导航:首页 > 使用方法 > 表达注水井吸水能力常用的方法

表达注水井吸水能力常用的方法

发布时间:2022-07-05 08:49:52

Ⅰ 注水开采的具体方法

开始注水的时间和保持压力的水平 这直接影响油田建设和经济效益。确定油层压力保持水平时,要充分利用天然能量,以实现用最简便、最经济的方法开发油田。同时要使油藏保持的压力足以满足一定采油速率的要求,还要使油、气、水在地下的运动状态有利于提高采收率。一般认为,在能达到要求的采油速率时,以油层压力降至饱和压力附近开始注水,较为适宜。
注水方式和井网 依据油藏的构造形态、面积大小、渗透率高低、油、气、水的分布关系和所要求达到的开发指标,选定注水井的分布位置和与生产井的相对关系,称注水方式,它确定了水驱油的方向和油井受效特点。注水方式有: ①对有边水活动、面积较小的油田,油水区间的传导性能较好时,往往沿油水边界附近布置注水井,形成环状注水,也叫边外注水;
②对面积较大、储层连片情况较好、渗透率较高的油田,注水井排切割油藏,形成行列注水;
③对面积较大、储层连片较差、渗透率较低的油藏,生产井和注水井按照一定几何图案,互相间隔地排列,称面积注水。另外,还有注水井分布比较灵活的点状注水、选择性注水等,这些方式也叫边内注水。 为使油井充分受到注水效果,达到所需要的采油速率和所要求的油层压力,还需确定井和井间的距离(井距),确定井距时,以大多数油层都能受到注水作用为原则。注水井和油井的井数比例和分布形态,称为井网,如面积注水井网有五点法 (注水井与生产井的比例为1:1)、四点法(比例为1:2)、反九点法(比例为1:3)等。
通常,依据油井的产油能力、注水井的吸水能力和要求达到的采油速率、采收率、开采年限等,来对比、分析注水强度不同和布井方式不同的各种注水井网的开发效果,从中选用最佳的井网形式。注水井的吸水能力主要取决于油层渗透率和注水泵压,为使油层正常吸水,注水泵压应低于油层破裂压力。 注水过程中要经常调整注水井的吸水剖面,改造吸水少的中、低渗透层,控制影响其他层吸水的特高吸水层,使更多的油层按照需要吸水,以提高注入水的体积波及系数,采油井也要定期监测产油剖面,了解各油层工作状况,以便采取措施减少井筒内的层间干扰,发挥中、低渗透率油层的作用。
提高注入水利用率 随着对注水采油认识的加深,近年来又发展了各种提高注入水的体积波及系数的方法,并减少注入水的采出量,提高注入水的利用率。如对非均质性严重或带有裂缝性的油层,将连续注水改为周期性注水;对高含水地区改变注水井的分布,从而改变水驱油的液流方向等,已取得很好的试验效果。

研究方法

利用注水井吸水剖面、小层沉积微相和数值模拟三种方法综合研究南区沙二下1-5层系剩余油分布规律。

1.注水井吸水剖面法

注水井吸水剖面法是利用历年来注水井吸水剖面资料,将注水井累积注水量分配到小层,再根据室内岩心水驱油试验结果,注入体积倍数与采收率、含水率之间的关系,来确定小层剩余油分布规律。

(1)建立静态数据库,统计小层渗透率分布规律

系统建立南区沙二下1-5层系油、水井静态参数数据库。利用算术平均法和有效厚度加权平均法,分别计算出各小层渗透率平均值。利用概率统计的方法,求出各小层渗透率分布变异系数。

(2)建立吸水剖面数据库,计算小层累积注水量

在静态数据的基础上,建立注水井吸水剖面数据库。利用吸水剖面数据库可以统计出历年单井、小层吸水厚度变化趋势和吸水强度分布规律。利用吸水剖面数据库和注水井单井累积注水量,可以计算出历年小层累积注水量。

(3)建立注入体积倍数与采收率、含水之间关系,计算小层采出程度

根据濮城油田南区濮检1井非稳定流油水相对渗透率、水驱油试验报告和沙二下第446号岩心试验结果,由小层累积注水量计算出小层注入体积倍数,再根据以上关系内插求出各小层的采出程度和含水率。

(4)确定小层驱油效率

根据利用中原油田开发室内试验数据统计出来的驱油效率ED试验公式:

高含水油田剩余油分布研究:以辽河油田欢26断块为例

驱油效率ED可以做为小层在均质条件下的最终值,驱油效率ED1可以做为小层在非均质条件下油田开发的最终值,或称测算采收率。在油田开发中,驱油效率还受注采井网及工艺技术条件的限制。

(5)计算小层剩余油量

根据小层驱油效率计算出可采储量,再由小层采出程度计算出剩余油量。

2.小层沉积相法

通过对濮城油田沙二下段沉积相的研究,认为濮城沙二下段沉积环境为浅水湖泊相和浅水三角洲相,其特点是水下分支河道异常发育,水下河道亚相是沙二下段沉积主体和骨架,河道层序具有对称性,底部粗粒段和顶部细粒段较薄、中间段厚度大且粒度均匀,河道砂体是本区沙二下段主要储集层;南区沙二下长期处于水下河道沉积区,砂层多,分选好,是濮城油田沙二下中的最好储集层。

针对沙二下1-5油层目前开发现状,结合沉积相研究和油水生产剖面的初步分析,得到以下认识:

(1)河道砂是主要的吸水层,也是目前的主要产出层

在油田开发初期,河道砂(包括水下河道主水流线上的SH型砂体,居非主水流线上的H型砂体和居水下河道中的相对高台上的T型砂体)是主要的吸水层,也是主要的产油层。到油田开发中后期,由于油田含水的升高,主产层逐步过渡到主产水层。

