导航:首页 > 知识科普 > 125除以009用简便方法计算

125除以009用简便方法计算

发布时间:2025-10-08 04:22:08

1. 凝胶迁移实验(EMSA) 的原理及实验方案详解

对于新手小白做这些大实验时可能不知所措,为了方便学习,将相关实验进行归纳总结:

凝胶迁移或电泳迁移率实验(EMSA)是一种研究DNA结合蛋白和其相关的DNA结合序列相互作用的技术,可用于定性和定量分析。这一技术最初用于研究DNA结合蛋白,已用于研究RNA结合蛋白和特定的RNA序列的相互作用。

需要两个试剂盒 碧云天(GS008 GS009):一个用于生物素标记 ,一个用于凝胶迁移实验
配备TBE缓冲液可以配置成 5× 或者 10×的储液。
10x TBE 储液配制方法:
将Tris(FW=121)108g,硼酸(FW=61.8)55g,40 ml 0.5 M EDTA 溶解在600 ml的去离子水中;而后调节pH至8.3,加去离子水定容至1L后,室温保存。使用时稀释10倍 即为1×TBE Buffer。

(1)设计重组引物TF-F,R,进行PCR扩增,PCR产物纯化回收。
(2)使用NEB限制性内切酶将pet28a载体线性化,并进行纯化回收。
(3)利用重组试剂盒进行重组反应(Vazyme, C112-02)。
(4)将反应体系加入DH5α感受态中,进行转化,涂板,挑斑检测。挑选阳性菌液过夜培养,提质粒,-20℃保存备用。

参照康为世纪试剂盒:His-tag 标签蛋白纯化试剂盒(可溶性蛋白)

(1)使用1xTEN buffer溶解单链探针,将互补的单链探针按1:1混匀。
(2)95℃加热10分钟,自然降温到15-25℃。
(3)取出退火探针,加入适量的1 x TEN buffer稀释浓度至3-4pmol/ µl.。
(4)将100ng退火探针置于无酶的PCR管中,加去ddH2O补至10 µl。
(5)按以下体系将各组分混合,37℃孵育30分钟

a. 参考上表设置反应体系。注:对于双链的EMSA探针的标记反应,建议一次做两管,即总体积共100µl,以最终获得足够的生物素标记EMSA探针用于后续EMSA检测。
b. 用枪轻轻吹打混匀,切勿vortex。37ºC孵育30分钟。
c. 加入2.5µl 探针标记终止液,轻轻混匀终止反应。

a. 探针标记反应终止后,加入52.5µl氯仿-异戊醇(24:1),vortex使有机相和水相充分混合以抽提TdT(说明:静止后有机相和水相会很快分层)。
b. 12000-14000g离心1-2分钟。吸取上清备用。上清即为被生物素标记的单链DNA探针。

通常为实验简便起见,可以不必纯化标记好的探针。有些时候,纯化后的探针会改善后续实验的结果。如需纯化,可以按照如下步骤操作:
a. 对于100µl标记好的探针,加入1/4体积即25µl的5M醋酸铵,再加入2体积即200µl的无水乙醇,混匀。
b. -70ºC至-80ºC沉淀1小时,或-20ºC沉淀过夜。
c. 4ºC,12,000g-16,000g离心30分钟。小心去除上清,切不可触及沉淀。
d. 4ºC,12,000g-16,000g离心1分钟。小心吸去残余液体。微晾干沉淀,但不宜过分干燥。 e. 加入50µl TE,完全溶解沉淀。标记好的探针可以-20ºC保存。

a. 取5µl Biotin-Control Oligo (0.4µM),加入196µl TE,混匀,稀释成10nM Biotin-Control Oligo(作为标准品)。取出适量10nM Biotin-Control Oligo,依次稀释成5nM、2.5nM、1nM、0.5nM和0.25nM。
b. 取3µl步骤3B所获得的生物素标记的DNA探针(100nM),加入27µl TE,混匀,稀释成10nM 生物素标记的探针(作为待测样品)。取出适量的10nM 生物素标记的探针,依次稀释成5nM、2.5nM、1nM、0.5nM和0.25nM。
c. 参考下面的表格,取一适当大小的带正电荷尼龙膜,在膜上做好相应标记。对于经过梯度稀释的标准品和待测样品,分别取2µl滴加到膜上。在膜上滴加标准品或待测样品时,请注意使液滴充分被膜吸收,在膜上形成一个湿的圆形小斑点。说明:如果条件许可,可以使用专门用于点杂交或狭缝杂交的设备进行探针标记效率的检测,探针的用量参考下表,浓度可以再稀释50倍,而所用体积可以相应放大50倍至100µl。

a. 对于步骤2B标记好的单链DNA探针,把正义链和反义链等体积混合(不可根据标记效率调整摩尔比例)。对于最初使用变性的双链EMSA探针进行探针标记的情况,直接进入下一步。
b. 加入退火缓冲液(10X),使退火缓冲液的最终浓度为1X,混匀。例如待退火探针的体积为100微升,则加入11微升退火缓冲液(10X)。
c. 如下设置PCR仪进行退火反应:

