A. 乘法简便计算的方法规律
乘法(multiplication),是指将相同的数加起来的快捷方式。其运算结果称为积,“x”是乘号。从哲学角度解析,乘法是加法的量变导致的质变结果。整数(包括负数),有理数(分数)和实数的乘法由这个基本定义的系统泛化来定义。
乘法也可以被视为计算排列在矩形(整数)中的对象或查找其边长度给定的矩形的区域。 矩形的区域不取决于首先测量哪一侧,这说明了交换属性。 两种测量的产物是一种新型的测量,例如,将矩形的两边的长度相乘给出其面积,这是尺寸分析的主题。
乘法是四则运算之一
例如4乘5,就是4增加了5倍率,也可以说成5个4连加。
使用铅笔和纸张乘数的常用方法需要一个小数字(通常为0到9的任意两个数字)的存储或查询产品的乘法表,但是一种农民乘法算法的方法不是。
将数字乘以多于几位小数位是繁琐而且容易出错的。发明了通用对数以简化这种计算。幻灯片规则允许数字快速乘以大约三个准确度的地方。从二十世纪初开始,机械计算器,如Marchant,自动倍增多达10位数。现代电子计算机和计算器大大减少了用手倍增的需要。
3×5表示5个3相加
5x3表示3个5相加。
注意:1.在如上乘法表示什么中,常把乘号后面的因数做为乘号前因数的倍数。
2.参见wiki中对乘数和被乘数的定义
另:乘法的新意义:乘法不是加法的简单记法
Ⅰ 乘法原理:如果因变量f与自变量x1,x2,x3,….xn之间存在直接正比关系并且每个自变量存在质的不同,缺少任何一个自变量因变量f就失去其意义,则为乘法。
在概率论中,一个事件,出现结果需要分n个步骤,第1个步骤包括M1个不同的结果,第2个步骤包括M2个不同的结果,……,第n个步骤包括Mn个不同的结果。那么这个事件可能出现N=M1×M2×M3×……×Mn个不同的结果。
Ⅱ 加法原理:如果因变量f与自变量(z1,z2,z3…, zn)之间存在直接正比关系并且每个自变量存在相同的质,缺少任何一个自变量因变量f仍然有其意义,则为加法。
在概率论中,一个事件,出现的结果包括n类结果,第1类结果包括M1个不同的结果,第2类结果包括M2个不同的结果,……,第n类结果包括Mn个不同的结果,那么这个事件可能出现N=M1+M2+M3+……+Mn个不同的结果。
以上所说的质是按照自变量的作用来划分的。
此原理是逻辑乘法和逻辑加法的定量表述。
法则
两数相乘,同号得正,异号得负,并把绝对值相乘。
运算定律
整数的乘法运算满足:交换律,结合律, 分配律,消去律。
随着数学的发展, 运算的对象从整数发展为更一般群。
群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是哈密尔顿发现的四元数群。 但是结合律仍然满足。
1.乘法交换律: ,注:字母与字母相乘,乘号不用写,或者可以写成·。
2.乘法结合律: ,
3.乘法分配律: 。
B. 学习乘除法有什么最简便的方法
乘法口诀需要记忆 不能根据口诀计算的乘法 需要用列竖式的办法笔算
除法可以先根据乘法口诀反着求商 同样不能直接口算的式子也要学会竖式笔算
这两种计算中间还可以考虑运算性质 乘法里积的变化规律:一个因数不变,另一个因数乘几或除以几(0除外),积也乘或除以几 如 知道2x5=10 那么20x5就可以直接把10扩大10倍=100
商不变的性质:被除数和除数同时乘或除以一个相同的数(0除外),商不变
如9除以3=3 那么90除以30=3
一、结合法
一个数连续乘两个一位数,可根据情况改写成用这个数乘这两个数的积的形式,使计算简便。
示例:
计算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在计算时,添加一个小括号可以使计算简便。因为括号前是乘号,所以括号内不变号。
二、分解法
一个数乘一个两位数,可根据情况把这个两位数分解成两个一位数相乘的形式,再用这个数连续乘两个一位数,使计算简便。
示例:
计算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
将18分解成2×9的形式,再将括号去掉,使计算简便。
三、拆数法
有些题目,如果一步一步地进行计算,比较麻烦,我们可以根据因数及其他数的特征,灵活运用拆数法进行简便计算。
示例:
计算:99×99+199
(1)在计算时,可以把199写成99+100的形式,由此得到第一种简便算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99写成100-1的形式,199写成100+(100-1)的形式,可以得到第二种简便算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改数法
