① 南昌三眼井历史
三眼井:据清干隆二十二年《江城名迹记》载,东晋时,南昌为水乡泽国,城内江河纵横,洪水成灾,相传西山道士许真君为根除水患。亲自择地凿井擒龙斩妖,在南昌连凿1~6眼井,此处有一口三眼井。
② 钻探方法及钻孔结构
1.钻探方法
全井采用泥浆正循环、牙轮钻头无芯钻进。
选用设备有:GZ-2000水源钻机,TBW-850/50泥浆泵,24m四脚钻塔,160kW电动机,90kW电动机,120kW柴油发电机组1台(备用),Φ203mm~Φ121mm钻铤和Φ73mm钻杆,准备钻具总长大于1500m。
2.施工工艺
选用的施工工艺流程如图4-13所示。
图4-13 地热水井钻探施工工艺流程图
3.钻井过程简述
西岙-1号地热井于2005年11月1日开钻施工,2006年5月25日钻井工程结束。
施工中,一开用Φ445mm钻头钻至35m,下入Φ340mm石油套管,水泥封固。
二开用Φ311mm钻头钻至380m,下入Φ245mm石油套管,水泥封固。
三开用Φ152mm钻头钻至1230m,裸眼成井。
施工中按照设计要求进行了岩样的采集编录,基岩层共采样598个,取样间隔为2m,岩性描述见成井结构图(见图4-14)。
钻进中,860~865m、886~891m、924~930m三段冲洗液有较大漏失,泥浆消耗量分别为3m3、5m3和3m3,且钻进效率为每小时1m。除此而外,930~1180m段钻进效率为每小时1m,但泥浆无漏失;全孔其他段钻进效率一般低于0.8m或更低,冲洗液无漏失(930~1230m段)或正常消耗(0~860m)。
西岙-2号地热井于2008年5月22日开钻施工,2008年10月26日钻至1450m完钻。
一开钻进用Φ445mm牙轮钻头,钻进至22m见基岩,下入Φ377×10.03mm井口管,套管起止深度0~22m,套管外人工填土夯实,井口部位水泥封固。
二开钻进用Φ311mm牙轮钻头,钻井液采用低固相轻质泥浆,钻进至400.50m,下入J55钢级Φ245×10.03mm技术套管,套管起止深度0.00~400.50m。进行管外全孔段水泥固井。固井采用宁波海螺水泥有限公司生产的“海螺”牌水泥,水泥浆平均密度1.85g/cm3,水泥候凝72h。
三开用Φ216mm牙轮钻头钻进,2008年10月26日钻进至1450m,完钻。
图4-14 西岙-1号成井结构图
西岙-1号井的钻探岩样鉴定如表4-8所示;西岙-2号井钻探的地层情况与1号类似,如表4-9所示。
表4-8 西岙-1号地热井钻探岩样鉴定成果表
表4-9 西岙-2号地热井钻探岩样鉴定成果表
③ 邵阳市三眼井的由来
三眼井是个古老的地方,宋朝时就称之为汜水关。它是古丝绸之路上河西的第一个驿站,是历代军事要塞,距今已有一千多年的历史。关于三眼井地名说法有二:其一、据说宋神宗元年(1063),杨文广之女杨满堂征西,遭奸臣暗算,兵困汜水关,处于进退维谷的地步,兵困马乏,吃水就当时一大困难,当地溪水虽多,但碱性较大,加上士兵们水土不服,吃了以后,整个军营人马均拉起肚子。
第二天,杨满堂从军中挑选健壮士兵打井找水,连打两眼井,水都是苦的,杨满堂没有气馁,率众将官四处寻水,发现有一丛马兰花长得很茂盛,花艳而清香,便决定在这里再打一眼井,将士们鼓足信心开始打井。挖出沙石,凿开岩石,终于打出了甜水,临行时,安排数员大将,率兵镇守此关,这就是民间传说的“掘井三眼,两苦一甜”所叫三眼井。其二、据《皋兰县志》和《创修红水县志·关溢》记载;“三眼井旧名汜水关,系蒙古鞑靼东来西往之要道。明万历二十七年兵备副使荆州俊建城,在城中龙王庙前掘井一颗,井中有三眼出水,故更今名”。
④ 钻井方法及原理是什么
1人工挖井方法
1973年出土于浙江余姚县的河姆渡古井是世界上目前已知的最古老的水井,经14C测定表明它是5700多年前的产物。
挖掘井阶段大约从远古到西周末年,我们的祖先用原始的工具,诸如石铲等手工挖井,井的深度很浅。在公元前15世纪前后我国的甲骨文中就出现有“井”字。
2冲击钻井方法
冲击钻井方法经过了三个阶段,即顿钻大口井阶段、顿钻小口井(卓筒井)阶段和机械顿钻阶段。
1)顿钻大口井阶段
最初的顿钻设备,主要由“踩架”和井架组成。“踩架”上有碓板,碓板一端悬挂着钻头,它是直接钻凿岩石的工具;碓板另一端供人踩踏,使钻头反复上提、下顿,产生冲击运动。
2)顿钻小口井(卓筒井)阶段
从北宋开始,我国古代钻井技术又有了新的发展。一是顿钻大口井发展为顿钻小口井。当时把口径只有“碗口大小”的小口井称为卓筒井,卓筒井地面设备、井身结构示意图如图6-11所示。
图6-12转盘旋转钻井示意图
1—天车;2—游动滑车;3—大钩;4—动力机;5—钻井泵;6—空气包;7—钻井液池;8—钻井液槽;9—旋流除砂器;10—钻井液振动器;11—表层套管;12—钻杆;13—钻铤;14—钻头;15—井眼;16—防喷器;17—转盘;18—绞车;19—方钻杆;20—水龙头
(1)动力系统。
钻井好像是一座流动性大的独立作业的小型工厂。钻机所需的各工作系统大多数是用柴油机作发动机,通过变速箱直接驱动或由柴油机发电来驱动钻井设备的。动力系统的作用是产生动力,并把动力传递给钻井泵、绞车和转盘。