注1:如果所用的PCR仪不具备下降0.1ºC的功能,也可以设置为每90秒下降1ºC。
d. 退火反应结束后,-20ºC保存标记好的EMSA探针。此时的EMSA探针已经可以直接用于后续的EMSA检测,也可以对探针进行适当纯化后再进行EMSA检测。

a. 准备好倒胶的模具。可以使用常规的制备蛋白电泳胶的模具(例如BioRad的常规用于蛋白电泳的制胶装置),或其它适当的模具。最好选择可以灌制较薄胶的模具,以便于干胶等后续操作。为得到更好的结果,可以选择可灌制较大EMSA胶的模具。制胶前必须把制胶模具冲洗干净,需特别注意不能有SDS残留。
b. 按照如下配方配制20ml 4%的聚丙烯酰胺凝胶(注意:使用29:1等不同比例的Acr/Bis对结果影响不大)。

注意:此实验中需去除SDS变性剂
c. 按照上述顺序依次加入各种试剂,加入TEMED前先混匀,加入TEMED后立即混匀,并马上加入到制胶的模具中。避免产生气泡,并加上梳齿。如果发现非常容易形成气泡,可以把一块制胶的玻璃板进行硅烷化处理

b. 按照上述顺序依次加入各种试剂,在加入标记好的探针前先混匀,并且室温(20-25ºC)放置10分钟,从而消除可能发生的探针和蛋白的非特异性结合,或者让冷探针优先反应。然后加入标记好的探针,混匀,室温(20-25ºC)放置20分钟。
c. 加入1µl EMSA/Gel-Shift上样缓冲液(无色,10X),混匀后立即上样。注意:有些时候溴酚蓝会影响蛋白和DNA的结合,建议尽量使用无色的EMSA/Gel-Shift上样缓冲液。如果对于使用无色上样缓冲液在上样时感觉到无法上样,可以在无色上样缓冲液里面添加极少量的蓝色的上样缓冲液,至可以观察到蓝颜色即可。

a. 用0.5XTBE作为电泳液。按照10V/厘米的电压预电泳10分钟。预电泳的时候如果有空余的上样孔,可以加入少量稀释好的1X的EMSA上样缓冲液(蓝色),以观察电压是否正常进行。
b. 把混合了上样缓冲液的样品加入到上样孔内。在多余的某个上样孔内加入10µl稀释好的1X的EMSA/Gel-Shift上样缓冲液(蓝色),用于观察电泳进行的情况。
c. 按照10V/厘米的电压电泳。确保胶的温度不超过30ºC,如果温度升高,需要适当降低电压。电泳至EMSA/Gel-Shift上样缓冲液中的蓝色染料溴酚蓝至胶的下缘1/4处,停止电泳。

a. 取一和EMSA胶大小相近或略大的尼龙膜,剪角做好标记,用0.5XTBE浸泡至少10分钟。尼龙膜自始至终仅能使用镊子夹取,并且仅可夹取不可能接触样品的边角处。
b. 取两片和尼龙膜大小相近或略大的滤纸,用0.5XTBE浸湿。
c. 把浸泡过的尼龙膜放置在一片浸湿的滤纸上,注意避免尼龙膜和滤纸间产生气泡。
d. 非常小心地取出EMSA胶放置到尼龙膜上,注意确保胶和膜之间没有气泡。
e. 再把另外一片浸湿的滤纸放置到EMSA胶上,注意确保滤纸和胶之间没有气泡。 碧云天/Beyotime 400-1683301/800-8283301 GS009 化学发光法EMSA试剂盒 3 / 5
f. 采用Western时所使用的湿法电转膜装置或其它类似的电转膜装置,以0.5XTBE为转膜液,把EMSA胶上的探针、蛋白以及探针和蛋白的复合物等转移到尼龙膜上。对于大小约为10x8x0.1cm的EMSA胶,用BioRad的常用的Western转膜装置,电转时可以设置为380mA(约100V)转膜30-60分钟。如果胶较厚,则需适当延长转膜时间。转膜时需保持转膜液的温度较低,通常可以把电转槽置于4ºC冷库或置于冰浴或冰水浴中进行电转,这样可以确保低温。具体的电转膜方法请参考电转膜装置的使用说明。
g. 转膜完毕后,小心取出尼龙膜,样品面向上,放置在一干燥的滤纸上,轻轻吸掉下表面明显的液体。立即进入下一步的交联步骤,不可使膜干掉。

a. 用紫外交联仪(UV-light cross-linker)选择254nm紫外波长,120mJ/cm2,交联45-60秒(根据经验,建议交联30min)。如果没有紫外交联仪可以使用普通的手提式紫外灯(例如碧云天的手提紫外检测仪(EUV002)),距离膜5-10厘米左右照射3-10分钟。也可以使用超净工作台内的紫外灯,距离膜5-10厘米左右照射3-15分钟。最佳的交联时间可以使用标准品自行摸索。
b. 交联完毕后,可以直接进入下一步检测;也可以用保鲜膜包裹后在室温干燥处存放3-5天,然后再进入下一步检测。
c. 如果检测结果发现交联效果不佳,甚至连free probe的条带都非常微弱,可以考虑在膜干燥后参考步骤A的条件再交联一次,以进一步改善交联效果。

