Ⅰ 一加到100等于几怎么算出来的
1加到100公式推导过程:1+2+3+4+5+6+7+8+9+10+11+......90+91+92+93+94+95+96+97+98+99+100
=(1+100)+(2+99)+(3+98)+(4+97)+(5+95)+......(47+54)+(48+53)+(49+52)+(50+51)
=101+101+101+101+......+101+101+101+101(共50个101)
=50×101
=5050
因此得到简便算法:1+2+3+4+5+6+7+8+9+10+11+......90+91+92+93+94+95+96+97+98+99+100
=(1+100)×100÷2
=50×101
=5050
1加到100其实就是一个等差数列的求和,首项=1,末项=100,一共有100项,直接使用公式是最简单的,和=(首项+末项)×项数÷2。

(1)从一加到一百用简便方法怎么算扩展阅读:
等差数列的其他推导公式:
1、和=(首项+末项)×项数÷2。
2、项数=(末项-首项)÷公差+1。
3、首项=2x和÷项数-末项或末项-公差×(项数-1)。
4、末项=2x和÷项数-首项。
5、末项=首项+(项数-1)×公差。
6、2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和。
Ⅱ 从一加到一百的简便公式是什么,加到二百呢
把一至一百按顺序排列起来,然后在按一百到一的顺序排好来,用一加一百、二加九十九、…你会发现最后的得数都是一样的,然后再用一加一百的和,也就是一百零一,乘以一百(个数)再除以二!就能很快算出答案了!
Ⅲ 从1一直加到100有什么简便算法
从1一直加到100有两种简便算法:
1、求平均数的算法。
1到100共100个数字,而且他们是等差数列,所以只需要将1+100除以 2,就可以得到平均数,再乘以位数,则得到结果,(1+100)/ 2 x 100
=50.5 x 100
=5050
2、利用等差数列的求和公式直接求和。
等差数列的公式是:(首项+末项)x 项数/2
1到100共100个数,首项为1,公差为1,末项为100,代入公式就是
(1+100)x 100 / 2
=101x100/2
=10100/2
=5050
(3)从一加到一百用简便方法怎么算扩展阅读:
等差数列的算法:等差数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。
例如:1,3,5,7,9……(2n-1)。等差数列{an}的通项公式为:an=a1+(n-1)d。前n项和公式为:首项×项数+【项数(项数-1)×公差】/2或【(首项+末项)×项数】/ 2。
Ⅳ 从一加到到一百等于多少用简便方法计算
1+2+3...+100=5050
-------------------
记住公式最快
等差数列求和:n*(n+1)/2=100*101/2=5050
------------------------
或者你熟悉高斯的故事的话,直接说5050吧,毕竟这是个数学历史上非常有名的故事.高斯算法:(1+100)+(2+99)+...+(50+51)=101*50=5050
Ⅳ 从1加到100等于多少是什么公式
应该是高斯求和
1+2+3..+100=(1+100)+(2+99)..(50+51)=101*50=5050
上面就是求和公式求和公式,
高斯的算法由来
一次数学课上,老师让学生练习算数。于是让他们一个小时内算出1+2+3+4+5+6+……+100的得数。
全班只有高斯用了不到20分钟给出了答案,因为他想到了用(1+100)+(2+99)+(3+98)……+(50+51)……一共有50个101,所以50×101就是1加到一百的得数。后来人们把这种简便算法称作高斯算法。
高斯
约翰·卡尔·弗里德里希·高斯(Johann Carl Friedrich Gauss ,1777年4月30日-1855年2月23日)
高斯和阿基米德、牛顿并列为世界三大数学家。一生成就极为丰硕,以他名字“高斯”命名的成果达110个,属数学家中之最。
是德国着名数学家、物理学家、天文学家、大地测量学家,是近代数学奠基者之一,被认为是历史上最重要的数学家之一,并享有“数学王子”之称。
他对数论、代数、统计、分析、微分几何、大地测量学、地球物理学、力学、静电学、天文学、矩阵理论和光学皆有贡献。
Ⅵ 从1加到100等于多少简便方法
解题思路:从1加到100的和可以看作是一个公差为1的等差数列,直接利用等差数列的公式(首项+末项)×项数÷2可以很快得出答案。
解题过程:
sn = 1+2+3+4+...+100
=[n*(a1+an)]/2
= 100*(1 + 100)/2
= 5050
得出结果,从1加到100的和等于5050。
(6)从一加到一百用简便方法怎么算扩展阅读:
1、从1到n的自然数之和:Sn = n * (n + 1) / 2
把两个相同的自然数列逆序相加
2Sn=1+n + 2+(n-1) + 3+(n-2) + ... n+1
=n+1 +n+1 + ... +n+1
=n*(n+1)
Sn=n*(n+1)/2
2、从m到n的自然数之和:Smn=(n-m+1)/2*(m+n)
(n>m)
Smn=Sn-S(m-1)
=n*(n+1)/2 -(m-1)*(m-1+1)/2
={n*(n+1) - m(m-1)}/2
={n*(n+1) - mn + m(1-m) + mn }/2
={n*(n-m+1)+ m(1+ n-m)}/2
=(n+m)(n-m+1)/2
Ⅶ 一加到一百,怎么快速算出。
1.用高斯定理,1跟100一对加起来101,2跟99一对加起来101,……以此类推,最后50+51=101,也就是101*(100/2)=5050。
2.用梯形公式,想象一下,比如一堆圆木,按1,2,3………100的顺序从上忘下堆放,求圆木数量,可以直观地用梯形公式:(1+100)*100/2=5050。
Ⅷ 1加到100的简便算法,急!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1+2+3+.....+100
=(1+100)x50
=5050
1,2,3...100这是一个等差数列。等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。
等差数列的前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均属于正整数。
(8)从一加到一百用简便方法怎么算扩展阅读:
等差数列从通项公式可以到的以下推论:
1、 和=(首项+末项)×项数÷2;
2、项数=(末项-首项)÷公差+1;
3、首项=2x和÷项数-末项或末项-公差×(项数-1);
4、末项=2x和÷项数-首项;
5、末项=首项+(项数-1)×公差;
6、2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和。
Ⅸ 1加到100的简便计算
1+100=2+99=3+98=……=50+51 =101,共100÷2=50组
所以,一共和为50*101=5050
也可以用:(1+100)+(2+99)+……(50+51)=101x50=5050
Ⅹ 讲问从一加到一百有什么公式
(1+100)*50,因为1和100,2和99,3和98……的和是相等的,都是101,所以答案是5050
从一加到二百就可以用:(1
+
200)*
100计算,是20100
^_^希望给分