(2)起升系统。
起升系统主要用来起升、下放或悬吊钻柱、套管柱等,主要完成起下钻、接单根和钻进时的钻压控制任务。这个系统主要由井架、天车、游车、大绳、大钩、吊环及绞车等组成。一般用最小的提升速度和最大的负载来确定提升系统的能力。
(3)旋转系统。
旋转系统主要由转盘、转盘变速箱、水龙头、方钻杆组成,主要功能是保证在洗井液高压循环的情况下,给井下钻具提供足够的旋转扭矩和动力,以满足破岩钻进和井下的其他要求。旋转系统还有接、卸钻柱和钻具的功能。
(4)循环系统。
钻机循环系统最主要的功能是在钻进中通过循环洗井液从井底清除岩屑、冷却钻头和润滑钻具。钻机循环系统主要包括钻井泵、钻井液净化装置(固相控制设备)和钻井液槽、罐等。整个循环系统的中心设备是钻井泵。
(5)气控系统。
气控系统主要包括控制面板(控制机构)、传输管线和阀门、执行机构(如气动离合器、气缸和气马达等)以及压风机等。气控系统的功能是确保对整个工作机构及其部件的准确、迅速控制,使整机协调一致地工作。
(6)井控系统。
在整个钻井作业过程中,井控系统要对井下可能发生的复杂情况进行控制和处理,以恢复正常作业。井控系统包括四个主要部分:防喷器组、储能器机组和防喷器组遥控面板、节流管汇、压井管汇。
⑤ 井斜角的计算方式
井斜计算
最新国内外石油勘探开采技术标准大全
第一节 定向井井身参数和测斜计算
一.定向井的剖面类型及其应用
定向钻井就是“使井眼按预定方向偏斜,钻达地下预定目标的一门科学技术”。定向钻井的应用范围很广,可归纳如图9-l所示。
定向井的剖面类型共有十多种,但是,大多数常规定向井的剖面是三种基本剖面类型,见图9-2,称为“J”型、“S”型和连续增斜型。按井斜角的大小范围定向井又可分为:
常规定向井井斜角<55°
大斜度井井斜角55~85°
水平井井斜角>85°(有水平延伸段)
二.定向井井身参数
实际钻井的定向井井眼轴线是一条空间曲线。钻进一定的井段后,要进行测斜,被测的点叫测点。两个测点之间的距离称为测段长度。每个测点的基本参数有三项:井斜角、方位角和井深,这三项称为井身基本参数,也叫井身三要素。
1.测量井深:指井口至测点间的井眼实际长度。
2.井斜角:测点处的井眼方向线与重力线之间的夹角。
3.方位角:以正北方向线为始边,顺时针旋转至方位线所转过的角度,该方向线是指在水平面上,方位角可在0—360°之间变化。
目前,广泛使用的各种磁力测斜仪测得的方位值是以地球磁北方位线为准的,称为磁方位角。磁北方向线与正北方向线之间有一个夹角,称磁偏角,磁偏角有东、西之分,称为东或西磁偏角,真方位的计算式如下:
真方位=磁方位角十东磁偏角
或 真方位=磁方位角一西磁偏角
公式可概括为“东加西减”四个字。
方位角也有以象限表示的,以南(S)北(N)方向向东(E)西(W)方向的偏斜表示,如N10°E,S20°W。在进行磁方位校正时,必须注意磁偏角在各个象限里是“加上”还是“减去”,如图 9-3所示。
4.造斜点:从垂直井段开始倾斜的起点。
5.垂直井深:通过井眼轨迹上某点的水平面到井口的距离。
6.闭合距和闭合方位
(l)闭合距:指水平投影面上测点到井口的距离,通常指靶点或井底的位移,而其他测点的闭合距离可称为水平位移。
(2)闭合方位:指水平投影响图上,从正北方向顺时针转至测点与井口连线之间的夹角。
7.井斜变化率和方位变化率:井斜变化率是指单位长度内的井斜角度变化情况,方位变化率是指单位长度内的方位角变化情况,均以度/100米来表示(也可使用度/30米或度/100英尺等)。
8.方位提前角(或导角):预计造斜时方位线与靶点方向线之间的夹角。
三.狗腿严重度
狗腿严重是用来测量井眼弯曲程度或变化快慢的参数(以度/100英尺表示)。可用解析法、图解法、查表法、尺算法等来计算狗腿严重度k。
1.第一套公式
2.第二套公式
cosγ=cosa1cosa2+sina1sina2 cosΔj………………………………………(9-3)
本式是由鲁宾斯基推导出来的,使用非常普遍。美国人按上式计算出不同的a1、a2和Δj值下的狗腿角γ值,并列成表格,形成了查表法。
3.第三套公式
γ——两测点间的狗腿角。
若将三套公式作比较,第一套公式具有普遍性,适合于多种形状的井眼,第二套只适用于平面曲线的井眼(即二维井型),第三套是近似公式,用于井斜和方位变化较小的情况。
四.测斜计算的主要方法
测斜计算的方法可分为两大类二十多种。一类是把井眼轴线视为由很多直线段组成,另一类则视其为不同曲率半径的圆弧组成。计算方法多种多样,测段形状不可确定。主要的计算方法有正切法、平衡正切法、平均角法、曲率半径法、最小曲率法、弦步法和麦库立法。从计算精度来讲,最高的是曲率半径法和最小曲率法,其次是平均角法。以下各图和计算公式中下角符号1、2分别代表上测和下测点。
1.平均角法(角平均法)
此法认为两测点间的测段为一条直线,该直线的方向为上下两测点处井眼方向的矢量和方向。
测段计算公式:
2.平衡正切法