根据1987年至1991年注水井吸水状况分类统计,河道砂是注水井的主要吸水层,统计48口注水井的吸水剖面,河道砂的射孔厚度204.5m,占总射孔厚度的45.7%,河道砂的绝对吸水量2692.2m3/d,占总吸水量的66.3%。其中1988年至1990年,河道砂射孔厚度占总射孔厚度的53%左右,绝对吸水量的百分数却高达80%以上。1987年至1990年,在射开河道砂厚度相对稳定的情况下,注水井中河道砂体的吸水能力有增大趋势,相对吸水百分数由57%增大到90%。

根据9口生产井产出剖面统计资料(表4-14),河道砂也是目前主要的产出层。统计沙二下1-5层系河道砂射孔厚度45.1m,占总射孔厚度的40.1%,河道砂产液量122.3m3/d,占总产液量的64.8%。

(2)河道砂在注水井和生产井之间已经形成地下水道,是主要的产水层

根据濮3-284井环空测井资料分析,射开16层,产出层5个,产出层占31.3%;射开厚度33.5m,产出厚度16.4m,产出厚度占49.0%。其中主要产水层32小层,2层5.0m,日产油1.7m3,日产水19.7m3,含水92.1%。

濮3-284井的一线注水井是3-282井,由于濮3-28井处于河流的边滩部位,油层物性差,吸水状况差。根据历次吸水剖面资料解释,射开有效厚度1.4m,日吸水量只有5m3左右,分析结果一线注水井不是主要的来水方向。

濮3-278井是濮3-284井的二线注水井,根据吸水剖面资料分析,是其主要的来水方向。濮3-278井沙二下32小层,射开吸水厚度3.2m,日吸水量66.3m3。根据沉积相分析,濮3-278井和濮3-284井的沙二下32小层处于同一河道砂体,它们之间连通性好、渗透性好,在油田注水开发中已经形成了地下水道。

(3)前缘砂和滨湖砂是目前主要的产油层

前缘砂分布在水道的两侧,滨湖砂距河道砂较远。前缘砂属中渗透砂体,滨湖砂属于低渗透性砂体。

统计沙二下1-5层系主要处于前缘砂和滨湖砂部位的21口生产井,1992年9月份日产油水平289t,井数占全层系开井数的34.4%,日产油水平占56.1%。21口生产井平均单井日产水平13.8t,平均含水37.0%。其中处于前缘砂亚相的濮3-41井,生产沙二下3-5,射开5层13.4m,其中有效厚度3层7.6m,9月份平均日产油16t,含水61%,累积产油7.09×104t。

统计沙二下32和沙二下52两个典型含油小层,前缘砂2.32km2,滨湖砂3.02km2,分别占两小层含油面积的30.1%和39.0%。前缘砂和滨湖砂在平面上分布面积比较大,由于油层物性差、渗透率低,目前水驱动用状况差,剩余油量比较大,是今后挖潜的主要方向。

综合以上分析,河道砂是主要的吸水部位,同时也是主要的产出部位,过去是主要的产油层,目前是主要的产水层。含水一般均在80%以上,局部含水达到90%以上。目前剩余油很少,已到水洗油的阶段。大庆的河流过渡相和河漫相部位(濮城的前缘相与滨湖相)是目前主要的剩余油聚集带,也是目前主要的产油层,因此下步调整挖潜的方向应为河床过渡相和河漫相。

3.数值模拟法

(1)建立模型

①网格的划分

该模拟区块共有25小层,模型建立纵向上以主力层单独模拟层为原则划分为13个模拟层;平面上选取不等间距的矩形网格系统。整个模型网格总数为13×18×13=7254,其中有效节点4873个,死节点为2381个。

②油藏参数的选取

油藏流体物性参数。

相对渗透率数据:由于没有本区块油藏的相对渗透率数据借用邻近区濮检1井的数据进行了修正。沙二下1-5共选用七条相对渗透率曲线。

PVT数据:南区沙二下1-5层系没有取得PVT数据,故借用与其相近的东区文35井的数据进行了处理修正。

网格节点参数:网格节点数据除网格步长外,其他地质参数均来自每口井的电测解释结果,在工作站上用插值法算得每个网格的数据。

初始化计算结果:濮53块沙二下1-5油藏由于未对每一小层储量进行标定,利用每小层体积百分数来计算每一小层储量。利用三维三相模拟各小层储量结果。

(2)历史拟合

根据生产历史对单井,全油田的压力、含水进行了拟合,均得到了较满意的结果。

Ⅲ 吸水剖面的吸水剖面

1、吸水剖面:针对常规方法获取分层吸水指数存在的问题,结合渗流理论和注水剖面测井一次下井能连续测量流量和压力的特点,测井时多次改变井口注水量,通过注水剖面资料的处理确定各储层的相对吸水量、确定各储层的地层压力和吸水指数的方法,由此还能掌握各储层地层压力和吸水能力的差异。
2、同位素测吸水剖面可以反映出注水井各层的吸水能力变化情况。 同位素测吸水剖面可以用来解决套管外窜槽井段及封隔器不密封故障。
3、在同位素测井中增加井温、流量参数,通过多参数综合解释,不仅可以对沾污影响进行合理校正,确定准确的小层吸水量,而且能够正确判断各级封隔器、配水器的工作情况,在地层存在大孔道的情况下,确定地层的吸水面积。 4、吸水剖面包括同位素和氧活化,同位素费用低,主要用于水井,氧活化主要是针对聚驱,因为聚合物分子有污染,氧活化要准确些。