a. 37-50ºC水浴溶解封闭液和洗涤液。 注意:封闭液和洗涤液必须完全溶解后方可使用,封闭液和洗涤液可以在室温至50ºC之间使用,但必须确保这两种溶液中均无沉淀产生,在冬天需特别注意。
b. 取一合适的容器加入15ml封闭液,再放入交联过的含有样品的尼龙膜。在侧摆摇床或水平摇床上缓慢摇动15分钟。
c. 取7.5µl Streptavidin-HRP Conjugate加入到15ml封闭液中(1:2000稀释),混匀备用。
d. 去除用于尼龙膜封闭的封闭液,加入上一步中配制的15ml含有Streptavidin-HRP Conjugate的封闭液。在侧摆摇床或水平摇床上缓慢摇动15分钟。
e. 取25ml洗涤液(5X),加入100ml重蒸水或Milli-Q级纯水,混匀配制成125ml洗涤液。
f. 将尼龙膜转移至另一装有15-20ml洗涤液的容器内,漂洗1分钟。
g. 去除洗涤液,加入15-20ml洗涤液,在侧摆摇床或水平摇床缓慢上洗涤5分钟。
h. 重复步骤G 三次(共洗涤四次),每次洗涤时间都约为5分钟。
i. 将尼龙膜转移至另一装有20-25ml检测平衡液的容器内,在侧摆摇床或水平摇床上缓慢摇动5分钟。
j. 取5ml BeyoECL Moon A液和5ml BeyoECL Moon B液混匀,配制成BeyoECL Moon工作液。注意:BeyoECL Moon工作液必须现配现用。说明:从本步骤起操作方法和注意事项同Western实验的荧光检测。
k. 取出尼龙膜,用吸水纸吸去过多液体。立即将膜的样品面向上,放置到处于水平桌面上的洁净容器内或保鲜膜上。
l. 在尼龙膜的表面小心加上步骤J配制好的共10ml BeyoECL Moon工作液,使工作液完全覆盖尼龙膜。室温放置2-3分钟。
m. 取出尼龙膜,用吸水纸吸去过多液体。将尼龙膜放在两片保鲜膜或其它适当的透光薄膜中间,并固定于压片暗盒(也称片夹)内。
n. 用X光片压片1-5分钟。可以先压片1分钟,立即显影定影,然后根据结果再调整压片时间;也可以直接分别压片30秒、1、3、5分钟或更长时间,然后一起显影定影观察结果。

2. 三位数的行李箱密码 0到9总共能排出来哪些密码

1000种排法。从000至999,总计一千个数字。

用排列组合和乘法原理,计算方法如下:

第一位数从0-9共10个数字里面任取一个数字,共A(10,1)=10种可能,

第二位数从0-9共10个数字里面任取一个数字,共A(10,1)=10种可能,

第三位数从0-9共10个数字里面任取一个数字,共A(10,1)=10种可能,

根据乘法原理,因此共有:10*10*10=1000种可能。

(2)125除以009用简便方法计算扩展阅读:

1、排列的定义:

从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个不同的元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。

计算公式:

3、乘法原理:

做一件事,完成它需要分成n个步骤,做第一 步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法。那么完成这件事共有 N=m1×m2×m3×…×mn种不同的方法。

3. 3D和值怎么算的

福彩3D和值就是把三位数相加起来。
下面是福彩3D和值表:
和数值0 000
和数值1 001
和数值2 002 110
和数值3 111 003 012
和数值4 004 112 220 013
和数值5 005 113 221 014 023
和数值6 222 006 114 330 015 024 123
和数值7 007 115 223 331 016 025 034 124
和数值8 008 116 224 332 440 017 026 035 125 134
和数值9 333 009 117 225 441 018 027 036 045 126 135 234
和数值10 118 226 334 442 550 019 028 037 046 127 136 145 235
和数值11 119 227 335 443 551 029 038 047 056 128 137 146 236 245
和数值12 444 228 336 552 660 039 048 057 129 138 147 156 237 246 345
和数值13 229 337 445 553 661 049 058 067 139 148 157 238 247 256 346
和数值14 338 446 554 662 770 059 068 149 158 167 239 248 257 347 356
和数值15 555 339 447 663 771 069 078 159 168 249 258 267 348 357 456
和数值16 448 556 664 772 880 079 169 178 259 268 349 358 367 457
和数值17 449 557 665 773 881 089 179 269 278 359 368 458 467
和数值18 666 558 774 882 990 189 279 369 378 459 468 567
和数值19 559 667 775 883 991 289 379 469 478 568
和数值20 668 776 884 992 389 479 569 578
和数值21 777 669 885 993 489 579 678
和数值22 778 886 994 589 679
和数值23 779 887 995 689
和数值24 888 996 789
和数值25 889 997
和数值26 998
和数值27 999

4. 公务员计算详细过程解答

第一题:
0×3+1=1
1×3+0=3
3×3-1=8
8×3-2=22
22×3-3=63
63×3-4=185
答案:〔C〕

第二题:
2×2-1=3
3×3-2=7
7×7-3=46
46×46-7=2109
答案:〔A〕

另,奉献答题技巧及练习题:
第一节数量关系概述
一、数量关系的作用

数量关系测验主要用于考查应试者对数量关系的理解和计算的能力,而这种能力是人类智力的重要组成部分之一。它涉及的知识和所用的材料基本上限于初、高中甚至有些部分限于小学数学知识范围之内。数量关系测验主要用于考查应试者对数量关系的理解、计算和判断推理的能力。国家公务人员作为现代的管理者,要进行高效、科学、规范的信息化管理,因而要求他们能够对大量的信息进行快速、准确的接收与处理,而这些信息中有很大部分是用数字表达或与数字相关的。所以,作为国家公务员必须具备迅速、准确地理解和发现数量之间蕴含的关系,并能进行数字运算的能力,才能胜任其工作。这也是行政职业能力测验中设置数量关系测验的目的所在。 二、数量关系的内容