此法假定二测点间的井段为两段各等于测段长度一半的直线构成的折线,它们的方向分别与上、下两测点处的井眼方向一致。
如图9-6,计算式为:
3.曲率半径法(圆柱螺线法)
此法假设两测点间的测段是条等变螺旋角的圆柱螺线,螺线在两端点处与上、下二测点处的井眼方向相切。
如图9-7,测段的计算公式有三种表达形式。
(1)第一种表达形式
(9-13)~(9-16)式中:
这四个公式是最常用的计算公式:
(3)第三种表达形式
(4)曲率半径法的特殊情况处理
③第三种特殊情况,α1≠α2,且其中之一等于零。此时,按二测点方位角相等来处理,然后代入第二种特殊情况的计算式中。
4.最小曲率法
最小曲率法假设两测点间的井段是一段平面的圆弧,圆弧在两端点处与上下二测点处的井眼方向线相切。测段计算如图9-8。
测段计算公式如下:
令fM=(2/γ)×tg(γ/2),fM是个大于1但很接近1的值。在狗腿角γ足够小的情况下,可近似认为fM=1,这时上述四个计算公式就完全变成平衡正切法的公式了,它是对平衡正切法公式的校正。
ΔS′是切线1M和M2在水平面上的投影之和,即ΔS′=1′M′+ M′2′。ΔS′并不是测段的水平投影长度ΔS。要作出井身垂直剖面图,需要求出ΔS,而最小曲率法却求不出ΔS,这是最小曲率法的缺点。为了作出垂直剖面图,可用下式近似地求出ΔS′:
……………………………………………………(9-39)
第二节 定向井剖面设计
在开钻前认真进行设计,可以大大节约定向钻井的成本。影响井眼轨迹的因素很多,其中一些因素很难进行估算(如在某些地层中的方位漂移情况等)。因此,在同一地区得到的钻井经验很重要,这些经验可以在其他井设计过程中起重要的参考作用。
一.设计资料
要进行一口定向井的轨道设计工作,作业者至少应提供靶点的垂深、水平位移和方位角,或提供井口与靶点的座标位置,通过座标换算,计算出方位角和水平位移。此外,定向井工程师还要收集下列资料:
1.作业区域和地理位置。通过作业区域,通常可以找到该地区已完井的钻井作业资料(野猫井除外),并对地层情况、方位漂移有一定的了解,根据地理位置,可以计算或查得到地磁偏角。
2.地质设计书和井身结构。了解有关地层压力、地温梯度、地层倾角、走向、岩性、断层,可能遇到的复杂情况,以及油藏工程师的特殊要求等。
3.作业者对造斜点、造斜率、增(降)斜率的要求,以及安全圆柱、最大井斜等井身质量的要求。
4.了解钻井承包商的情况,如泥浆泵性能,井下钻具组合各组件的基本情况等。
二.设计原则
1.能实现钻定向井的目的
定向井设计首先要保证实现钻井目的,这是定向井设计的基本原则。设计人员应根据不同的钻探目的对设计井的井身剖面类型、井身结构、钻井液类型、完井方法等进行合理设计,以利于安全、优质、快速钻井。
如救险井的钻井目的是制服井喷和灭火,保护油、气资源。因此,救险井的设计应充分体现其目的:一是靶点的层位选择合理。二是靶区半径小(小于10米),中靶要求高;三是尽可能选择简单的剖面类型,以减小井眼轨迹控制和施工难度,加快钻井速度。四是井身结构、井控措施等应满足要求。
2.尽可能利用方位的自然漂移规律在使用牙轮钻头钻进时,方位角的变化往往有向右增加的趋势,称为右手漂移规律。如图9-9所示,靶点为T,设计方位角为j′。若按j′定向钻进,则会钻达T′点,只有按照j角方向钻进,才会钻达目标点T。Δj角称为提前角,提前角的大小,要根据地区的实钻资料,统计出方位漂移率来确定,我国海上开发井一般取2~7度。
目前流行的PDC钻头(如RC426型等),对方位右漂具有较好的抑制效果。在地
层倾角小、岩性稳定时,PDC钻头具有方位左漂的趋势,这主要是由于PDC钻头的切削方式造成的。因此,要使用PDC钻头钻进的定向井,提前角要适当地小一点。
3.根据油田的构造特征,有利于提高油气产量,提高投资效益。
4.有利于安全、优质和快速钻井,满足采油和修井的作业要求。
三.剖面设计中应考虑的问题
1.选择合适的井眼曲率
井眼曲率不宜过小,这是因为井眼曲率限制太小会增加动力钻具造斜井段、扭方位井段和增(降)斜井段的井眼长度,从而增大了井眼轨迹控制的工作量,影响钻井速度。
井眼曲率也不宜过大,否则钻具偏磨严重、摩阻力增大和起下钻困难,也容易造成键槽卡钻,还会给其他作业(如电测、固井以及采油和修井等)造成困难。因此,在定向井中应控制井眼曲率的最大值,我国海上定向井一般取7~16°/100米,最大不超过20°/100米。不同的井段要选用不同的井眼曲率,具体如下:
井下动力钻具造斜的井眼曲率取:7~16°/100米。
转盘钻增斜的增斜率取:7~12°/100米。
转盘钻降斜的降斜率取:3~8°/100米。
井下动力钻具扭方位的井眼曲率取:7~14°/100米。
导向马达调方位或增斜的井眼曲率取:5~12°/100米。
说明:随着中曲率大斜度井和水平井的迅速发展,对普通定向井的井眼曲率(或狗腿严重度)的限制越来越少,API标准中已不再规定常规定向井的狗腿严重度。
为了保证起下钻顺利和套管安全,必须对设计剖面的井眼曲率进行校核,以限制最大井眼曲率的数值。井下动力钻具造斜和扭方位井段的井眼曲率Km应满足下式:
