⑴ 计量资料常用假设检验方法有哪些
z检验、t检验、F检验
⑵ 统计学检验方法有哪些
统计学 各种应用条件、校正条件
应用检验方法必须符合其适用条件,不同设计的数据应选用不同检验方法。 一、第五章 参数估计 P74 总体均数的置信区间 1.正态近似法:
总体标准差σ已知,或σ未知但n>50时 2. t分布法
总体标准差σ未知,且n≤50时
二、第六章 计量资料两组均数t检验P93、P99 (一)t 检验的应用条件
适用于计量资料(单样本、两配对样本、两独立样本),并要求: 1. 样本来自正态分布的总体。W检验(n≤50时),H0:样本来自正态总体,P>0.05时尚不能认为两组资料的分布非正态;
2. 两独立样本均数比较时,两总体方差齐性。Levene检验,H0:方差相等。P>0.05时尚不能认为两组资料方差不齐。
(二)方差不齐或非正态时,两计量资料均数的比较方法 方法1. 仅方差不齐时,可采用近似t检验,即 t′检验。 方法2. 变量变换:对数变换、平方根变换、倒数变换等
方法3. 非参数检验:Wilcoxon符号秩检验(两相关样本P142);Wilcoxon秩和检验、Mann-Whiney-U检验(两独立样本 P145)等
三、第七章 计量资料多组均数的比较-方差分析 (一)方差分析流程 P109
1、多个样本均数比较。若P<0.05,均数不全相等,则进行第2步;
2、作多重比较:LSD-t检验、Dunnett-t检验(多个实验组与一个对照组比较)、SNK-q检验(多个均数间全面比较)
(二)方差分析的应用条件 P114
1、各样本相互独立,服从正态分布;W检验 2、各样本方差齐性。Levene检验
四、分类资料(计数资料)的比较-
⑶ 医学论文中怎样根据统计资料的类型选择一种或几种检验方法
刚在那个什么 创新医学网 上看见过 医学论文 写作辅导的文章 这个知道是不是 你要的答案
统计资料的显着性检验(significant test)方法的选择是医学论文中常常遇见的问题,退稿原因中常有显着性检验方法选择不当。如t检验、u检验、χ2检验等,虽然各有其应用范围和要求,但也其共同之处。作者可根据统计资料的类型,选择一种或几种检验方法。但当作者在获得一组、两组或两组以上的数据资料时,选择何种显着性检验,是至关重要的问题。不同的资料类型其统计指标、统计检验的方法是不同的,见表1。
医学生物研究中,许多指标都是服从正态分布(u分布)的,而随着样本含量加大或自由度增大,t分布、χ2分布、F分布都趋向于正态分布见图1、图2。
在《中华创伤杂志》第12卷1~6期和增刊中文章所涉及的统计方法(表2),表明了正态分布的广泛性、常见性。
故当作者获得数据资料后,首先应进行正态性检眩�范ㄊ欠为标准正态分布(或近似正态分布)或不属于正态分布。笔者首先推荐概率单位法。
当统计资料属于正态分布或近似正态分布时,差异显着性检验方法的选裕�诜合其应用条件下,一般可按表3进行选择。
显着性检验应用时的主要注意事项:(1)率值或均值在进行显着性检验前,应注意样本的代表性和可比性。(2)检验结果接近显着性界限时:要多方面考虑,是否确实不存在差异;或是观察例数不够,而需加大样本例剩换是检验公式运用不当,可用其他检验印证。(3)多个样本比例数的χ2检验,差异显着性,只能说明多组比例数不同或不完全相同,而不能确定哪个比例数不同,要进一步进行显着性检验才能了解两个样本比例数是否构成相同。
表1 一般情况下不同资料的统计指标与检验方法的关系
资料类型 统计指标 统计检验方法
计量资料 均数、标准差 t检验、F检验等
计数资料 率、构成比 χ2检验等
半定量资料 率、构成比 秩和检验、Ridit分析
表2 《中华创伤杂志》第12卷1~6期、
增刊显着性检验方法使用频数
检验方法 应用次数 检验方法 应用次数
t检验 27 直线相关与回归分析 5
χ2检验 16 拟合线性回归 1
F检验 24 相关分析 6
Q检验 2 非参数统计 4
u检验 1 未注明方法 6
表3 常用显着性检验方法的选择
统计资料比较类型 显着性检验
小样本均数与总体均数相比较 t检验
小样本均数相比较 t检验、F检验
两个或多个大样本均数与
总体均数相比较 u检验、t检验
大样本均数相比较 u检验、t检验
配对计量资料 配对t检验
两个率的比较 u检验、χ2检验
多个样本率的的比较 χ2检验
配对计数资料两种属性的
相关分析及其差别的比较 χ2检验
⑷ 假设检验的三种方法
您好。常用的假设检验方法有u—检验法、t检验法、χ2检验法(卡方检验)、F—检验法,秩和检验等。
⑸ 统计学假设检验有几种方法具体是什么
一两句话说不完:
假设检验就是根据样本,适当构造一个统计量,按照某种规则,决定是接受 H0( 拒绝H1 )还是拒绝 H0( 接受H1 ),所使用的统计量称为检验统计量.