2004年中央、国家机关录用考试公共科目考试新大纲对数量关系的部分内容进行了调整,主要是取消了数量关系中的数字推理部分,数字推理不再作为考试内容。数量关系测验涉及的知识总的来说比较简单,其中数学运算一般没有超出加、减、乘、除四则运算。可是,千万不要以为数量关系简单就能取得高分数,因为测验还要受时间的限制,如果不能迅速、巧妙、及时、准确地进行计算和判断,也难以获得高分。想要做好本项测验,必须要熟悉数学中的一些基本概念和数列的部分概念,能够准确地理解它们的含义。另外,还必须掌握一些基本的计算方法和技巧,当然,这还需要多做题来逐渐积累。数量关系有多种表现形式,因而对其考查的方法也是多种多样的。最近几年,数量关系题型不断改进,但基本的题型没有发生变化。今年由于新考试大纲的变化,所以在行政职业能力测验中主要是从数学运算这个方面来考查考生的数量关系能力的。

三、数量关系的解题原则

数量关系测验是行政职业能力测验的重要组成部分,主要考查考生对数量关系的理解和计算能力。虽然数量关系考试的内容都是比较简单的加减乘除四则运算,但是在规定的时间内正确地完成所有题的计算是非常困难的。所以运算题尽可能采用心算,提高速度,必须要在准确的前提下来追求速度。许多数学运算题可以采用简便的速算方法而不需要死算。遇到较困难的题目可以先跳过去,完成其他容易的试题后,若时间允许再回头解答。

数量关系的实例与解题思路:

数量关系测验包括数学运算试题,下面我们就针对这种题型介绍其解题方法。

1.数学运算题型介绍

数学运算主要考查考生解决算术问题的能力。在此种题型中,每道试题中有一道算术式子,或者是表达数量关系的一段文字,要求考生准确、迅速地计算出结果来,判断这个结果与答案备选项中哪一项相同,则该项为正确答案。由于这类题型只涉及加、减、乘、除等基本运算法则,主要是数字的运算,所以,解题关键在于找捷径和简便方法。数学运算题只涉及加、减、乘、除四则运算和其他最基本的数学知识,因此题目难度不会大,如果有足够的时间,也许每个人在此项目上都能得高分,但要在短时间内完成这些题目就应当寻找一些解题的技巧,走一些捷径。

解答这类题目,应当注意以下几点:一是要准确理解和分析文字表述,准确把握题意,不要为题中一些枝节所诱导;二是掌握一些常用的数学运算技巧、方法和规律。一般来讲,行政职业能力测验中出现的题目并不需要花费大量计算功夫的,应当首先想简便运算的方法;三是要熟练掌握一些题型及其解题方法。要认真审题,快速准确地理解题意,并充分注意题中的一些关键信息。其次要努力寻找解题捷径。多数计算题都有“捷径”可走,盲目计算虽然也可以得出答案,但贻误宝贵时间往往得不偿失。尽量事先掌握一些数学运算的技巧、方法和规则,熟悉一下常用的基本数学知识(如比例问题、百分数问题、行程问题、工程问题等)。还要学会使用排除法来提高命中率。在时间紧张而又找不出其他解题捷径的情况下,可对部分选项进行排除,尤其是一些计算量大的题目,可以根据选项中数值的大小、尾数、位数等方面来排除,提高答对题的概率。

另外,还要适当进行一些训练,了解一些常见的题型和解题方法。下面列举一些比较典型的试题,它们经常出现在数量关系测验中,希望考生能够认真阅读,熟悉这些题目的巧解巧算方法,并灵活运用。

2.数学运算规律举例

(1)尾数观察法

如:2 222+5 678+7 897()

A.15 689B.15 798

C.14 798D.15 797

答案为D。

此题可先将尾数相加,2+8+7=17,故而2 222+5 678+7 897的值的尾数应为7,所以选D。

(2)凑整法

如:99×48的值是()

A.4 752B.4 652

C.4 762D.4 862

此题可将99+1=100,再乘以48,得4 800,然后再减48,所以答案为A。

(3)比例分配问题

如:一所学校一、二、三年级学生总人数为450人,三个年级的学生比例为2∶3∶4,问学生人数最多的年级有多少人?()

A.100B.150

C.200D.250

答案为C。

解答这种题,可以把总数看做包括了2+3+4=9份,其中人数最多的肯定是占4/9的三年级,所以答案是200人。

(4)路程问题

如:某人从甲地步行到乙地,走了全程的2/5之后,离中点还有2.5公里。问甲乙两地距离多少公里?()

A.15B.25

C.35D.45

答案为B。

全程的中点即为全程的2.5/5处,离2/5处为0.5/5,这段路有2.5公里,因此很快可以算出全程为25公里。

(5)工程问题

如:一件工程,甲队单独做,15天完成;乙队单独做,10天完成。两队合作,几天可以完成?()

A.5天B.6天

C.7.5天D.8天

答案为B。

此题是一道工程问题。工程问题一般的数量关系及结构是:

工作总量÷工作效率=工作时间

可以把全工程看做“1”,工作要n天完成推知其工作效率为1/n,两组共同完成的工作效率为(1/n1)+(1/n2),根据这个公式很快可以得到答案为6天。另外,工程问题还可以有许多变式,如水池灌水问题等等,都可以用这种思路来解题。

(6)植树问题

如:若一米远栽一棵树,问在345米的道路上栽多少棵树?()

A.343B.344

C.345D.346

答案为D。

这种题目要注意多分析实际情况,如本题要考虑到起点和终点两处都要栽树,所以答案为346。

(7)对分问题

如:一根绳子长40米,将它对折剪断;再对折剪断;第三次对折剪断,此时每根绳子长多少米?()

A.5米B.10米

C.15米D.20米

答案为A。

对分一次为2等份,对分两次为2×2等份,对分三次为2×2×2等份,答案可知为A。无论对折多少次,都以此类推。

(8)跳井问题

如:青蛙在井底向上爬,井深10米,青蛙每次跳上5米,又滑下来4米,像这样青蛙需跳几次方可出井?()

A.6次B.5次

C.9次D.10次

答案为A。

不要被题中的枝节所蒙蔽,每次跳上5米滑下4米实际上就是每次跳1米,因此10米花10次就可全部跳出,这样想就错了。因为跳到一定时候,就出了井口,不再下滑。

(9)会议问题

如:某单位召开一次会议,会议前制定了费用预算。后来由于会期缩短了3天,因此节省了一些费用,仅伙食费一项就节约了5 000元,这笔钱占预算伙食费的1/3。伙食费预算占会议总预算的3/5,问会议的总预算是多少元?()

A.20 000B.25 000

C.30 000D.35 000

答案为B。

预算伙食费用为:5 000÷1/3=15 000元。15 000元占总预算的3/5,则总预算为15 000÷(3/5)=25 000元。

第二节数量关系样题解析一、数量关系样题

数字运算

计算下列各题,并选择出正确答案。

1.84.78元、59.50元、121.61元、12.43元以及66.50元的总和是()

A.343.73元B.343.83元

C.344.73元D.344.82元

2.125×437×32×25=()

A.43 700 000B.87 400 000

C.87 400 000D.43 755 000

3.6 799×99-6 800×98=()

A.6 701B.6 921

C.7 231D.8 201

4.792.58的小数点先向左移动两位,再向右移动三位,得到的数再扩大10倍,最后的得数是原来的()

A.10倍B.100倍

C.1 000倍D.不变

5.在某大学班上,选修日语的人与不选修日语的人的比率为2∶5。后来从外班转入2个也选修日语的人,结果比率变为1∶2,问这个班原来有多少人?()

A.10B.12

C.21D.28

6.某车间原计划15天装300台机器,现要提前5天完成,每天平均比原计划多装多少台?()

A.10B.20

C.15D.30

7.一项工程,甲单独做需要20天做完,乙单独做需要30天做完,二人合做3天后,可完成这项工作的()

A.1/2B1/3

C.1/4D.1/6

8.某水池装有甲、乙、丙三根水管,单独开甲管12分钟可注满水池,单独开乙管8分钟可注满水池,单独开丙管24分钟可注满水池,如果先把甲、丙两管开4分钟,再单独开乙管,问还用几分钟可注满水池?()

A.4B.5

C.8D.10

9.有一块正方形操场,边长为50米,沿场边每隔1米栽一棵树,问栽满四周可栽多少棵树?()

A.200B.201

C.202D.199

10.一艘客轮从甲港开出,到乙港有2/7的乘客离船,又有45人上船,这时乘客人数相当于从甲港开出时的20/21,问这时有乘客多少人?()

A.210B.200

C.189D.180

二、数量关系样题解析

数字运算

1题解析:这道题并不复杂,也不需要计算。实际上只需把最后一位小数相加,就会发现,和的最后一位小数是2,只有D符合。答案为D。

2题解析:答案为A。本题也不需要直接计算,只须分解一下即可:

125×437×32×25=125×32×25×437

=125×8×4×25×437

=1 000×100×437

=43 700 000

3题解析:答案为A。本题也不需要直接乘出来,稍作分解即可:

6799×99-6 800×98=6799×99-(6799+1)×98

=6 799×99-6 799×98-98

=6 799×(99-98)-98

=6 799-98

=6 701

4题解析:本题比较简单,左移两位就是缩小到1/100,右移三位就是扩大1 000倍,实际上扩大了10倍,再扩大10倍,就是扩大了100倍。答案为B。

5题解析:假设原来班上有x个人,解一个简单的一元一次方程即可:

23(x+2)=57x或者2(27x+2)=57x

答案为D。

6题解析:答案为A。原计划每天装的台数可求得为300÷15=20台,现在每天须装的台数可求得为300÷10=30台,由此可得出答案。

7题解析:甲、乙两人同时做,一共需要的时间为:1÷(1/20+1/30),结果为12天,因此,3天占12天的1/4。答案为C。

8题解析:甲、丙两管共开4分钟,已经注入水池的水占水池的比例为:1-(1/12+1/24)×4,结果为1/2。单独开乙管注满水池的时间为8分钟,已经注入1/2,显然只需4分钟即可注满。答案为A。

9题解析:1米远时可栽2棵树,2米时可栽3棵树,依此类推,边长共为200米,可栽201棵树。但起点和终点重合,因此只能栽200棵树。答案为A。

10题解析:设从甲港开出时的乘客为x人,列方程得:(1-2/7)x+45=(20/21)x,很容易算出x=189人 ,则到乙港的乘客人数为189×(20/21)=180人。所以答案为D。