Dc――套管外径,厘米。
2.井眼尺寸
目前常规的定向井工具能满足152~445毫米(6~171/2英寸)井眼的定向钻井要求,一般地说,大尺寸井眼比较容易控制轨迹,但由于钻铤的尺寸也较大,形成弯曲所需的钻压较大,小井眼要使用更小、更柔的钻具,而且地层因素对轨迹的影响也较大。因此小井眼的轨迹控制更困难一些。
在常规的井眼尺寸中,大多数定向井可采用直井的套管程序。如果实钻井眼轨迹较光滑,没有较大的狗腿,那么即使在大井斜井段,也能较顺利地进行下套管作业。当然,在斜井段,应在套管上加扶正器以支撑套管,避免在下套管过程中发生压差卡钻,同时提高固井质量。另外,在大斜度井段,可根据井段长度和作业时间,决定是否使用厚壁套管。
3.钻井液设计:
(1)定向井钻井液设计十分重要,钻井液应有足够的携砂能力和润滑性,以减少卡钻的机会;
(2)钻井液性能控制对减少定向井钻柱拉伸与扭矩也很重要;
(3)钻井液中应加润滑剂,钻井液密度与粘度必须随时控制。
(4)如果用水基钻井液,那么在正常压力井段,应使用高排量和低固相含量的钻井液,这样有利于清洁井眼;
(5)水基钻井液应具有良好的润滑性能,以减少钻具摩阻和压差卡钻;然而在海上钻井,一定要避免污染问题。
(6)如果有异常高压井段要求钻井液密度达到1.45克/厘米3或更高,那么应考虑在钻开该高压地层前下一层保护套管,以封固所有正常压力井段。
4.造斜点的选择
造斜点的选择要适当浅些,但是在极浅的地层中造斜时,容易形成大井眼。同时,由于地层很软,造斜完成后下入稳斜钻具时,要特别小心,以免出现新井眼,尤其是在稳斜钻具刚度大或造斜率较高时。通常地说,浅层造斜比深层造斜容易一些,因为深层地层往往胶结良好,机械钻速低,需花费较长的造斜时间。
另外,造斜点通常选在前一层套管鞋以下30~50米处,以免损坏套管鞋,同时减少水泥掉块产生卡钻的可能性。
在深层地层造斜时,应尽量在大段砂层中造斜,因为砂层的井眼稳定,钻速较快,而页岩段较易受到冲蚀,钻速较低,而且在以后长时间钻井作业,容易在造斜段形成键槽而可能导致卡钻。
5.靶区形状和范围
靶区形状与范围通常由地质构造、产层位置决定,并考虑油田油井的分布情况,靶区大小是由作业者确定的。通常认为,鞍区范围不能定得太小,很小的靶区范围不仅会增加作业成本,同时也会增加调整方位的次数,造成井眼轨迹不平滑,增加转盘扭矩,同时也增加产生健槽卡钻的可能性。
通常,靶区形状为圆形(严格地讲,应该是球形)。浅井和水平位移小的定向井,其靶区范围小一些,一般靶区半径30~50米,而深井和水平位移大的井,靶区范围可以适当地大一些,一般靶区半径为50~70米。
6.造斜率和降斜率选择
常规定向井的造斜率为7~14°/100米,如果需要在浅层造斜并获得较大的水平位移,造斜率可提高到14~16°/100米。但是,浅层的高造斜率容易出现新井眼,也容易对套管产生较大的磨损。因此,浅层造斜通常选择较低的造斜率,而深层造斜(1000米~2000米)可选择较高的造斜率。
对于“S”型井眼,通常把降斜率选在3~8°/100米,如果降斜后仍然要钻较长的井段,则必须采用较小的降斜率平缓降斜,以避免键槽卡钻,同时,可降低钻进时的摩阻力。
7.最大井斜角
常规定向井的最大井斜角,一般在15~45°,如果井斜太小,则井眼的井斜和方位都较难控制。井斜大于60°时,钻具的摩阻力将大大增加。
8.允许的方位偏移与极限
(1)定向钻进时,初始造斜方向通常在设计方位的左边(即选定导角),然后通过自然漂移钻达靶区,井眼轨迹是一条空间曲线。
(2)但是对导角也有一个限制,在井眼密集的井网中,要求定向井轨迹保持在安全圆柱内,以避免与邻井相碰。
(3)同样,由于油藏特性和地质地层条件,也对导角的大小有一定的限制。
9.井身剖面类型
在满足设计和工艺要求的前提下,尽可能缩短井段长度,因为井段短则钻井时间短。在设计井身剖面形状时,要考虑井身结构,造斜点一般选在套管鞋以下30~50米处。目前,我国海上定向井的井身剖面通常由作业者决定,往往选择“J”型剖面。
四.剖面设计
1.设计步骤:
(l)选择剖面类型;
(2)确定增斜率和降斜率,选择造斜点;
(3)计算剖面上的未知参数,主要是最大井斜角;
(4)进行井身计算,包括各井段的井斜角、水平位移、垂深和斜深;
(5)绘制垂直剖面图和水平投影图。
井身剖面的设计方法有试算法、作图法、查图法和解析法四种。我国海洋定向井通常采用解析法,并使用计算机完成。剖面设计完成以后,应向作业者提供下列资料:
(1)总体定向钻井方案和技术措施。
(2)剖面设计结果,包括设计条件、计算结果、垂直剖面图和水平投影图。
(3)测斜仪器类型和该地区的磁偏角,以及测斜计算方法;
(4)设备和工具计划。
2.二维定向井设计(解析法)
解析法是根据给出的设计条件,应用解析公式计算出剖面上各井段的所有井身参数的井身设计方法。在使用计算机的条件下,还可同时给出设计井身的垂直投影图和水平投影图。
解析法进行井身剖面设计所用公式如下(用于三段制J型、五段制S型和连续增斜型剖面)。
(1)求最大井斜角αmax。