分双边检验与单边检验.
参考
http://www.ncit.e.cn/yysx/ktz/shuxue/admin/upload/files/8.doc
http://dec3.jlu.e.cn/webcourse/t000133/esource/dzja/p08.ppt
⑹ 两组计量资料t,u检验。
医学论文中常用统计分析方法的合理选择目前,不少医学论文中的统计分析存在较多的问题。有报道,经两位专家审稿认为可以发表的稿件中,其统计学误用率为90%-95%。为帮助广大医务工作者提高统计分析水平,本文将介绍医学论文中常用统计分析方法的选择原则及应用过程中的注意事项。 1.t 检验 t检验是英国统计学家W.S.Gosset 1908年根据t分布原理建立起来的一种假设检验方法,常用于计量资料中两个小样本均数的比较。理论上,t检验的应用条件是要求样本来自正态分布的总体,两样本均数比较时,还要求两总体方差相等。但在实际工作中,与上述条件略有偏离,只要其分布为单峰且近似正态分布,也可应用[2]。常用的t检验有如下三类:①单个样本t检验:用于推断样本均数代表的总体均数和已知总体均数有无显着性差别。当样本例数较少(n<60)且总体标准差未知时,选用t检验;反之当样本例数较多或样本例数较少、总体标准差已知时,则可选用u检验 [3]。②配对样本t检验:适用于配对设计的两样本均数的比较,在选用时应注意两样本是否为配对设计资料。常用的配对设计资料主要有如下三种情况:两种同质受试对象分别接受两种不同的处理;同一受试对象或同一样本的两个部分,分别接受不同的处理;同一受试对象处理前后的结果比较。③两独立样本t检验:又称成组t检验,适用于完全随机设计的两样本均数的比较。与配对t检验不同的是,在进行两独立样本t检验之前,还必须对两组资料进行方差齐性检验。若为小样本且方差齐,则选用t检验;反之若方差不齐,则选用校正t检验(t’检验),或采用数据变换的方法(如取对数、开方、倒数等)使两组资料具有方差齐性后再进行t检验,或采用非参数检验[4]。此外,当两组样本例数较多(n1、n2均>50)时,这时应用t检验的计算比较繁琐,可选用u检验[5]。 2.方差分析方差分析适用于两组以上计量资料均数的比较,其应用条件是各组资料取自正态分布的总体且各组资料具有方差齐性。因此,在应用方差分析之前,同样和成组t检验一样需要对各组资料进行正态性检验、方差齐性检验。常用的方差分析有如下几类:①完全随机设计的方差分析:主要用于推断完全随机设计的多个样本均数所代表的总体均数之间有无显着性差别。完全随机设计是将观察对象随机分为两组或多组,每组接受一种处理,形成两个或多个样本。②随机区组设计的方差分析:随机区组设计首先是将全部受试对象按某种或某些特性分为若干区组,然后区组内的每个研究对象接受不同的处理,通过这种设计,既可以推断处理因素又可以推断区组因素是否对试验效应产生作用。此外,由于这种设计还使每个区组内研究对象的水平尽可能地相近,减少了个体间差异对研究结果的影响,比成组设计更容易检验出处理因素间的差别。③析因设计的方差分析:将两个或两个以上处理因素的各种浓度水平进行排列组合、交叉分组的试验设计。它不仅可以检验每个因素各水平之间是否有差异,还可以检验各因素之间是否有交互作用,同时还可以找到处理因素的各种浓度水平之间的最佳组合。此外,还有正交设计、拉丁方设计等多种方差分析法,实验者在应用时可以参考相关的统计学着作。目前,某些医学论文中有这样的情况,就是用t 检验代替方差分析对实验数据进行统计学处理,这是不可取的。t 检验只适用于推断两个小样本均数之间有无显着性差别,而采用t 检验对多组均数进行两两比较,会增加犯I 型错误的概率,即可能把本来无差别的两个总体均数判为有差别,使结论的可信度降低[6]。对多个样本均数进行比较时,正确的方法是先进行方差分析,若检验统计量有显着性意义时,再进行多个样本均数的两两(多重)比较。 3.