第三节数量关系练习题之一

一、数量关系练习题

数字运算

计算下列各题,并选择出正确答案。

1.12+16+112+120+…+1n(n+1)(n为自然数)的值为()

A.n+2n+1B.nn+1

C.n-1n+1D.n-2n+1

2.1/2×(1/2÷2/3)÷2/3的值为()

A.3B.9/16

C.1/3D.1/6

3.7+97+997+9997+12的值为()

A.11 111B.11 110

C.10 100D.10 009

4.一根绳原长10米,现以3∶2的比例剪成两段,则两根绳的长度相差米。()

A.1B.3

C.2D.5

5.甲乙两地相距150千米,A、B两人各自从甲乙两地出发,两人相遇需要10个小时,已知甲速度是乙速度的2/3,那么乙单独走完需要小时。()

A.50/3B.15

C.20D.17

6.去年张华共收到26笔汇款,开始6次是每笔750元,剩下的每笔都比开始6次多30元,求这一年他共收到多少钱?()

A.20 100B.20 500

C.19 500D.16 000

7.一件衣服,第一天按原价出售,没人来买,第二天降价20%出售,仍没人来买,第三天再降价24元,终于售出。已知售出价格恰好是原价的56%,那么原价是多少元?()

A.80B.100

C.120D.140

8.某企业要举行一场篮球赛,共有15支球队参加,若用单循环制进行,应举行比赛()

A.105场B.210场

C.60场D.80场

9.下列不属于勾股数组的一对数是()

A.3、4、5B.5、12、13

C.8、15、17D.6、8、12

10.一个球的直径增加一倍,体积是原来的()

A.2倍B.4倍

C.8倍D.16倍

二、数量关系练习题之一参考答案

数字运算

1.B2.B3.B4.C5.A6.A7.B8.B9.D10.C第四节数量关系练习题之二

一、数量关系练习题

数字运算

计算下列各题,并选择出正确答案。

1.-1-(-7-5)+2的值为()

A.3B.13

C.3D.-9

2、16×364×4256的值为()

A.16B.24

C.48D.64

3.32×16×125×25的值为()

A.16 000B.160 000

C.1 600 000D.16 000 000

4.某商店有两个进价不同的计算器都卖了64元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()

A. 不赔不赚B. 赚了8元

C. 赔了8元D. 赚了32元

5.甲队人数是乙队人数的2倍,从甲队调12人到乙队,这时甲队人数比乙队人数的一半多3人,则甲队原来的人数为()

A.24人B.20人

C.22人D.28人

6.有一桶水第一次倒出其中的1/6,第二次倒出剩下的1/3,最后倒出剩下的1/4,此时连水带桶有20 kg,桶重为5 kg,问桶中最初有多少千克水?()

A.50B.80

C.100D.36

7.一件商品原价为100元,提价20%之后降价10%,那么现在的价格为元。()

A.108B.110

C.130D.120

8.某单位为希望工程捐款,7个人每人平均捐款850元,其中5人平均每人捐款590元,求其余2个平均每人捐了多少元?()

A.1 600B.1 000

C.1 400D.1 500

9.一个扇形的面积是314 cm2,它所在的圆的面积是1 256 cm2,则此扇形的圆心角是()

A.180°B.60°

C.240°D.90°

10.现有式样,大小完全相同的四张硬纸片,上面分别写了1、2、3、4四个不同的数字,如果不看数字,连续抽取两次,抽后仍旧放还,则两次都抽到2的概率是()

A.14B.18

C.132D.116二、数量关系练习题之二参考答案

数字运算

1.B2.D3.C4.B5.D6.D7.A8.D9.D10.D

第五节数量关系练习题之三

一、数量关系练习题

数字运算

计算下列各题,并选择出正确答案。

1.4731×80×25×10值为()

A.6 420 00B.8 642 000

C.8 742 000D.94 620 000

2.725×69÷23的值为()

A.2 175B.2 075

C.4 175D.3 075

3.有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨,求3辆大车与5辆小车一次可以运货多少吨?()

A.24.5B.25

C.25.5D.26

4.一饲养厂有若干只牛和鸭,已知一共有330只,1 160条腿,那么牛和鸭各为只。()

A.260,70B.270,60

C.250,80D.50,280

5.一菜店有大白菜和萝卜共147筐,取出大白菜筐数的1/5和3筐萝卜送给某学校,剩下的大白菜和萝卜的筐数相等。菜店原有大白菜和萝卜各多少筐?()

A.85,80B.80,67

C.75,65D.70,75

6.一人骑了3小时自行车。在第二个小时骑了18公里,比第一个小时多骑20%。如果第三个小时比第二个小时多骑25%的路程,那么他总共骑了多少公里?()

A.54B.54.9

C.55.5D.57

7.一杯含盐15%的盐水200克,要使盐水含盐20%,应加盐多少克呢?()

A.12.5B.10

C.5.5D.5

8.在一条长100米的道上安装路灯,路灯的光照直径是10米,请问至少要安装盏灯。()

A.11B.9

C.12D.10

9.一段布料,正好做12套儿童服装或9套成人服装,已知做三套成人服装比做两套儿童服装多用布6米,这段布有多长?()