什么是注水井,偏心配水器

用来向油层注水的井。在油田开发过程中,通过专门的注水井将水注入油藏,保持或恢复油层压力,使油藏有较强的驱动力,以提高油藏的开采速度和采收率。依据油藏的构造形态、面积大小、渗透率高低、油、气、水的分布关系和所要求达到的开发指标,选定注水井的分布位置和与生产井的相对关系(称注水方式)。注水井井距的确定以大多数油层都能受到注水作用为原则,使油井充分受到注水效果,达到所要求的采油速率和油层压力。注水井的吸水能力主要取决于油层渗透率和注水泵压,为使油层正常吸水,注水泵压应低于油层破裂压力。
注水井是水进入地层经过的最后装置,在井口有一套控制设备,其作用是悬挂井口管柱,密封油,套环形空间,控制注水和洗井方式,如正注、反注、合注、正洗、反洗。按功能分为分层注入井和笼统注入井;按管柱结构可分为支撑式和悬挂式;按套管及井况可分为大套管井、正常井和小直径井。
注水井是注入水从地面进人油层的通道,井口装置与自喷井相似,不同点是无清蜡闸门,不装井口油嘴,可承高压。井口有注水用采油树,陆上油田注水采油树多用CYB-250型,其主要作用是:悬挂井内管柱;密封油套环形空间;控制注水和洗井方式(如正注、反注、合注、正洗、反洗)和进行井下作业。除井口装置外,注水井内还可根据注水要求(分注、合注、洗井)分别安装相应的注水管柱。注水井可以是生产井转成的或专门为此目的而钻的井。通常将低产井或特高含水油井,边缘井转换成注水井。
注水井的井下管柱结构、井下工具遵循简单原则。大多数情况下(笼统注水),注水井仅需配置一套管柱和一个封隔器,封隔器下到射孔段顶界50m处,对特定防腐要求的注水井,其管材应特殊要求,且必要时,油套环空采用充满防腐封隔液的方法加以保护。这种液体可以是油也可以是水,一般用防腐剂或杀菌剂进行处理或另加除氧剂等。分层注水的井下管柱可按需设计。
多个注水井构成注水井组,注水井组的注入由配水间来完成。在配水间可添加增压泵,在井口或配水间可另加过滤装置。一般情况下,在配水间或增压站可对每口注水井进行计量。
偏心配水器:偏心配水器是一种活动式配水工具,主要由工作筒和堵塞器组成。可以解决传统配水器投捞成功率低的问题

Ⅳ 油田注水开发技术是什么

在采油过程中,仅利用地层天然能量进行采油,称为“一次采油”。一次采油也被称为“能量衰竭法采油”,采收率一般只能达到15%左右,大部分油气仍残留在油层中。为保持和提高地层能量,提高地层中油气采收率,人们采用油田注水开发技术。

向油层注水,保持或提高地层能量,提高油气采收率的采油方法,早在20世纪20年代美国就已工业化应用。苏联于1946年第一次在杜依玛兹油田采用早期注水、保持油层压力的开发方法。在这期间注水开发的油田越来越多。1936年美国采用注水开发的区块只有846个,到1970年就发展到9000个以上。我国最早大量注水的油田是克拉玛依油田,现各主要油田都采用了注水开发方式。因此,注水已成为世界范围内油田开发的主要手段。

一、油田注水时间的选择

(一)不同时间注水油田开发的特点

不同类型的油田,在油田开发的不同阶段注水,对油田开发过程的影响是不同的,其开发结果也有较大的差异。

1.早期注水

早期注水的特点是在地层压力还没有降到饱和压力之前就及时进行注水,使地层压力始终保持在饱和压力以上。由于地层压力高于饱和压力,油层内不脱气,原油性质较好。注水以后,随着含水饱和度增加,油层内只是油、水两相流动,其渗流特征可由油水两相渗透率曲线所反映。

早期注水可以使油层压力始终保持在饱和压力以上,油井有较高的产能,有利于保持较长的自喷开采期。由于生产压差调整余地大,有利于保持较高的采油速度和实现较长的稳产期。但这种注水方式使油田投产初期注水工程投资较大,投资回收期较长。所以,早期注水方式不是对所有油田都是经济合理的,尤其对原始地层压力较高而饱和压力较低的油田更是如此。

2.晚期注水

油田开发初期依靠天然能量开采,在没有能量补给的情况下,地层压力逐渐降到饱和压力以下,原油中的溶解气析出,油藏驱动方式转为溶解气驱,导致地下原油黏度增加,采油指数下降,产油量下降,气油比上升。如我国某油田,在地层压力降到饱和压力以下后,气油比由77m3/t上升到157m3/t,平均单井日产油由10t左右下降到2t左右。

在溶解气驱之后注水,称晚期注水,在美国称“二次采油”。注水后,地层压力回升,但一般只是在低水平上保持稳定。由于大量溶解气已跑掉,在压力恢复后,也只有少量游离气重新溶解到原油中,溶解气油比不可能恢复到原始值。因此,注水以后,采油指数不会有大的提高。由于油层中残留有残余气或游离气,注水后可能形成油、水两相或油、气、水三相流动,渗流过程变得更加复杂。这种方式的油田产量不可能保持稳产,自喷开采期短,对原油黏度和含蜡量较高的油田,还将由于脱气使原油具有结构力学性质,渗流条件更加恶化。

