進行輻射環境與輻射防護檢測的場合。
6、低本底α β測量儀:廣泛用於輻射防護,醫葯衛生,農業科學,核電站等場所。
三、電磁輻射檢測儀
1、低頻電磁輻射檢測儀:磁性材料的檢測,地磁場的檢測,地鐵電磁環境輻射監測,交流、直流高壓輸變電系統監測,配電室、計算機房、敏感儀器室等作業場所監測。
2、高頻電磁輻射檢測儀:工業爐、焊接系統、射頻加熱、回火和乾燥設備、透熱設備和醫療設備(NMR),射頻發射裝置、敏感區域(醫院、學校)、無線電通訊系統、移動通信基站、廣播電台、電視發射塔環境的場強測量。
9. 放射性表面污染怎麼計算出來的,有相應的公式嗎
表面污染是測量出來的。首先,通過測量儀器,比如用塑料閃爍體、P10氣體(氬氣和甲烷的混合氣體)做出的探測器測量α或β射線(塑料閃爍體一般都很薄,1mm~5mm的量級,為的是讓γ射線透射,不對γ有響應),通過能量或時間甄別出α還是β,確定是α或β造成的污染。
然後測計數,做效率幾何等修正之後得到計數率cps,除以探測面積,得到cps/cm²。
這一步有直接測量和間接測量兩種,直接測量一般用於表面平整,環境本底小的地方,直接用大面積β探頭就可以測到;對於環境本底高,或表面凹凸的地方,就要用擦拭紙取樣,最後結果除以擦拭面積,當然,要做擦下系數修正。擦拭取樣可以拿到實驗室進行譜分析,得到Bq/cm²的結果。
最終,表面污染都要向Bq/cm²轉化,cps/cm²是一個單位時間里在單位面積上發出的粒子個數,Bq/cm²是單位時間里在單位面積上有多少原子核發生衰變。對於一般的原子核來說,衰變一次就發出一個粒子,但是有的原子核衰變一次會發出多個粒子,雖然β衰變和α衰變發生一對多的情況是很少甚至是沒有的,這種情況兩個單位的比值是1:1,不過,最後還是會做實驗確定這個比值。另外,還有一點就是現場測量很多都是用攜帶型儀表,其刻度不是像實驗室儀器那樣做了精確刻度,一般都是用Cs-137,Co-60,Cl-36,Sr-90等進行刻度。不同的刻度核素,出來的結果有可能是不一樣的,這和探測器固有特性有關,所以,儀器出廠前一般都會做標定,之後每使用一段時間,會進行重復標定。
10. 電磁輻射評價主要包括哪些內容考試題,知道的速度哦~謝了~
一、名詞解釋(2×5=10分)
1.半衰期:放射性母核數目衰變掉一半所需時間,或放射性活度減弱一半所需時間。
2.同位素:具有相同質子數和不同中子數的同一類元素稱為同位素。
3.鬆散污染:指該污染用擦拭、清洗等方法可以轉移或去除的污染。
4.感生放射性:穩定的核素吸收一個中子後轉變成放射性核素也就是活化產物,活化產物衰變時產生的放射性稱為感生放射性。
5.半厚度:r射線經過n個半厚度的屏蔽層後,其強度將減弱到原來強度的1/2n。
二、填空題(1×33=33分)
1.填寫下列輻射物理量對照表
2.外照射防護一般有時間防護、距離防護、屏蔽防護和_源強防護四種方法。
3.根據國標GB8703-88《輻射防護規定》我國將核電廠廠區劃分為非限制區、監督區和控制區三個區域。
4.放射性活度是指放射性物質原子在單位時間內發生的___核衰變的數目___。
5.放射性核素經過2個半衰期後,其量將減少至原來數目的____4_____分之一。
6.工作場所中的放射性物質可通過____食入_____、___吸入______和__傷口進入_______三種途徑進入體內形成內照射。
7.輻射防護的目的在於防止______確定性效應_____的發生,並把__隨機性____的發生率限制到被認為是可以接受的水平。
8.工作場所輻射監測包括____外照射____、____表面污染______、____空氣污染___。
9.根據國家輻射防護標准,輻射工作人員5年累積有效劑量應不超過__100___mSv,且任何一年不應超過___50___mSv;眼晶體每年不應超過__150___mSv,皮膚每年不應超過____500_____mSv。輻射防護標准中劑量當量限值不包括___天然本底__和____醫療照射______兩種照射。
10.表面污染的監測方法一般有兩種,分別為__直接測量法___、__間接測量法__。
11.距離一個γ點源1米處的劑量率為900µSv/h,那麼某人距離該源3米處工作2小時,將接受的外照射劑量為__200___µSv。
12.一個γ點源外2m處劑量率為400µSv/h,欲使1m處工作人員半小時所受劑量不超過100µSv,需要設置_____39______mm厚的鉛屏蔽層。(鉛的半厚度為13mm。)