(2)各井段的井身参数计算:
①增斜段
②稳斜段
③降斜段
④稳斜段
⑤总井深L
(3)设计计算中特殊情况的处理
①当Ho2+So2-2RoSo=0时,表示该井段设有稳斜段,此时可由下面三个公式中任一个公式来求最大斜角αmax:
②当2Ro-So=0时,可用下式求最大井斜角αmax:
③当Ho2+So2-2RoSo<0,说明此种剖面不存在,此时应该改变设计条件,改变造斜点深度、增斜率和降斜率或改变目标点坐标。
井身剖面设计计算结果应整理列表,并校核井身长度和各井段井身参数是否符合设计要求,还应该校核井上曲率,井身剖面最大曲率应小于动力钻具和下井套管抗弯曲强度允许的最大曲率。
目前,应用计算机程序进行井身剖面设计时,设计结果列表和均可由打印机和绘图仪自动完成。
4.设计方法举例
例 某定向井设计全井垂深H=2-000米(靶点),上部地层300米至350米是流砂层,1000米至1050米有一高压水层,作出井身剖面设计。
井口座标 X1:3 246 535.0 Y1:2 054 875.0
井底座标 X2:3 245 972.95 Y2:2 054 665.0
先根据井口与井底座标,计算出水平位移和目标方位。
(1)根据提供的地质资料,在进行剖面设计时,应设法使动力钻具造斜的井段和增斜的井段避开流砂层和高压水层。
(2)对于钻井工艺及其它限制条件,在满足(l)项条件的前提下,应选择较简单的剖面类型。
(3)剖面类型选用“直一增一稳”三段制井身剖面。此种剖面简单,地面井口至目标点的井身长度短,有利于加快钻井速度。
(4)选择造斜点。根据垂直井深和水平位移的关系,造斜点应选在350米至600米间。如选在1050米以下,会使井斜角太大,是不合理的。
因300米至350米是流砂层,在井深结构设计时应用套管封固,以利于定向造斜,防止流砂层漏失、垮塌等复杂情况出现。造斜点应选在套管鞋以下不少于50米的地方为宜。因此,造斜点与井口之间井眼长度不应小于450米。
又因1000米至1050米是高压水层,为了下部井段能顺利钻进,也应考虑下入一层中间套管封住高压水层。为了减少井下复杂情况和有利于定向井井眼轨迹控制,在进行套管设计时,应避免套管鞋下在井眼曲率较大的井段中,中间套管的下入深度应进入稳斜井段150米左右为宜。在考虑上述因素后,造斜点的位置应在高压水层以上不少于400米处,也就是造斜点与井口之间的井眼长度不应大于600米。
经过上述的分析,如果造斜点应在450米至600米之间选择,那么,把造斜点确定在500米处是比较合理的。
(5)选择造斜率K为7°/100米。根据造斜率计算造斜井段的曲率半径R。
(6)计算最大井斜角αmax
R——造斜段曲率半径,米。
把已知条件代入上式得:
αmax=24.4°
(7)分段井眼计算:
增斜段
稳斜段
4.三维定向井
设计的井眼轴线,既有井斜角的变化,又有方位角的变化,这类井段为三维定向井,实际作业中,有时会碰到三维定向井的问题,大体上分为三种情况。
第一种情况 原设计为两维定向井,在实钻中偏离了目标方位,如果偏得不多,只要调整钻具组合或扭一次方位就可以了。严格地说,实钻的定向井轨迹,都有井斜角的变化和方位角的变化,这种三维定向井可以简化为二维的。
第二种情况 在地面井位和目标点确定的情况下,在这两点的铅垂平面内,存在着不允许通过或难以穿过的障碍物,不能在铅垂平面上设计轨道,需要绕过障碍,设计绕障三维定向井。在海上丛式井经常碰到这类井。
第三种情况在地面井位确定的情况下,要钻多目标井。地面井位和多目标点不在同一铅垂平面内,只有井斜角和方位角都变化,才能钻达设计的多个目标点。
三维定向井的轨迹设计和测斜计算很复杂,通常使用计算机软件完成这些工作。
第三节 井眼轨迹控制技术
井眼轨迹控制的内容包括:优化钻具组合、优选钻井参数、采用先进的井下工具和仪器、利用计算机进行井眼轨迹的检测预测、利用地层的方位漂移规律、避免井下复杂情况等等。
轨迹控制贯穿钻井作业的全过程,它是使实钻井眼沿着设计轨道钻达靶区的综合性技术,也是定向井施工中的关键技术之一。
井眼轨迹控制技术按照定向井的工艺过程,可分为直井段、造斜段、增斜段、稳斜段、降斜段和扭方位井段等控制技术,其中直井段的控制技术见第七章第四节。
一.定向选斜井段
初始造斜方法有五类,即井下马达和弯接头定向、喷射法、造斜器法、弯曲导管定向、倾斜钻机定向。目前,我国海洋定向井一般采用第一种方式,常用造斜钻具组合为:钻头十井下马达十弯接头十非磁钻铤十普通钻铤( 0~30米)十挠性接头十震击器十加重钻杆。
这种造斜钻具组合是利用弯接头使下部钻具产生一个弹性力矩,迫使井下动力钻具驱动钻头侧向切削,使钻出的新井眼偏离原井眼轴线,达到定向造斜或扭方位的目的。
造斜钻具的造斜能力主要与弯接头的弯角和动力钻具的长度有关。弯接头的弯角越大,动力钻具长度越短,造斜率也越高。
弯接头的弯角应根据井眼大小、井下动力钻具的规格和要求造斜率的大小选择。现场常用弯接头的弯角为1.5~2.25度,一般不大于2.5度。弯接头在不同条件下的造斜率见第四节。