有些题目,可以根据情况把其中的某个数进行转化,创造条件化繁为简。
示例:
计算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48转化成4×12的形式,使计算简便。
数学乘法运算定律
整数的乘法运算满足:交换律,结合律,分配律,消去律。
随着数学的发展, 运算的对象从整数发展为更一般群。
群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是哈密尔顿发现的四元数群。 但是结合律仍然满足。
1、乘法交换律:ab=ba,注:字母与字母相乘,乘号不用写,或者可以写成“·”。
2、乘法结合律:(ab)c=a(bc)
3、乘法分配律:(a+b)c=ac+bc
D. 乘除混合简便运算方法
这个性质在除法的巧算中作用强大,使用商不变的性质可以使除数变为整十、整百、整千的数,再做除法时就简便多了。一般在除数是5、25、125或一些类似的数字时采用这一性质较多。
和加减混合式的运算中,数字可以带着符号“搬家”类似,在乘除混合运算中,乘数和除数都可以带符号“搬家”。
例2 计算 540×29÷36
=540÷36×29
=15×29
=435
计算这个题时,如果按照运算顺序进行,第一步得到的乘积会比较大,进而再算除法时计算比较复杂。相反如果先计算除法再算乘法则计算量会减少很多。
E. 加减乘除简便运算法则定律
在数学中,有关加减乘除简算法则定律的计算方法及技巧如下,可以参考一下:
加法交换律:a+b+c=a+c+b。
加法结合律:a+b+c=a+(b+c)。
减法交换侓:a-b-c=a-c-b
减法结合侓:a-b-c=a-(b+c)。
乘法交换律:a×b=b×a。
乘法结合律(a×b)×c=a×(b×c)。
乘法分配律:(a+b)×c=a×c+b×c。
加减乘除运算法则定律
乘法分配律
两个数的和(差)同一个数相乘,可以先把两个加数(减数)分别同这个数相乘,再把两个积相加(减),积不变。
字母表达是:a×(b+c)=a×b+a×c
【a×(b-c)=a×b-a×c】
或:a×b+a×c=a×(b+c)
【a×b-a×c=a×(b-c)】
加减计算法则
1.整数加、减计算法则:
1)要把相同数位对齐,再把相同计数单位上的数相加或相减;
2)哪一位满十就向前一位进。
2.小数加、减法的计算法则:
1)计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),
2)再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。
(得数的小数部分末尾有0,一般要把0去掉。)
3.分数加、减计算法则:
1)分母相同时,只把分子相加、减,分母不变;
2)分母不相同时,要先通分成同分母分数再相加、减。
F. 小数乘除法的简便运算
小数乘除法的简便运算例子41.2×12+38.8×12
解题思路:四则运算规则(按顺序计算,先算乘除后算加减,有括号先算括号,有乘方先算乘方)即脱式运算(递等式计算)需在该原则前提下进行
解题过程:
41.2×12+38.8×12
=(41.2+38.8)×12
=80×12
=960
(6)乘除简便运算的解题方法扩展阅读\竖式计算-计算结果:先将两乘数末位对齐,然后分别使用第二个乘数,由末位起对每一位数依次乘上一个乘数,最后将所计算结果累加即为乘积,如果乘数为小数可先将其扩大相应的倍数,最后乘积在缩小相应的倍数;
解题过程:
步骤一:2×80=160
步骤二:1×80=800
根据以上计算结果相加为960
存疑请追问,满意请采纳
G. 数学简便计算,有哪几种方法
简便计算主要有三大方法,分别是加减凑整、分组凑整、提公因数法。
它采用数学计算中的拆分凑整思想,通过四则运算规律,从而简化计算。
就像68+77=?
大多数人不一定立刻能算出结果,
如果换成70+75=?
相信每一个人都可以一口算出和是145。
这里其实就是把77拆分成2+75,
68+77
=68+2+75
=70+75
=145
遇见复杂的计算式时,
先观察有没有可能凑整,
凑成整十整百之后再进行计算,
不仅简便,而且避免计算出错。
①加减凑整
【例题1】999+99+29+9+4=?
题中999,99,29,9这四个数字与整数1000,100,30,10都是相差1,4就可以拆分成1+1+1+1,把这4个1补到999,99,29,9上,原式就可以简化成:
999+99+29+9+4
=999+99+29+9+1+1+1+1
=999+1+99+1+29+1+9+1
=1000+100+30+10
=1140
【例题2】5999+499+299+19=?