卡方检验(χ2检验) χ2检验是一种用途比较广泛的假设检验方法,但是在医学论文中常用于分类计数资料的假设检验,即用于两个样本率、多个样本率、样本内部构成情况的比较,样本率与总体率的比较,某现象的实际分布与其理论分布的比较。但是当样本满足正态近似条件时,如样本例数n与样本率p满足条件np与n(1— p)均大于5,则可以计算假设检验统计量u值来进行判断。常用的χ2 检验分为如下几类:①2×2表χ2 检验:适用于两个样本率或构成比的比较,在应用时,当整个试验的样本例数n≥40且某个理论频数1≤T<5时,需对χ2 值进行连续性校正。因为T值太小,会导致χ2 值增大,易出现假阳性结论。此外,若样本例数n<40,或有某个T值<1,此时即使采用校正公式计算的χ2 值也有偏差,需要用2×2表χ2 检验的确切概率检验法(Fisher确切检验法)。②配对资料χ2检验:适用于配对设计的两个样本率或构成比的比较,即通过单一样本的数据推断两种处理结果有无显着性差别。在应用时,如果甲处理结果为阳性而乙处理结果为阴性的样本例数n1与甲处理结果为阴性而乙处理结果为阳性的样本例数n2之和<40,需要对计算的χ2 值进行校正。③R×C表χ2 检验:适用于多个样本率或构成比的比较。在R×C表χ2检验中,若检验统计量有显着性意义时,还需要对多个样本率或构成比进行两两比较,即分割R×C表,使之成为非独立的四格表,并对每两个率之间有无显着性差别作出结论。 2×2表资料在应用时可分为如下几种类型:横断面研究设计的2×2表资料、队列研究设计的2×2表资料、病例-对照研究设计的2×2表资料、配对研究设计的2×2表资料。研究者应注意不同类型的2×2表资料的统计分析方法略有差别,比如在分析队列研究设计的2×2表资料时,如果用χ2公式计算得到P<0.05,研究者则应再计算相对危险度(RR)并检验总体RR与1之间的差异是否具有统计学意义。此外,在进行R×C表χ2检验时,还有如下两个主要的注意事项:首先,T值最好不要<5,若有1/5的T值<5,χ2检验结论是不可靠的,解决的办法有三种:增大样本量;删去T值太小的行和列;将T值太小的行或列与性质相近的邻行或邻列的实际频数合并。其次,不同类型的R×C表资料选择的统计分析方法是不一样。①双向无序的R×C表资料:可以选用一般的χ2公式计算。②单向有序的R×C表资料:如果是原因变量为有序变量的单向有序R×C表资料,可以将其视为双向无序的R×C表资料而选用一般的χ2检验公式计算,但如果是结果变量为有序变量的单向有序R×C表资料,选用的统计分析方法有秩和检验、Radit分析和有序变量的logistic回归分析等。③双向有序且属性不同的R×C表资料:对于这类资料采用的统计分析方法不能一概而论,应根据研究者的分析目而合理选择。如果研究者只关心原因变量与结果变量之间的差异是否具有统计学意义时,此时,原因变量的有序性就显得无关紧要了,可将其视为结果变量为有序变量的单向有序R×C表资料进行分析。如果研究者希望考察原因变量与结果变量之间是否存在线性相关关系,此时需要选用处理定性资料的相关分析方法如Spearman秩相关分析方法等。如果两个有序变量之间的相关关系具有统计学意义,研究者希望进一步了解这两个有序变量之间的线性关系,此时宜选用线性趋势检验。如果研究者希望考察列联表中各行上的频数分布是否相同,此时宜选用一般的χ 因此,对于适用参数检验的资料,最好还是用参数检验。秩和检验是最常用的非参数检验,它包括如下几类:①配对资料的符号秩和检验(Wilcoxon配对法):是配对设计的非参数检验。当n≤25时,可通过秩和检验对实验资料进行分析;当n>25时,样本例数超出T界值表的范围,可按近似正态分布用u检验对实验资料进行分析。②两样本比较的秩和检验(Wilcoxon Mann-Whitney检验):适用于比较两样本分别代表的总体分布位置有无差异。如果样本甲的例数为n1,样本乙的例数为n2,且n1<n2;当n1≤10、n2—n1≤10时,可通过两样本比较的秩和检验对实验资料进行分析;当n1、n2超出T界值表的范围时,同样可按近似正态分布用u检验对实验资料进行分析。