晚期注水方式初期生产投资少,原油成本低。原油性质较好、面积不大且天然能量比较充足的中、小油田可以考虑采用。

3.中期注水

中期注水介于上述两种方式之间,即投产初期依靠天然能量开采,当地层压力下降到低于饱和压力后,在气油比上升至最大值之前注水。此时油层中将由油、气两相流动变为油、气、水三相流动。随着注水恢复压力,可以有两种情形:

一种情形是地层压力恢复到一定程度,但仍然低于饱和压力。在地层压力稳定条件下,形成水驱混气油驱动方式。据室内模拟和国外文献介绍,如果地层压力低于饱和压力15%以内,此时从原油中析出的气体尚未形成连续相,这部分气体有一定驱油的作用,并由于油—气间的界面张力远比油—水界面、油—岩石界面的张力小,因而部分气泡位于油膜和岩石颗粒表面之间。这对亲油岩石来说,可破坏岩石颗粒表面的连续油膜,有助于提高最终采收率。

另一种情形就是通过注水逐步将地层压力恢复到饱和压力以上。此时,脱出的游离气可以重新溶解到原油中,但天然气组分的相态变化是不可逆过程。当提高压力时,脱出的游离气重新完全溶解所需的压力为溶解压力。显然,溶解压力大于饱和压力。此外,在利用天然能量开采阶段,部分溶解气逸出。因此,即使地层压力恢复到饱和压力以上,溶解气油比和原油性质都不可能恢复到初始情况,产能也将低于初始值。在地层压力高于饱和压力条件下,如将井底流压降至饱和压力以下,尽管采油指数较低,但由于采油井的生产压差大幅度提高,仍可使油井获得较高的产量和较长的稳产期。

中期注水的特点是初期投资少,经济效益好,也可能保持较长稳产期,并不影响最终采收率。地饱压差较大、天然能量相对较大的油田比较适用于中期注水。

(二)选择注水时机应考虑的因素

1.油田天然能量的大小

要确定油田合理的注水时间,就要研究油田天然能量的大小,研究这些能量在开发过程中可能起的作用。总的原则是:在满足油田开发要求的前提下,尽量利用油田的天然能量,尽可能减少人工能量的补充。如有的油田边水很活跃,边水驱动能满足油田开发的要求,就没有必要采用人工注水的方法开发;有的油田原始地层压力与饱和压力相差很大,有较大的弹性能量,也就没有必要采用早期注水。

2.油田的大小和对油田产量的要求

不同油田由于自然条件和所处位置的不同,对油田开发方针和产量也是不同的。小油田,由于储量少、产量不高,一般要求高速开采,不一定追求稳产期,因此也就没有必要强调早期注水。大油田,对国家原油产量的增长起着很大的作用,对国民经济及其他部门的布局和发展有着很大的影响,因此要求大油田投入开发后,产油量逐步稳定上升,在油田达到最高产量后,还要尽可能地保持较长时间的稳产,不允许油田产量出现较大的波动。要确保这个目标的实现,一般要求进行早期注水。如前苏联第二巴库油田大部分是采用早期注水开发。20世纪70年代以后投入开发的西西伯利亚油区的一些大油田也是采用早期注水开发的。如萨马特洛尔油田,1969年4月投入开发,同年10月就开始注水,当年采油140×104t,到1975年产量达到8700×104t,1976年采油速度就达到2%,1980年产量为1.52×108t,地层压力始终保持在原始地层压力附近。

3.油田的开采特点和开采方式

自喷开采的油田,就要求注水时间相对早一些,压力保持的水平相对高一些。原油黏度高、油层非均质性严重、自喷很困难、只能采用机械方式采油的油田,地层压力就没有必要保持在原始地层压力附近,不一定采用早期注水开发。原始油层压力与静水柱压力之比高于1.3以上的油田,即使自喷开采,保持压力的界限也可以比原始压力低,因此注水时间也可以推迟。

总之,注水时间的选择是一个比较复杂的问题。我们既要考虑到油田开发初期的效果,又要考虑到油田中后期的效果,必须在开发方案中进行全面的技术论证,在不影响油田开发效果和完成国家任务的前提下,适当推迟注水时间,可以减少初期投资,缩短投资回收期,有利于扩大再生产,取得较好的经济效益。

二、油田注水方式

油田注水方式是指注水井在油田上所处的部位和注水井与采油井间的排列关系。

采用人工注水开发的油田,油井之间、注水井之间、油井与注水井之间都存在着严重的相互干扰。因此,我们必须深入研究油层性质和构造条件,确定合理的注采井网,进行合理的配产配注。这是油田注水开发中最突出、最关键的一个问题。

油田注水方式可分为边缘注水、切割注水、面积注水和点状注水四种,油田应结合地质条件、流动特征以及开发的要求选择最佳的注水方式。

(一)边缘注水

边缘注水的条件是:油田面积不大,构造比较完整,油层稳定,边部和内部连通性好,油层流动系数(有效渗透率×有效厚度/原油黏度)较高。特别是钻注水井的边缘地区要有较高的吸水能力,能保证压力的有效传递,使油田内部能收到良好的注水效果。边缘注水根据油水过渡带的油层情况又可分为缘外注水、缘上注水和缘内注水三种。

1.缘外注水

缘外注水又称边外注水。这种注水方式要求含水区内渗透率较高,注水井一般与等高线平行,分布在外油水边界以外,如图6-8所示。它的优点是相当于将供给边线移近到油藏开发区,可保持或提高新供给边线的压力。