造斜钻具组合使用的井下动力钻具型号应根据造斜井段或扭方位井段的井深选择。使用井段在2000米以内,一般采用涡轮钻具或普通螺杆钻具,深层走向造斜或扭方位应使用耐高温的多头螺杆钻具。
造斜钻具组合、钻井参数和钻头水眼应根据厂家推荐的钻井参数设计。
由于井下动力钻具的转速高,要求的钻压小〔一般为29.4~ 78.4千牛(3~8吨)〕,因此,使用的钻头不宜采用密封轴承钻头,尤其是在浅层,可钻性好的软地层应使用铣齿滚动轴承钻头或合适的PDC钻头。
根据测斜仪器的种类不同,分为四种定向方式:
1.单点定向
此方法只适用造斜点较浅的情况,通常井深小于1000米。因为造斜点较深时,反扭角很难控制,且定向时间较长。施工过程如下:
(l)下入定向造斜钻具至造斜点位置(注意:井下马达必须按厂家要求进行地面试验)。
(2)单点测斜,测量造斜位置的井斜角,方位角,弯接头工具面;
(3)在测斜照相的同时,对方钻杆和钻杆进行打印,并把井口钻杆的印痕投到转盘面的外缘上,作为基准点;
(4)调整工具面(调整后的工具面是:设计方位角十反扭角)。锁住转盘、开泵钻进;
(5)定向钻进。每钻进2~4个单根进行一次单点测斜,根据测量的井斜角和方位角及时修正反扭矩的误差,并调整工具面;
(6)当井斜角达到8~10度和方位合适时,起钻换增斜钻具,用转盘钻进。在单点定向作业中要注意:
①在确定了反扭角和钻压后,要严格控制钻压的变化范围,通常在预定钻压±19.6千牛(2吨)内变化;
②每次接单根时,钻杆可能会转动一点,注意转动钻杆的打印位置至预定位置;
③如果调整工具面的角度较大(>90度),调整后应活动钻具2~3次(停泵状态),以便钻杆扭矩迅速传递。
2.地面记录陀螺(SRO)定向
在有磁干扰环境的条件下(如套管开窗侧钻井)的定向造斜,需采用SRO定向。这种仪器可将井下数据通过电缆传至地面处理系统,并显示或用计算机打印出来,直至工具面调整到预定位置,再起出仪器,施工过程如下:
(l)选择参照物,参照物应选择易于观察的固定目标,距井40米左右;
(2)预热陀螺不少于15分钟,工作正常才可下井;
(3)瞄准参照物,并调整陀螺初始读数;
(4)接探管,连接陀螺外筒,再瞄准参照物,对探管和计算机初始化;
(5)下井测量,按规定作漂移检查;
(6)起出仪器坐在井口,再次瞄准参照物记录陀螺读数;
(7)校正陀螺漂移,确定测量的精度;
(8)定向钻进。
3.有线随钻测斜仪(SST)定向
造斜钻具下到井底后,开泵循环半小时左右,然后接旁通头或循环接头。把测斜仪的井下仪器总成下入钻杆内,使定向鞋的缺口坐在定向键上。定向造斜时,可从地面仪表直接读出实钻井眼的井斜、方位和工具面,司钻和定向井工程师要始终跟踪预定的工具面方向,保持井眼轨迹按预定方向钻进。
4.随钻测量仪(MWD)定向
MWD井下仪器总成安装在下部钻具组合的非磁钻铤内,其下井前要调整好工作模式和传输速度,并准确地测量偏移值,输入计算机。仪器在井下所测的井眼参数通过钻井液脉冲传至地面,信息经地面处理后,可迅速传到钻台。MWD不仅可用于定向造斜,也可用于旋转钻进中的连续测量,是一种先进的测量仪器。
5.定向造斜中的注意事项:
(1)如果定向作业前的裸眼段较长,应短起下钻一趟,保证井眼畅通。
(2)井下马达下井前应在井口试运转,测量轴承间隙;记录各种参数,工作正常方可下井;
(3)MWD等仪器下井前,必须输入磁场强度、磁倾角等参数;
(4)定向造斜钻进,要按规定加压,均匀送钻,以保持恒定的工具面。
(5)造斜钻进或起下钻,用旋扣钳或动力水龙头上卸扣,不得用转盘上卸扣;
(6)起钻前方位角必须在20~30米井段内保持稳定,且保证预定的提前角。目前,“一次造斜
到位法”也经常在我国海洋定向井中使用,这种方法适用于造斜点较浅,且机械钻速很快的造斜井段,常常配合使用随钻测量仪。
(7)井下马达出井时,按规定程序进行清洗、保养。
狗腿度(狗腿严重度,全角变化率)K,全角变化率定义为“单位井段长度井眼轴线在三维空间的角度变化”,而单位井段长度取决于生产实际中测斜需要。它既包含了井斜角的变化又包含着方位角的变化。常用“°/100m”表示,实际生产工作中常用“°/30m”来表示。如果一点超3度甲方罚款了事,1点超5度也有填井的危险,在这过程当中看甲方对井队是怎么要求了。各油田要求可能不一,以上仅供参考。
⑥ 杭州茶叶博物馆中,茶的历史谁能告诉我。
有关茶叶历史的发展有一定的历史渊源,为了让楼主能够清楚的了解我国茶叶历史的发展地位及过程,我特此给楼主准备好了一个文档,这样方便阅读,中国茶始于神农,兴于唐宋......更多内容见御于文档。
⑦ 煤矿竖井施工方法
竖井掘进 (shaft sinking)矿山建设由地面垂直向下挖掘竖井(又称立井)的施工过程。竖井掘进方法分普通施工法和特殊施工法两种。普通施工法适用于井筒涌水量小,岩层比较稳定的竖井掘进。特殊施工法适用于不稳定岩层(包括流砂、淤泥、破碎的岩层)的竖井掘进。此外还有一种全面机械化施工的钻井法。
竖井普通施工法 用人工或机械凿岩爆破的方法进行竖井掘进。掘进程序是先进行锁口施工,然后进行表土施工和基岩施工。