A.24B.36

C.54D.48

10.有一个蓄水池,装有甲、乙、丙三个进水管,单独开甲管,6分钟可注满空水池;单独开乙管,12分钟可注满空水池;单独开丙管,4分钟可注满空水池,如果甲、乙、丙三管齐开,需几分钟可注满空水池?()

A.5B.4

C.3D.2

二、数量关系练习题之三参考答案

数字运算

1.D2.A3.A4.C5.B6.C7.A8.B9.B10.D

第六节数量关系练习题之四

一、数量关系练习题

数字运算

计算下列各题,并选择出正确答案。

1.24×26-19×21+1的值是()

A.225B.226

C.227D.126

2.72+68+66+75+64+71值为()

A.416B.430

C.406D.426

3.要举办一次象棋比赛,报名的是50人,用淘汰赛进行,要安排比赛()

A.25场B.50场

C.24场D.49场

4.若甲把自己的火柴分一半给乙,则乙的火柴是甲的4/3,那未分之前,甲乙火柴的比是()

A.3 ∶1B.4 ∶1

C.6 ∶1D.2 ∶1

5.迈克花掉了他的钱的三分之二,又丢掉了余下钱的三分之二,还剩4美元,原来他有多少钱?()

A.20美元B.24美元

C.32美元D.36美元

6.一根铁丝长128cm,要把它围成一个长方形,且长是宽的3倍,则此长方形的面积为()

A.496 cm2B.625 cm2

C.768 cm2D.800 cm2

7.某人把60 000元投资于股票和债券,其中股票的年回报率为6%,债券的年回报率为10%。如果这个人一年的总投资收益为4 200元,那么他用了元钱买债券。()

A.45 000B.15 000

C.6 000D.4 800

8.数x的70%等于1/5y的75%,那么x∶y之比为()

A.3∶14B.4∶13

C.14∶3D.13∶4

9.学校修建一个圆形花坛,周长25�12m,在花坛周围又围上一条宽1 m的环形小路,问这条路的面积是m2。(π=3.14)()

A.78.5B.50.24

C.28.26D.48.74

10.如果某商店以每打1.8元的价格购进6打小工艺品,之后又以每件0.2元卖出,这些小商品全部卖完后商店可以得多少利润?()

A.32元B.3.6元

C.2.4元D.2.84元

二、数量关系练习题之四参考答案

数字运算

1.B2.A3.D4.C5.D6.C7.B8.A9.C10.B

第七节数量关系练习题之五

一、数量关系练习题

数字运算

计算下列各题,并选择出正确答案。

1.38.76-121/4-7.75=()

A.0.76B.1.24

C.1.76D.2.24

2.17÷15+75+110÷(1-110)的值为()

A.271315B.270315

C.268315D.272315

3.有一段路长620 m,每隔5 m植一棵杨树,连两端在内,共植杨树()

A.124棵B.125棵

C.123棵D.126棵

4.一桶油,第一次取出这桶油的14,第二次取出这桶油的7〖〗12。两次共取出25 kg,则桶内还剩油()

A.5 kgB.10 kg

C.15 kgD.8 kg

5.圆A的半径比圆B的半径长2 cm,则我们可以肯定圆A与圆B的()

A.面积之差为4π2 cm2

B.周长之差为4π cm

C.周长之差为2π cm

D.面积之差为2π2 cm2

6.某公司去年进口了150万吨的钢材,比前年的2倍少25万吨,则该公司两年共进口钢材()

A.235.5万吨B.237.5万吨

C.245.5万吨D.247.5万吨

7.甲、乙、丙、丁四个人,从左到右顺次排队,有多少种排法?()

A.12B.16

C.20D.24

8.某希望小学今年在校生人数为1 000人,计划两年后在校生人数增加到1 440人,这两年平均每年的增长率是多少?()

A.20%B.30%

C.40%D.25%

9.一艘每小时航行25千米的客轮,在大运河中顺水航行140千米,水的流速是3公里,需要航行几个小时?()

A.8B.7

C.6D.5

10. 甲乙共带86元钱,甲花去自己所带钱数的4/9,乙花去16元,这时两人所剩钱数相等,求甲原来带了多少元钱?()

A.45B.50

C.41D.35

二、数量关系练习题之五参考答案

数字运算

1.A2.A3.B4.A5.B6.B7.D8.A9.D10.A

第八节数量关系练习题之六

一、数量关系练习题

数字运算

计算下列各题,并选择出正确答案。

1.甲、乙两人从A地同时开车前往120公里外的B地去旅游,结果乙比甲提前1小时到达B地。已知甲比乙每小时少行10公里,求甲的速度?()

A.30公里/时B.40公里/时

C.20公里/时D.50公里/时

2.解放军某部进行爬山训练,往返一次用去6小时,已知上山时每小时行5千米,下山时每小时行10千米,山顶到山脚的距离是多少千米?()

A.30B.20

C.40D.15

3.某农场用拖拉机耕地,5台拖拉机每天工作8小时,12天可以完成任务。现在增加同样效率的拖拉机3台,并且要求提前2天耕完,每天应耕地几小时?()

A.6B.10

C.8D.4

4.甲、乙、丙三个数的平均数是6,它们的比值是1/2∶2/3∶5/6,则这三个数中最大的数是多少?()

A.7B.8

C.9D.7.5

5.94 815 645-5 789 213.986=()