世界上用这种注水方式开发比较成功的油田,如前苏联的巴夫雷油田,面积为80km2左右,平均有效渗透率为0.6μm2,油层比较均匀而稳定,边水活跃。采用边外注水后,油层平均压力稳定在13.73~15.70MPa之间。在注水后的5年内,石油日产量基本稳定,年采油速度为可采储量的6%左右。我国老君庙油田,面积较小,并有边水存在,在开发初期,L油层和M油层均采用缘外注水方式。

2.缘上注水

当油田在油水外缘以外的区域渗透性差时,不宜缘外注水,而将注水井部署在油水外缘上或在油藏以内距油水外缘不远的地方,即缘上注水,如图6-9所示。

图6-8缘外注水

图6-13面积注水

什么样的油田,选用什么样的面积注水,并无固定的格式。一般说来,油层连通性不好,而又要加速开采,这时注水井就应该多,可采用四点法或反九点法;反之则采用七点法井网开采。在油田开发初期,注水井应少些,到了晚期,注水井数就应适当增多。面积注水方式适用的条件如下:

(1)油层分布不规则,延伸性差,多呈透镜状分布,用切割注水不能控制注入水,不能逐排地影响生产井。

(2)油层渗透性差,流动系数低,切割注水时注水推进的阻力大,采油速度低。

(3)油田面积大,构造不够完整,断层分布复杂。

(4)适用于油田后期的强化开采以提高采收率。

(5)油层具备切割注水或其他注水方式,但要求达到更高的采油速度时也可用面积注水方式。

与切割注水相比,面积注水方式对油层分布适应性要广些,采油速度要高些,但切割注水方式调整的灵活性要大些。

(四)点状注水

点状注水是指注水井零星地分布在开发区内,常作为其他注水方式的一种补充形式。

Ⅵ 吸水能力分析法

注水井的注水量是吸水指数与注水压差的乘积。层段注水压差为层段注水压力与井区平均层压力的差值。层段注水压力=井口注水压力-管损压力-嘴损压力+静水柱压力。注水强度是注水量与厚度的比值,所以注水强度可以与注水压力有关,注水井吸水能力的确定有指示测试曲线分析法和流速敏感分析法等。

8.3.4.1 注水指示曲线

注水指示曲线可以反映油层吸水能力及其变化规律。

研究分层吸水能力有4个指标。

(1)注水井指示曲线:为在稳定流动条件下注入压力与注水量间的关系曲线,正常情况下注水指示曲线为直线。

(2)吸水指数:表示单位压差下的日注水量,单位为m3/d·Pa。吸水指数大,地层吸水能力好,反之吸水能力差。

(3)视吸水指数:由日注水量/井口压力得到,单位为m3/d·Pa,由此指数便可以及时地掌握吸水能力的变化而不必取得流压资料。

(4)相对吸水量:指在同一注入压力下,某小层吸水占全井吸水量的百分数,是表示各小层相对吸水能力的指标。有了该指标就可由全井指示曲线绘制分层指示曲线,而不必进行分层测试。

按实测井口压力绘制的指示曲线,不仅能反映地层情况,而且还能反映井下配水工具的工作状况。因此,通过曲线形状特征和曲线斜率变化的分析,就可以了解油层吸水能力及其变化,并判断井下配水工具的工作状况。

8.3.4.2 应用指示曲线分析油层吸水能力的变化

由于正确的指示曲线反映了地层吸水规律和吸水能力的大小,因而,对比不同时间内测得的指示曲线,就可以了解油层吸水能力的变化。

图8.1 中,指示曲线右移,斜率变小。在相同注水压力下,注水量由Q1变为Q2,Q2大于Q1,所以地层吸水能力增强,吸水指数变大。因为ΔQ>ΔQ,所以K>K

图8.1 中,指示曲线左移,斜率变大,说明地层吸水能力下降,吸水指数变小。曲线平行上移,斜率未变,说明地层吸水指数不变,但要保持同样的注水量,注入压力需要升高,说明地层压力变高。指示曲线平行下移,说明地层吸水指数未变,但地层压力下降了。

图8.1 注入量与注入压力关系

Ⅰ—原先测得的指示曲线;Ⅱ—过一段时间后测得的指示曲线

Ⅶ 注水井的基本简介

依据油藏的构造形态、面积大小、渗透率高低、油、气、水的分布关系和所要求达到的开发指标,选定注水井的分布位置和与生产井的相对关系(称注水方式)。注水井井距的确定以大多数油层都能受到注水作用为原则,使油井充分受到注水效果,达到所要求的采油速率和油层压力。注水井的吸水能力主要取决于油层渗透率和注水泵压,为使油层正常吸水,注水泵压应低于油层破裂压力。