锁口施工 由井颈上部的临时井壁和锁口框组成。锁口框采用木材、钢材、钢木结构;临时井壁段长度一般为1~2m,采用砖、料石、混凝土块砌筑。如表土层稳定,可采用一次施工永久锁口。
表土施工 常用的方法有井圈背板、吊挂井壁、板桩、锚喷临时支护施工法等。根据井筒涌水量大小,可以采用工作面水窝集水、排水法,超前小井竖井降低水位法和井外疏干孔降低水位法进行涌水处理。表土施工提升有标准掘进井架提升系统(见井巷施工提升)和简易提升两种。简易提升方式可以采用:(1)慢动卷扬机、小吊桶和简易井架。简易井架可用人字架、三角架、双三角架、帐幕式木井架、单龙门架和双龙门架。(2)汽车起重机、小吊桶。(3)大抓斗。表土施工主要包括表土掘进和表土支护。
(1)表土掘进。在无水而稳定的土层中,可用镐、锹等工具人工进行挖掘或用抓斗直接取土,土层坚硬时可用风镐或风铲松土,或打浅眼、放小炮破土。施工中,要加强集水、排水工作。
(2)表土支护。井颈段一般以钢筋混凝土或素混凝土作永久支护。施工方法有:(1)边下掘边进行临时支护,挖掘至井颈段壁座后,由下而上边拆临时支护边进行永久支护施工。(2)采用吊挂井壁作临时支护。当挖掘井颈段壁座后再自下往上浇筑永久井壁。(3)用板桩进行临时支护。(4)对易风化、易片帮、遇水易散的土层,采用素喷、锚喷和锚网喷混凝土的方法进行临时支护。当采用吊挂井壁永久支护时,随掘进分段紧接进行支护。
基岩施工 也称凿岩爆破法。用于井筒涌水小于30m3 /h,稳定、中等稳定的岩层。施工时,将井筒全深划分为若干个井段,自上而下逐段施工。段长主要取决于井筒里围岩的稳定程度、涌水量、施工设备等条件。段长2~6m称短段,30~60m称长段。竖井施工作业方式按掘进、砌筑、安装三项作业在时间上、空间上的不同可以分为掘砌单行作业(又有长段单行、短段单行和混合短段平行之分)。
⑧ 完井方式
常规完井方式主要有射孔完井、裸眼完井和割缝衬管完井三种。其中,射孔完井是目前石油行业国内外使用最为广泛的一种完井方式。CO2灌注井和监测井多采用射孔完井(孙光明,2002)。
(一)射孔完井
射孔完井分为两种,套管射孔完井和尾管射孔完井。
(1)套管射孔完井
套管射孔完井是钻穿目的层至设计井深后,下入套管注水泥固井,最后射孔,射孔弹射穿套管、水泥环并穿透地层一定深度,建立起CO2或地层流体流通通道。
套管射孔完井可以选择性地射开不同压力、不同物性的储层或监测层,以避免层间干扰,具备实施分层灌注或分层监测,选择性压裂等分层作业的条件。
(2)尾管射孔完井
尾管射孔完井是在钻头钻至目的层顶部界限后,下技术套管注水泥固井,而后用小一级的钻头钻穿目的层至设计井深,用钻具将尾管送下并悬挂在技术套管上,尾管和技术套管的重叠段一般不小于50m,再对尾管注水泥固井,最后射孔。
由于尾管射孔完井先于钻开目的层前,上部地层已经被技术套管封固,因此,可以采用与储层或监测层相互配伍的钻井液以平衡压力,有利于保护储层或监测层。
尾管射孔可以减少套管重量和油井水泥的用量,从而降低完井成本。
需要注意的是,采用射孔完井方式时,CO2储层除了受钻井过程中的钻井液和水泥浆损害以外,还要受到射孔作业本身对CO2储层的损害。
(二)裸眼完井方式
裸眼完井是在钻头钻至目的层顶部界限后,下技术套管注水泥固井,水泥浆上返至预定的设计高度后,再从技术套管中下入直径较小的钻头,钻穿水泥塞,钻开目的层至设计井深。
裸眼完井的最主要特点是目的层弯曲裸露,因而CO2储层具有最大的渗流面积,这种井叫做水动力学完善井,其CO2灌注能力较强。但这种完井方式不能避免层间干扰、也不能有效地实施分层灌注和分层措施等作业。裸眼完井主要是在岩性坚硬、井壁稳定的块状碳酸盐岩或硬质砂岩地层,以及层间差异不大的层状储藏中使用。
采用裸眼完井方式时,CO2储层主要受钻井过程中的钻井液损害,故应采用保护储层的钻井及钻井液技术。
(三)割缝衬管完井
割缝衬管完井方式是钻头钻至目的层后,先下人技术套管注水泥固井,再从技术套管中下人直径小一级的钻头钻穿储层或监测层至设计井深。最后在目的层部位下入预先割缝的衬管,依靠衬管顶部的衬管悬挂器,将衬管悬挂在技术套管上,并密封衬管和套管之间的环状空间。
割缝衬管完井主要用于胶结疏松的砂岩地层。这种完井方式CO2储层不会遭受固井水泥浆的损害,可以采用与储层相互配伍的钻井液或其他保护CO2储层的钻井液钻开储层,当割缝衬管发生磨损或失效时,也可以起出修理或更换。
⑨ 钻井的过程是什么
一口井从开始到完成,大致要经历准备工作、钻进、固井、其他作业等工序。
● 准备工作
(1)定井位。根据地质或生产的需要确定井底位置,作出设计。
(2)修公路。为了将各种设备与物质运入井场,需要修公路。由于钻井设备是重型物资,公路应确保能通行重型车辆。
(3)平井场。在井口附近平整出一块方地供施工用。井场面积随钻机而异,形状大致为长方形,大型钻机占地约长120米,宽90米;中型钻机占地约长100米,宽60米。钻机占地大小可因地制宜。
(4)打基础。为了保证设备在钻井过程中不会下陷或歪斜,要打基础(或称为打基礅)。小型的基础可用方木或预制件,大型的基础在现场用混凝土浇灌。