A.89 026 431.014

B.88 026 431.014

C.3 692 350.014

D.3 792 350.014

6.在长150米的路旁每隔5米种一棵树,一共需要几棵树?()

A.29B.30

C.31D.32

7.一件工程,甲单独完成需要2天,乙单独完成需要4天,如果甲干完一天后,剩下的工程由乙单独完成,则干完此项工程共需要多少天?()

A.3B.4

C.5D.6

8.在高为4,底边长为4的等腰三角形的内部贴纸片,每张纸片面积为1,那么需要几张纸片。()

A.6B.8

C.10D.12

9.1,0,5三个数字可以组成个三位数。()

A.7B.6

C.5D.4

10.1994年第二季度全国卖出汽车297 600辆,与上年同期相比增长了24%。问上年同期卖出多少辆汽车?()

A.240 000B.714 224

C.226 176D.369 024

二、数量关系练习题之六参考答案

数字运算

1.A2.B3.A4.D5.A6.C7.A8.B9.D10.A

第九节数量关系练习题之七

一、数量关系练习题

数字运算

计算下列各题,并选择出正确答案。

1.22-8.5-3.5的值为()

A.39B.10

C.11D.12

2.252+57+348+43+21的值为()

A.831B.821

C.731D.721

3.3 226-(326+50)的值为()

A.2 840B.2 850

C.2 900D.2 950

4.106+994+1 008+9 992的值为()

A.12 000B.12 100

C.1 230D.12 116

5.小李把12 600元存入银行甲,年利息率为7.25%。如果他把这些钱存入银行乙,年利息率为6.05%,那么他一年将少得多少利息?()

A.47.25元B.84.25元

C.151.2元D.194.5元

6.李明以四个0.25元的价格买进一批钉子,再以三个0.22元的价格卖出,共获利2.6元,问他买了多少钉子?()

A.300B.400

C.370D.240

7.有一堆糖果,其中奶糖45%,再放入16块水果糖,奶糖就只占25%,那么这堆糖中有多少块奶糖?()

A.9B.20

C.30D.27

8.今年兄弟俩的岁数加起来是55岁,曾经有一年,哥哥的岁数是今年弟弟的岁数,那时哥哥的岁数恰好是弟弟的两倍,问哥哥今年年龄多大?()

A.44B.22

C.33D.11

9.如果一个数的立方根等于这个数的平方根,那么这个数()

A.一个正实数B.1或0

C.0D.不存在

10.一个工程,甲组单独做需24天,乙组单独做需32天,如果甲组先单独做若干天后休息,乙组接着做,共用27天,问甲、乙各做了天?()

A.15,20B.13,14

C.11,16D.15,12

二、数量关系练习题之七参考答案

数字运算

1.B2.D3.B4.A5.C6.D7.A8.C9.B10.D

附录:

数量关系之“数字推理”部分

2004年中央、国家机关录用考试公共科目考试新大纲有许多变化,在行政职业能力测验考试中,新大纲对数量关系的部分内容进行了调整,主要是取消了数量关系中的数字推理部分,数字推理不再作为考试内容。但在有些地区仍有此类考试内容,所以本书把数字推理内容,作为附录供广大应试者参考。

第一节数字推理的解题方法

一、数字推理题型介绍

数字推理这种题目由题干与选项组成。首先给你一个数列,每道试题中呈现一个按某种规律排列的数列,但这数列中有意地空缺了一项,要求你仔细观察这个数列各数字之间的关系,找出其中的排列规律,然后从四个供选择的答案中选出你认为最合适、合理的一个来填补空缺项,使之符合原数列的排列规律,并在答题卡上将相应题号下面的选项字母涂黑。

数字推理题由于排除了语言文化因素的影响,减少了其他能力的干扰,而完全考查的是一个人的抽象思维,所以受到大多数心理测验专家的青睐,大部分的智力测验和能力倾向测验中几乎都含有这类题型。

在解答这种数字推理的试题时,首先要求反应快,要有一种直观力;还要掌握适当的方法。一般来说,先要找出相邻两个(尤其是第一、第二个)数字的关系,迅速将这种关系类推到下一个数字相邻间的关系,若得到验证,说明找到了规律,就可以直接推出答案;若被否定,则要马上改变思考问题的方向和角度。如此反复,直到找出其中的规律。根据最近几年的考试经验,

阅读全文

与125除以009用简便方法计算相关的资料

热点内容
近期排列三图形分析图解方法 浏览:302
小孩鼻塞治疗最简单方法 浏览:296
互联网的研究方法及途径 浏览:311
炒股练功的正确方法 浏览:558
现代公路施工方法视频 浏览:518
磁粉检测方法图片 浏览:385
认真对待的正确处理方法 浏览:900
关键路线计算方法 浏览:420
捏筷子的正确方法图片 浏览:728
uv无影胶使用方法 浏览:165
制作沙发简单的方法 浏览:887
小白瓜种植搭架方法图片 浏览:994
祛痘快速有效的土方法祛除 浏览:638
女性徒手锻炼腿部方法 浏览:413
广东人乌龟蛋食用方法 浏览:570
如何用简单的方法把花做成灯笼 浏览:380
90036用简便方法计算怎么算 浏览:336
125除以009用简便方法计算 浏览:788
上下型喷头使用方法视频 浏览:189
物理常用研究方法有哪些方法 浏览:328