三、選擇題(1×17=17分)
1.在正常本底地區,天然輻射源對成年人造成的平均年有效劑量約為B。
A)20mSv
B)2.4mSv
C)5mSv
2.在人工輻射源中,對人類照射劑量貢獻最大的是B。
A)核電廠
B)醫療照射
C)氡子體
3.在核電廠放射性熱點設備上布置鉛皮,目的是為了屏蔽B。
A)β射線
B)γ射線
C)n射線
4.在內照射情況下,α、β、γ放射性物質的危害程度依次為:A。
A)α>β>γ
B)γ>β>α
C)γ>α>β
5.固定的表面污染對人具有A風險。
A)外照射
B)內照射
C)A+B
6.工作人員控制區,個人劑量計應佩戴在工作人員的B部位。
A)右胸
B)左胸
C)頭部
7.控制區內產生的濕廢物應作為B進行收集和處理色收集袋。
A)可壓縮
B)不可壓縮
C)待去污物品
8.人體皮膚的β放射性表面污染限值為B。
A)4Bq/cm2
B)0.4Bq/cm2
C)40Bq/cm2
9.個人劑量限值限制的是C。
A)外照射劑量
B)內照射劑量
C)內照射劑量+外照射劑量
10.在B工況下進入反應堆廠房,必須辦理《紅區進入許可證》。
A)任何
B)反應堆運行
C)停堆
11.氣衣主要用於B。
A)高外照射區域作業
B)嚴重空氣污染+表面污染區域作業
C)放射性積水區域作業
12.在控制區內,工作人員的個人防護包括:B。
A)時間防護、距離防護、屏蔽防護
B)外照射防護、內污染防護、體表污染防護
C)外照射防護、空氣污染防護、表面污染防護
13.下列不宜採用直接法測量表面污染的是A:
A)環境γ本底高
B)固定表面污染
C)鬆散表面污染
14.下列不宜採用擦拭法測量表面污染的是B:
A)環境γ本底高
B)固定表面污染
C)鬆散表面污染
15-17可能為多項選擇題
15、下列哪些機體變化屬於確定性效應:(abce)
a.皮膚損傷
b.造血器官損傷
c.中樞神經損傷
d.癌症
e.免疫系統受損
16、下列哪些准備是你進入控制區熱更衣室所應該進行的:(abc)
a.只穿內褲
b.用控制區通行證領取電子劑量計和熱釋光個人劑量計
c.戴上身份磁卡
d.戴上安全帽
17、指出右圖是何標志:(c)
a.輻射源標志
b.劑量標志
c.電離輻射標志
d.放射性標志
四、判斷題(1×25=25分)
1.太陽光是電離輻射。(×)
2.半衰期長的放射性核素在單位時間內衰變的幾率大。(×)
3.在人類的生活環境中,在任何地方和任何時刻都會受到電離輻射的照射。(√)
4.人員離開控制區,必須進行體表污染檢查。(√)
5.工作人員發生頭部和傷口污染,應立即自行沖洗。(×)
6.放射性物質在體外進行的照射稱為外照射,放射性物質在體內進行的照射稱為內照射。(√)
7.居住在通風不良的室內居民一般會受到較高的內照射劑量。(√)
8.由於現代科學技術的發展,人們已經有辦法控制放
射性衰變了。(×)
9.在正常運行情況下超過個人劑量限值的照射是不可接受的。(√)
10.每一放射工作人員必須進行就業前醫學檢查和就業後定期醫學檢查。(√)
11.輻射權重因子不同的輻射,盡管吸收劑量一樣,但其生物效應不一樣。(√)
12.職業照射個人劑量限值適用於醫療照射。(×)
13.年齡小於16周歲的人員不得接受職業照射。(√)
14.滿足了輻射防護最優化要求的輻射實踐肯定能滿足對個人劑量限制的要求。(×)
15.點源情況下,劑量率的大小與到源距離的平方成反比。(√)
16.在控制區內只要嚴格按規定穿戴輻射防護用品,就不會受到輻射照射。(×)
17.在控制區內戴口罩的目的是為了防止放射性物質從口鼻進入體內。(√)
18.空氣污染不僅有內照射風險,而且還有外照射風險。(√)
19.高輻射區的門應上鎖關閉,鑰匙由輻射防護部門控制。(√)
20.輻射防護最優化意味著要不惜一切代價使個人劑量盡可能低。(×)
21.每個人都不超過個人劑量限值,就是對輻射防護原則最好的遵守。(×)
22.進入高輻射區前,必須使用攜帶型儀表測量輻射水平。(√)
23.工作人員停堆後進入反應堆廠房,無需考慮中子防護。(√)
24.工作人員可以使用電子劑量計測量場所輻射水平。(×)
25.核電廠對工作人員的劑量限制無須考慮該工作人員在其它核電廠接受的劑量。(×)
五、簡述題(15分)
1.在控制區解體檢修放射性系統熱點設備,你認為應該採取哪些防護措施?(6分)
2.對照下圖,簡述你對ALARA原則的理解。(9分)