(5)安装。立井架,安装钻井设备,安放或挖掘钻井液罐(池)等。
● 钻进
广义的钻进指从开钻到完钻一段地层或完钻一口井的过程。旋转钻井法的钻进大致可分为以下几道工序。
(1)钻进(狭义)。
用钻头直接破碎岩石。钻进时用足够的压力将钻头压到井底岩石上,使钻头的刃部吃入岩石中。钻头上连接着钻柱,用钻柱带动钻头旋转以破碎岩石,井就会逐渐加深。加到钻头上的压力叫钻压。
钻柱把地面上的动力传给钻头,所以,钻柱从地面一直延伸到井底。随着井的加深,不断增加钻杆,钻柱渐渐增长,其重量也渐渐加大,以至于超过所需的钻压。过大的钻压将会引起钻头、钻杆和设备的损坏,必须将大于所需钻压的那一部分钻杆的重量吊悬起来,使之不作用在钻头上。钻进中,由司钻适时地控制加到钻头上的压力,有效地均匀钻进。
(2)循环。
井底岩石被钻头破碎后形成小的碎块,称为钻屑(也常称为砂)。钻屑积多了会影响钻头钻凿新的井底,引起机械钻速下降。所以必须及时地将钻屑从井底清除掉,并携带到地面。钻井液经钻杆的内孔注入,从钻头水眼中流出以清洗钻头并冲向井底。
将钻屑冲离井底,钻屑随钻井液一同进入井壁与钻柱之间的环形空间,向地面返升,一直到地面。
钻屑在地面上从钻井液中分离出来并被清除掉称为除砂。清除了钻屑的钻井液再被泵入井中重复循环使用。在钻进时,洗井和破碎岩石同时进行。为了保证钻井液不间断地循环,需要用钻井泵连续泵入。
(3)接单根。
在钻进过程中,随着井的不断加深,钻柱也要及时接长,接一根钻杆就叫接单根。
(4)起下钻。
为了更换磨损的钻头,须将全部钻柱从井中取出,换上新的钻头以后再重新下到井中继续作业,这叫做起钻和下钻(简称为起下钻)。一口井要用很多只钻头才能钻成,所以起下钻的次数很多。为了提高效率,节省时间,起下钻时不是以单根钻杆为单位进行接卸,而是三根钻杆为一个接卸单位,称为立根(或立柱)。每根钻杆长8~10米,立根的长度一般为26~30米。为了配合这么长的立根,井架高度一般为40米左右。
由于其他原因,如打捞井底落物、测井等也需要起下钻。
● 固井
固井是钻井工程中的一道重要工序,其根本目的可概括为两点:加固井壁(防止浅处井壁坍塌)和隔离钻井的油、气、水层(防止开采时层间相互干扰)。固井的方法,是将称为套管的无缝钢管下入井中,并在井眼和套管之间灌注水泥浆以固定套管,封闭套管与井壁之间的环形空间,隔开某些地层。这就是下套管、注水泥作业。一口井从开始到完成,常需下入多层套管并注水泥,即需进行数次固井作业(图6.2)。
有的地区井虽较深,但地层条件较好,可以省去技术套管,只下表层套管和油层套管;有的地区井并不太深,如果浅部地层条件允许,深部油气水层的压力不高,还可以省去表层套管,则在全井中,只有一层油层套管。总之,固井要根据实际地质情况来确定,既要保证钻井安全和井身质量,又要尽可能地节约套管和水泥,以降低钻井成本,提高经济效益。
通常注入水泥浆后应候凝约2天,用井温或声波幅度等测井方法检测固井质量——套管外水泥返高、水泥胶结与封固状况等,符合设计要求者为固井质量合格。
● 其他作业
在钻井过程中,还要进行岩屑录井、地球物理测井以及地层测试等作业。
一口井一旦开钻,如果没有特殊情况,就要按照施工设计正常施工,钻达设计深度即可交井。但是,探井有可能根据地下出现的新情况,或提前完钻,或继续加深。
图6.2井身结构示意图
⑩ 初一的地理书上的丽江三眼井什么
“三眼井”是利用地下喷涌出的泉水源,依照地势高差修建成三级水潭。并对3个水潭的功能与用途进行严格区分,并约定俗成,形成古风民俗。
丽江古城中共有大大小小的三眼井5个,即白马龙潭三眼井、义尚甘泽泉三眼井、光碧巷三眼井、格宝坞三眼井、寄宝坞三眼井。规模比较大的三眼井有三口,分别是马龙潭三眼井、石榴井和溢璨井。其中白马龙潭三眼井位于丽江古城光义街光碧巷,即古城西南入口处。井畔白马龙潭寺,建于清干隆十九年(公元1754年),咸丰年间毁于兵战,光绪八年(公元1882年)重建,现存寺门、大殿、左厢房等建筑,规模布局依旧。白马龙潭寺曾是当年丽江文人雅士吟诗作赋的场所,现寺内镶嵌有11首纳西诗人所撰刻的诗碑。白马龙潭三眼井可谓丽江最“人文”的三眼井。石榴井和溢璨泉分别位于七一街八一上段和密士巷,皆属丽江古城内繁华路段,纯朴的纳西人在井边放一小碗供路人饮用,井水清冽甘甜,可称之为丽江最“知名”的两大三眼井。沿五一街主街直走,过石拱门穿过文明巷过两个十字路口,遇一开阔休闲花园,拾阶而下,即可看到古城内最大的三眼井——甘泽泉。泉边长有一棵百年老树,名曰古滇楸树,井上方立有志碑,大如照壁,貌似屏风,上方书“甘泽泉”三个大字,两边刻有一副工整的对子,右为“山下出泉流不息”,左是“山中有水养无穷”。甘泽泉不愧是古城最大的三眼井,三叠泉水顺势而下后积一大水潭,潭内有鱼,常有人垂钓于此,甘泽泉与旁边的东河一同灌溉着泉边的广茂农田,待向日葵和油菜花花开之际,构成一幅古城内难得的田园山水画。古城内茶馆用水多取自于甘泽泉,曾有富商欲出巨资收购甘泽泉为矿泉水水源地,被当地村民严辞拒绝。因甘泽泉位于古城东郊文林巷,此处游人罕至,因此也是最不知名最清幽的三眼井。