一、结合法
一个数连续乘两个一位数,可根据情况改写成用这个数乘这两个数的积的形式,使计算简便。
示例:
计算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在计算时,添加一个小括号可以使计算简便。因为括号前是乘号,所以括号内不变号。
二、分解法
一个数乘一个两位数,可根据情况把这个两位数分解成两个一位数相乘的形式,再用这个数连续乘两个一位数,使计算简便。
示例:
计算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
将18分解成2×9的形式,再将括号去掉,使计算简便。
三、拆数法
有些题目,如果一步一步地进行计算,比较麻烦,我们可以根据因数及其他数的特征,灵活运用拆数法进行简便计算。
示例:
计算:99×99+199
(1)在计算时,可以把199写成99+100的形式,由此得到第一种简便算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99写成100-1的形式,199写成100+(100-1)的形式,可以得到第二种简便算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改数法
有些题目,可以根据情况把其中的某个数进行转化,创造条件化繁为简。
示例:
计算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48转化成4×12的形式,使计算简便。
数学乘法运算定律
整数的乘法运算满足:交换律,结合律,分配律,消去律。
随着数学的发展, 运算的对象从整数发展为更一般群。
群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是哈密尔顿发现的四元数群。 但是结合律仍然满足。
1、乘法交换律:ab=ba,注:字母与字母相乘,乘号不用写,或者可以写成“·”。
2、乘法结合律:(ab)c=a(bc)
3、乘法分配律:(a+b)c=ac+bc
② 43乘201用简便方法计算
43×201
=43×(200+1)
=43×200+43×1
=8600+43
=8643
(2)小学乘法简便运算的方法扩展阅读
简便方法计算的相关定律
1、乘法分配律
乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意实数。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆运用(也叫提取公约数),尤其是a与b互为补数时,这种方法更有用。也有时用到了加法结合律,比如a+b+c,b和c互为补数,就可以把b和c结合起来,再与a相乘。
2、乘法结合律
乘法结合律也是做简便运算的一种方法,用字母表示为(a×b)×c=a×(b×c),它的定义(方法)是:三个数相乘,先把前两个数相乘,再和第三个数相乘;或先把后两个数相乘,再和第一个数相乘,积不变。
3、乘法交换律
乘法交换律用于调换各个数的位置:a×b=b×a
4、加法交换律
加法交换律用于调换各个数的位置:a+b=b+a
5、加法结合律
三个数相加,先把前两个数相加,或者先把后两个数相加,和不变:(a+b)+c=a+(b+c)
③ 98×84的简便运算
98×84的简便运算如下:
用乘法分配律使计算简便:
98×84
=(100-2)×84
=100×84-2×84
=8400-168
=8232
(3)小学乘法简便运算的方法扩展阅读:
乘法分配律:
两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。
用字母表示:
(a+b)× c=a×c+b×c
变式:
(a-b)× c=a×c-b×c
此题运用乘法分配和乘法结合定律来进行计算,步骤如下:
33333×66666
=33333×(22222×3)
=33333×3×22222
=99999×22222
=(100000-1)×22222
=100000×22222-22222
=2222200000-22222
=2222177778
先用乘法分配率把66666分为22222×3,再用乘法结合律,先算33333×3,积为99999,此时为99999×22222,运用加法结合律,把99999换算成100000-1,这样一来,即可做简便计算。
简便计算方法
1、乘法分配律
简便计算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意实数。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆运用(也叫提取公约数),尤其是a与b互为补数时,这种方法更有用。
2、乘法结合律
乘法结合律也是做简便运算的一种方法,用字母表示为(a×b)×c=a×(b×c),它的定义(方法)是:三个数相乘,先把前两个数相乘,再和第三个数相乘;或先把后两个数相乘,再和第一个数相乘,积不变。
3、乘法交换律
乘法交换律用于调换各个数的位置:a×b=b×a
4、加法交换律
加法交换律用于调换各个数的位置:a+b=b+a
5、加法结合律
(a+b)+c=a+(b+c)