③多个样本比较的秩和检验(Wilcoxon Kruskal-Wallis检验):适用于比较各样本分别代表的总体的位置有无差别,它相当于单因素方差分析的非参数检验,计算方法主要有直接法和频数表法等。此外,在进行上述3类秩和检验(前两类秩和检验实际上已经被u检验替代)时,如果相同秩次较多,则需要对计算的检验统计量进行校正。公式计算。④双向有序且属性相同的R×C表资料:这类资料实际上就是配对设计2×2表资料的延伸,在分析这类资料时,实验者的目的主要是研究两种处理方法检测结果之间是否具有一致性,因此常用的统计分析方法为一致性检验或Kappa检验。 4. 非参数检验非参数检验可不考虑总体的参数、分布而对总体的分布或分布位置进行检验。它通常适用于下述资料[2]:①总体分布为偏态或分布形式未知的计量资料(尤其样本例数n<30时);②等级资料;③个别数据偏大或数据的某一端无确定的数值;④各组离散程度相差悬殊,即各总体方差不齐。该方法具有适应性强等优点,但同时也损失了部分信息,使得检验效率降低。即当资料服从正态分布时,选用非参数检验法代替参数检验法会增大犯Ⅱ类错误的概率。
⑺ 统计学的假设检验方法
统计学假设检验主要有T检验、Z检验两种方法,具体内容是:
1、T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。
2、z检验(U检验),是一般用于大样本(即样本容量大于30)平均值差异性检验的方法。它是用标准正态分布的理论来推断差异发生的概率,从而比较两个平均数的差异是否显着。
除以上两种主要方法外,还有F检验和卡方检验。
⑻ 假设检验的基本步骤是什么
什么是假设检验:假设检验(Hypothesis Testing)是数理统计学中根据一定假设条件由样本推断总体的一种方法。具体作法是:根据问题的需要对所研究的总体作某种假设,记作H0;选取合适的统计量,这个统计量的选取要使得在假设H0成立时,其分布为已知;由实测的样本,计算出统计量的值,并根据预先给定的显着性水平进行检验,作出拒绝或接受假设H0的判断。常用的假设检验方法有u—检验法、t检验法、χ2检验法(卡方检验)、F—检验法,秩和检验等。
假设检验的基本步骤如下:
1、提出检验假设又称无效假设,符号是H0;备择假设的符号是H1。
H0:样本与总体或样本与样本间的差异是由抽样误差引起的;
H1:样本与总体或样本与样本间存在本质差异;
预先设定的检验水准为0.05;当检验假设为真,但被错误地拒绝的概率,记作α,通常取α=0.05或α=0.01。
2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如X2值、t值等。根据资料的类型和特点,可分别选用Z检验,T检验,秩和检验和卡方检验等。
3、根据统计量的大小及其分布确定检验假设成立的可能性P的大小并判断结果。若P>α,结论为按α所取水准不显着,不拒绝H0,即认为差别很可能是由于抽样误差造成的,在统计上不成立;如果P≤α,结论为按所取α水准显着,拒绝H0,接受H1,则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。P值的大小一般可通过查阅相应的界值表得到。
教学中的做法:
1.根据实际情况提出原假设和备择假设;
2.根据假设的特征,选择合适的检验统计量;
3.根据样本观察值,计算检验统计量的观察值(obs);
4.选择许容显着性水平,并根据相应的统计量的统计分布表查出相应的临界值(ctrit);
5.根据检验统计量观察值的位置决定原假设取舍。
⑼ 假设检验的步骤有以下哪些
什么是假设检验:假设检验(Hypothesis Testing)是数理统计学中根据一定假设条件由样本推断总体的一种方法。具体作法是:根据问题的需要对所研究的总体作某种假设,记作H0;选取合适的统计量,这个统计量的选取要使得在假设H0成立时,其分布为已知;由实测的样本,计算出统计量的值,并根据预先给定的显着性水平进行检验,作出拒绝或接受假设H0的判断。常用的假设检验方法有u—检验法、t检验法、χ2检验法(卡方检验)、F—检验法,秩和检验等。