Ⅷ 各油层吸水状况如何测试

为了知道注水井中哪个层吸水能力好,哪个层吸水能力差或不吸水,有多种测试方法,现场上叫测分层吸水剖面。
一种方法是放射性同位素载体法。人们研制了一种放射性测井仪,它可以对各注水层测出一条放射性曲线。通过对这条曲线的分析,就可以知道正常注水时各油层放射性强度的基础状态。然后在注入的水中加入一些带放射性元素的细小颗粒,均匀混入水中,随着注入水注入各个油层,由于各层吸水量不同,会有不同数量的细小颗粒被油层表面吸附下来,吸水量大的油层表面吸附的放射性元素颗粒就多,吸水量小的油层表面吸附的放射性元素颗粒就少,这样,各层放射性强度差异程度会显着地增加。这时,再用放射性测井仪重新测一条曲线,与原测的基础曲线对比,其异常值就反映了各油层的吸水能力。现场上使用的放射性物质叫放射性同位素,常用的有 131I(碘),65Zn(锌),110Hg(汞)等。
另一种方法是用测分层指示曲线的方法求得分层的吸水指数来计算各层吸水能力的好坏。假如一个层分三个层段注水,先测一个全井的吸水指示曲线。做法是用等差数列确定五个注水压力点,每个压力点稳定注水30分钟,计算注入量,以日注水量表示。五个压力点对应五个流量,可以画出一条直线,叫作全井吸水指示曲线。然后把底部的配水器上的水嘴换成死堵,再按上述方法操作,可以得到上两层的吸水指示曲线,用全井各压力点的流量减去上两层对应压力点的数值就得到最下层压力点的流量数。同理,再把中间一个配水器堵起来,进行上述同样操作,得到的是最上层的数值。用上两层的数值减去最上层的对应数值,即得到了中间层的相应数值,这样就分别测到了三个层段的吸水量。根据注水井与周围采油井的合理注采比关系,把确定注水井中各层应该注入的合理注水量与实测数值进行比较,如果吸水量与设计配水量不符,则调整相应层段的水嘴,直到达到设计要求。
除上述方法之外,还有投球测试法和浮子流量计法、井温测井法等,可以根据分注井使用的分注方法和现场具备的仪器设备条件选用。

Ⅸ 提高涵水蓄水能力4个主要措施

水库不仅可以重新分配径流,减免水灾和旱灾,同时还可以利用蓄水和抬高的水位进行灌溉、发电、航运、给水、养殖和旅游等。水库的兴建有哪些作用呢?

1 水库的防洪作用

水库是我国防洪广泛采用的工程措施之一。在防洪区上游河道适当位置兴建能调蓄洪水的综合利用水库,利用水库库容拦蓄洪水,削减进入下游河道的洪峰流量,达到减免洪水灾害的目的。水库对洪水的调节作用有两种不同方式,一种起滞洪作用,另一种起蓄洪作用。

(1)滞洪作用
滞洪就是使洪水在水库中暂时停留。当水库的溢洪道上无闸门控制,水库蓄水位与溢洪道堰顶高程平齐时,则水库只能起到暂时滞留洪水的作用。
(2)蓄洪作用
在溢洪道未设闸门情况下,在水库管理运用阶段,如果能在汛期前用水,将水库水位降到水库限制水位,且水库限制水位低于溢洪道堰顶高程,则限制水位至溢洪道堰顶高程之间的库容,就能起到蓄洪作用。蓄在水库的一部分洪水可在枯水期有计划地用于兴利需要。
当溢洪道设有闸门时,水库就能在更大程度上起到蓄洪作用,水库可以通过改变闸门开启度来调节下泄流量的大小。由于有闸门控制,所以这类水库防洪限制水位可以高出溢洪道堰顶,并在泄洪过程中随时调节闸门开启度来控制下泄流量,具有滞洪和蓄洪双重作用。
2 水库的兴利作用
降落在流域地面上的降水(部分渗至地下),由地面及地下按不同途径泄入河槽后的水流,称为河川径流。由于河川径流具有多变性和不重复性,在年与年、季与季以及地区之间来水都不同,且变化很大。大多数用水部门(例如灌溉、发电、供水、航运等)都要求比较固定的用水数量和时间,它们的要求经常不能与天然来水情况完全相适应。人们为了解决径流在时间上和空间上的重新分配问题,充分开发利用水资源,使之适应用水部门的要求,往往在江河上修建一些水库工程。水库的兴利作用就是进行径流调节,蓄洪补枯,使天然来水能在时间上和空间上较好地满足用水部门的要求。

Ⅹ 油田开发的注水指什么

注水(Water Injection)是最重要的油田开发方式,是在提高采油速度和采收率方面应用最广泛的措施。在油田开发的中后期,注水是油田稳产、增产及维持正常生产的前提。注水是一种二次采油方法。通过注水井向地层注水,将地下原油驱替到生产井,增加一次采油后原油的采收率。注入水发挥驱替原油和补充地层能量的双重作用,促使油井产出更多的原油。我国大多数油田都采用早期注水开发,目前都已进入高含水期。按照油田开发要求,保证注入水水质、注入水量和有效注水是注水工程的基本任务。

一、水源在注水工程规划初期,需要寻找和选择最适合油层特性的水源(Water Resource)。根据注入水的水质标准,综合考虑水处理、防腐、施工成本等做出选择。寻找注水水源的基本原则是:

(1)充足、稳定的供水量,以满足注水、辅助生产用水、生活用水及其他用水的需要。

(2)有相对良好的水质,水处理工艺简单、经济技术可行。

(3)优先使用含油污水,减少环境污染。

(4)考虑水的二次或多次利用,减少资源浪费。

水源类型有地下水、地表水、含油污水、海水和混合水。

浅层地下淡水一般位于河床冲积层中,水量稳定,水质不受季节影响。深层地下水矿化度较高,深层取水可以减少细菌的影响。

地表水主要是江河、湖泊、水库中的淡水,其矿化度低,泥沙含量高,溶解氧充足,生物大量繁殖,有异味,含胶体,水量受季节变化影响。

含油污水一般偏碱性,硬度低,含铁少,矿化度高,含油量高,胶体多,悬浮物组成复杂,必须经过水质处理后才能外排。随着油层采出水的增多,含油污水已成为油田注水的主要水源。