假设检验的基本步骤如下:1、提出检验假设又称无效假设,符号是H0;备择假设的符号是H1。H0:样本与总体或样本与样本间的差异是由抽样误差引起的;H1:样本与总体或样本与样本间存在本质差异;预先设定的检验水准为0.05;当检验假设为真,但被错误地拒绝的概率,记作α,通常取α=0.05或α=0.01。
2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如X2值、t值等。根据资料的类型和特点,可分别选用Z检验,T检验,秩和检验和卡方检验等。
3、根据统计量的大小及其分布确定检验假设成立的可能性P的大小并判断结果。若P>α,结论为按α所取水准不显着,不拒绝H0,即认为差别很可能是由于抽样误差造成的,在统计上不成立;如果P≤α,结论为按所取α水准显着,拒绝H0,接受H1,则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。P值的大小一般可通过查阅相应的界值表得到。
教学中的做法:1.根据实际情况提出原假设和备择假设;2.根据假设的特征,选择合适的检验统计量;3.根据样本观察值,计算检验统计量的观察值(obs);4.选择许容显着性水平,并根据相应的统计量的统计分布表查出相应的临界值(ctrit);5.根据检验统计量观察值的位置决定原假设取舍。
⑽ 什么是假设检验,假设检验的基本步骤
假设检验是推论统计中用于检验统计假设的一种方法。而“统计假设”是可通过观察一组随机变量的模型进行检验的科学假说。一旦能估计未知参数,就会希望根据结果对未知的真正参数值做出适当的推论。
假设检验基本步骤:
1、提出检验假设又称无效假设,符号是H0;备择假设的符号是H1。
H0:样本与总体或样本与样本间的差异是由抽样误差引起的;
H1:样本与总体或样本与样本间存在本质差异;
预先设定的检验水准为0.05;当检验假设为真,但被错误地拒绝的概率,记作α,通常取α=0.05或α=0.01。
2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如X2值、t值等。根据资料的类型和特点,可分别选用Z检验,T检验,秩和检验和卡方检验等。
3、根据统计量的大小及其分布确定检验假设成立的可能性P的大小并判断结果。若P>α,结论为按α所取水准不显着,不拒绝H0,即认为差别很可能是由于抽样误差造成的,在统计上不成立。
如果P≤α,结论为按所取α水准显着,拒绝H0,接受H1,则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。P值的大小一般可通过查阅相应的界值表得到。
教学中的做法:
1.根据实际情况提出原假设和备择假设;
2.根据假设的特征,选择合适的检验统计量;
3.根据样本观察值,计算检验统计量的观察值(obs);
4.选择许容显着性水平,并根据相应的统计量的统计分布表查出相应的临界值(ctrit);
5.根据检验统计量观察值的位置决定原假设取舍。
(10)计量资料假设检验的方法有哪些扩展阅读:
假设检验注意的问题:
1、做假设检验之前,应注意资料本身是否有可比性。
2、当差别有统计学意义时应注意这样的差别在实际应用中有无意义。
3、根据资料类型和特点选用正确的假设检验方法。
4、根据专业及经验确定是选用单侧检验还是双侧检验。
5、当检验结果为拒绝无效假设时,应注意有发生I类错误的可能性,即错误地拒绝了本身成立的H0,发生这种错误的可能性预先是知道的,即检验水准那么大。
当检验结果为不拒绝无效假设时,应注意有发生II类错误的可能性,即仍有可能错误地接受了本身就不成立的H0,发生这种错误的可能性预先是不知道的,但与样本含量和I类错误的大小有关系。
6、判断结论时不能绝对化,应注意无论接受或拒绝检验假设,都有判断错误的可能性。
7、报告结论时是应注意说明所用的统计量,检验的单双侧及P值的确切范围。