海水资源丰富,高含氧和盐,腐蚀性强,悬浮固体颗粒随季节变化。海湾沿岸或近海油田一般使用海水。在海岸上打浅层水源井,地层的自然过滤可减少机械杂质。

同时使用上述两种或三种水源称为混合水,尤其是含油污水与其他水源混合。在严重缺水的地区,生活污水可与含油污水或其他水源混合使用。

二、水质水质(Water Quality)是注入水质量的规定指标,标明注入水所允许的矿物、有机质和气体的构成与含量,以及悬浮物含量与粒度分布等多项指标。

1.油层伤害的原因注入水水质差会引起油层损害,导致吸水能力下降、注水压力上升。主要伤害原因有以下几点。

1)不溶物造成油层堵塞注入水中所含的机械杂质和细菌都会堵塞油层。细菌的繁殖使流体粘度上升、派生无机沉淀。溶解氧、H2S等对金属的腐蚀产物沉淀会堵塞渗流通道。油及其乳化物也会堵塞喉道,表现为液锁、乳化液滴吸附在喉道表面等。

2)注入水与地层水不配伍注入水可能直接与地层水生成CaCO3、CaSO4、BaSO4、SrSO4等沉淀。溶于水的CO2可与Ca2+、Fe2+、Ba2+、Sr2+等离子生成相应的碳酸盐沉淀。

3)注入水与油层岩石矿物不配伍矿化度敏感会引起油层粘土的膨胀、分散与运移。伤害程度取决于粘土矿物的类型、含量、油层渗透性、注入水矿化度等。淡水一般会比盐水造成更严重的粘土膨胀。粘土中最小颗粒含量愈多,膨胀性愈大。另外,注入水还会引起乳化反转。

4)注入条件变化注入速度低有利于结垢和细菌生长;高速则加剧腐蚀、微粒的脱落和运移。在注水过程中,地层温度逐渐下降,流体粘度逐渐上升,渗流阻力逐渐增加,吸水能力逐渐下降。水温影响矿物和气体的溶解度造成结垢,温度下降有利于放热沉淀生成,也会导致蜡的析出。压力变化会导致应力敏感,油层结构损害,产生沉淀。pH值变化会引起微粒脱落、分散和沉淀,pH值越高,结垢趋势越大。

客观存在的油层及所含流体的特性是油层伤害的潜在因素;注入水的水质是诱发油层伤害的外部条件,也是注水成败的关键。因此改善水质可以有效地控制油层伤害。

2.水质要求不合格的注入水造成油层吸水能力下降、注水压力上升、注采失衡、原油产量下降。注入水水质的基本要求是:水质稳定,不与地层水反应生成沉淀;不使油层粘土矿物产生水化膨胀或悬浊;低腐蚀、低悬浮;混合水源应保证其配伍性好。

为使注入水符合上述要求,应做到以下几点。

1)控制悬浮固体以油藏岩石孔隙结构和喉道中值为依据,严格控制水中固相物质的粒径和浓度。低渗透层要求对注入水进行精细过滤,以减小对油层的伤害。

2)控制腐蚀性介质溶解氧、侵蚀性CO2和H2S是注水设备、管线钢材腐蚀的根源。水中存在大量铁离子是腐蚀的标志。氧会加快腐蚀速度。限制气体含量就可控制腐蚀的规模与速度,延长注水系统的寿命,减少腐蚀产物对地层的堵塞,降低采油成本。因此,必须严格控制腐蚀性介质的含量和总的腐蚀速度。

3)控制含油量大多数注入水是含油污水。油的聚合、累积、吸附等将给油层渗透性带来诸多不利的影响。

4)控制细菌含量我国油田注水中,硫酸盐还原菌、腐生菌和铁细菌的危害最严重。在一定条件下细菌的繁殖速度惊人,半小时内能使群体增加一倍。硫酸盐还原菌以有机物为营养,在厌氧条件下能将硫酸盐还原成硫化物,产生的H2S腐蚀钢铁形成FeS沉淀。铁细菌能大量分泌Fe(OH)3并促成二价铁氧化成Fe3+,还为硫酸盐还原菌的繁殖提供局部厌氧区。腐生菌能从有机物中得到能量,其危害方式与铁细菌类似。细菌分泌的大量粘性物质强化垢的形成,堵塞油层孔喉,增加管网的流动阻力。

5)控制水垢管壁结垢的危害是设备磨损、腐蚀和阻流;油层渗流通道结垢会严重影响吸水能力。注入水与油层岩石矿物、地层水不配伍,会生成沉淀。两种水混合也可能生成沉淀。沉淀是结垢的前提。钙离子能迅速与碳酸根或硫酸根结合,生成垢或悬浮的固体颗粒。镁离子与碳酸根也引起沉淀。钡离子与硫酸根生成极难溶的硫酸钡。控制流速、pH值等条件,可防止水垢形成。

三、水处理大多数水源水都需要处理。有些水源的来水只需简单处理,甚至不必处理,而某些低渗透油藏对水质处理技术的要求很高。

1.水处理措施1)沉淀沉淀(Precipitation)是让水在沉淀池内停留一定的时间,使其中悬浮的固体颗粒借助于自身重力沉淀下来。足够的沉淀时间和沉降速度是关键。沉淀池内加装迂回挡板可以改变流向、增大流程、延长沉淀时间,利于颗粒的凝聚与沉降。絮凝剂可以与水中的悬浮物发生物理、化学作用,使细小微粒凝聚成大颗粒,加快沉降速度。沉淀后,水中悬浮物的含量应小于50mg/L。

2)过滤过滤(Filtration)是水质处理的重要环节。来自沉淀罐的水,往往含有少量细微的悬浮物和细菌,清除它们需要过滤。即使无需沉淀的地下水也需要过滤。

过滤可以除去悬浮固体或铁,可部分清除细菌。地下水中的铁质成分主要是二价铁离子,极易水解生成Fe(OH)2,氧化后形成Fe(OH)3沉淀。过滤后,机械杂质含量应小于2mg/L。过滤器(Filter)有多种,图7-1为压力式锰砂除铁滤罐。

图7-10曲线平行下移

(1)指示曲线右移、斜率变小,说明吸水指数变大,地层吸水能力增强(图7-7)。

(2)指数曲线左移、斜率变大,说明吸水指数变小,地层吸水能力变差(图7-8)。

图7-8指示曲线左移(3)指示曲线平行上移,是由地层压力升高引起,斜率不变说明吸水能力未变(图7-9)。

图7-9曲线平行上移

(4)指示曲线平行下移,是地层压力下降所致,斜率不变说明吸水能力未变(图7-10)。

正常注水时一般只测全井注水量。可用近期的分层测试资料整理出分层指示曲线,求得近期正常注水压力下各层吸水量及全井注水量,计算各层的相对注水量,再把目前实测的全井注水量按比例分配给各层段。

五、注水工艺由注水井将水保质保量地注入特定的油层是注水工艺的主要内容。油田注水系统包括油田供水系统、油田注水地面系统、井筒流动系统和油藏流动系统。

1.注入系统注入系统包括油田地面注水系统和井筒流动系统。由注水站、配水间、井口、井下配水管柱及相应管网组成。

有些井是专门为注水而钻的注水井,将低产井、特高含水油井及边缘井转成注水井的诱惑力也很强。注水井的井口设备是注水用采油树。井下结构以简单为好,一般只需要管柱和封隔器。多口注水井构成注水井组,由配水间分配水量。在井口或配水间可添加增压泵及过滤装置,一般在配水间对各注水井进行计量。

注水站是注水系统的核心。站内基本流程为:来水进站→计量→水质处理→储水罐→泵出。储水罐有储水、缓冲压力及分离的作用。注水站可以对单井或配水间分配水量。注水管网的直径和长度直接影响注水成本。

2.分层注水分层注水的核心是控制高渗透层吸水,加强中、低渗透层吸水,使注入水均匀推进,防止单层突进。井下管柱有固定配水管柱(图7-11)、活动配水管柱和偏心配水管柱。配水器产生一定的节流压差以控制各层的注水量。分层配水的核心是选择井下水嘴,利用配水嘴的尺寸、通过配水嘴的节流损失来调节各层的配水量,从而达到分层配注的目的。

图7-11固定配水管柱

3.注水工艺措施油层进入中高含水期后,平面矛盾、层间矛盾及层内矛盾日益突出。在非均质油田中,性质差异使各层段的吸水能力相差很大,注水井吸水剖面极不均匀。有裂缝的高渗透层吸水多,油井严重出水;中、低渗透层吸水很少,地层压力下降快,油井生产困难。需要对高渗透层进行调堵,降低吸水能力;改造低渗透层,降低流动阻力。因此,改善吸水剖面,达到吸水均衡,可以提高注入水体积波及系数。

增压注水是提高井底注入压力的工艺措施。高压使地层产生微小裂缝、小孔道内产生流动、低渗透层吸水。适当提高注入压力可均衡增加各层的吸水能力。

脉冲水嘴增压是使水流产生大幅度脉动,形成高频水射流。高频压力脉冲能使近井区的污染物松动、脱落;分散固相颗粒及异相液滴,起防堵、解堵、增注的作用。脉冲水嘴增压适用性较强,不需改变原有配水及测试工艺,也不增加投资。

周期注水也称间歇注水或不稳定注水。周期性地改变注水量和注入压力,形成不稳定状态,引起不同渗透率层间或裂缝与基岩间的液体相互交换。渗透率差异越大,液体的交换能力越强,效果越好。此方法可降低综合含水率。

调堵方法有三类:机械法是用封隔器封堵特高吸水层段或限流射孔;物理法是用固体颗粒、重油或泡沫等封堵高渗透层段;化学法现场应用最广,作用机理不尽相同。为满足不同注水井的需要,各种调剖技术不断涌现。

矿化度较低的注入水会打破地层原有的相对平衡,导致粘土水化膨胀。矿化度梯度注水是逐渐降低注入水的矿化度。梯度越小,粘土矿物受到的冲击越小,地层伤害也越小。

强磁处理可使注入水的性质发生变化,抑制粘土膨胀、防垢效果十分明显。还可注入防膨剂段塞抑制粘土的水化膨胀。综合应用粘土防膨技术,可增加吸水量、降低注入压力,大幅度增强处理效果。各种注水工艺措施有其特定的适应性。不断开发注水工艺新技术,会持续提高注水开发油田的效果。

阅读全文

与表达注水井吸水能力常用的方法相关的资料

热点内容
最简单黄豆酱制作方法 浏览:823
目前常用的斜视度测量方法不包括 浏览:138
大物线和子线连接方法 浏览:976
简单方法治脚气 浏览:144
给小女孩梳头发简单又好看的方法 浏览:82
制作蛋糕的方法视频教程 浏览:372
咖啡因含量检测常用方法 浏览:236
九折干虾食用方法 浏览:927
摩登舞舞裙制作步骤方法 浏览:964
病人营养液的使用方法 浏览:385
抽样方法有哪些适用于什么情形 浏览:365
风湿胫骨疼痛治疗方法 浏览:789
如何使身体健康的方法 浏览:256
有什么方法皮肤不发红 浏览:870
国内外常用除磷方法 浏览:541
指头测量方法 浏览:580
肺癌癌症治疗方法 浏览:148
电蚊液使用方法 浏览:105
家卤肉怎么卤方法豆皮 浏览:741
奥尔夫朗诵教学方法结果与分析 浏览:130