看完例1,再来看看例2,还是末位都是9,自然要用我们的凑整法了,不过稍有不同,因为例2中没有4来拆分成1+1+1+1。
没有枪没有炮,自己去创造!
先把它加上1+1+1+1,然后再减去4,不就相当于式子加了一个0吗?
5999+499+299+19
=5999+1+499+1+299+1+19+1-4
=6000+500+300+20-4
=6816
②分组凑整
在只有加减法的计算题中,将算式中的各项重新分下组凑整,也可以使计算非常方便。
【例题3】100-95+92-89+86-83+80-77=?
题目中的两位数加减混合运算,硬算是非常费劲的,但是似乎又不能拆分凑整,再观察题目可以发现从第2个数95起,后面的数都比前一个小3。
根据加法减法运算性质,我们给相邻的项加上括号。
100-95+92-89+86-83+80-77
=(100-95)+(92-89)+(86-83)+(80-77)
=5+3+3+3
=14
凑整法不仅可以用在加减计算中,乘除加减混合运算也常常会考到。
③提取公因数法
这就需要用到乘法分配律提取公因数,
又称为提取公因数法。
如果没有公因数,我们可以采取乘法结合律变化出公因数。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
【例题4】47.9x6.6+529x0.34=?
很明显题目中的6.6+3.4=10,我们想办法凑出一个3.4,这就用到了a×b=(a×10)×(b÷10)。但是即使10凑出来,仍然不能提取公因数来简便计算,这就得用到乘法分配律,52.9x3.4=(47.9+5)x3.4,创造出一个47.9,方便我们提取公因数。
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+(47.9+5)x3.4
=47.9x(6.6+3.4)+17
=496
简便计算的考察重点在于四则运算规律的灵活运用,方法掌握的基础上,对于四则运算规律必须牢记在心,才能更好地理解运用。
小数乘法的简便运算
一、乘法交换律与结合律的运用。
提示1: 以下计算中,有的需要把一个小数拆成两个数相乘,要注意拆分后两数相乘的大小应该与原数相等,特别是小数的位数。如3.2=0.8×4
3.2=0.4×8 0.32=0.04×8 0.32=0.08×4 5.6=0.8×7 5.6=0.7×8
0.56 =0.07×8 0.56 =0.08×7 0.48=0.12×4 0.48=0.04×12
提示2: 应用乘法结合律解题的口诀是 连乘用结合
提示3: 应用乘法结合律解题的格式是a×b×c=a×(b×c)最后一个步骤是“×”,不要看成是“+”. 如 2.5×0.48=2.5×0.04×12=0.1×12=1.2
A组 4.56×0.4×2.5 12.5×2.7×0.8 12.5×3.2×0.25
B组 2.5×0.48 12.5×5.6 25×0.36
二、乘法分配律的运用。
提示1: A组中的一个因数都具备一个特点,都接近整数1、10、100等,这样的数就可以拆分成两个数相加或者相减。
如 10.4=(10+0.4) 9.9=(10-0.9) 0.99=(10-0.01)
但也有这样的数 8.8=(8+0.8) 4.4=(4+0.4) 0.48=(0.4+0.08)
提示2: 应用乘法分配律解题的口诀是 乘加乘减用分配
提示3: 应用乘法分配律解题的格式是(a+b)×c=a×c+b×c最后一个步骤是“+”,不要看成是“×”.
如 2.5×0.48=2.5×(0.4+0.08)=2.5×0.4+2.5×0.08=1 + 0.2=1.2
不是 =1 + 0.2= 2
提示4: 应用乘法分配律解题的最后一步,有时是数字比较大的两个数相加减,口算容易出错,这时就要打草稿竖式计算。
A组 0.25×10.4 12.5×8.8 9.9×0.35
B组 3.7×1.8-2.7×1.8 95.7×0.28+6.3×0.28-0.28×2 1.08×9+1.08
三、比较乘法结合律与分配律在简便运算时的区别。
下面各题用两种方法简算。
12.5×8.8 12.5×8.8 0.25×4.8 0.25×4.8
四、变一变,能简算。
48×0.56+44×0.48
我来试一试:
0.279×343+0.657×279 0.264×519+264×0.481 9.16×1.53-0.053×91.6
五、拓展提高。
99.99×0.8+11.11×2.8 314×0.043+3.14×7.2-31.4×0.15
小数除法的简便运算
小数除法的简便计算与整数除法的简便计算一样,用到的是除法性质。
除法性质1、A ÷ B ÷ C = A ÷ ( B × C )
如:42÷2.8 =42÷( 0.7 × 4 )= 42 ÷ 0.7 ÷ 4 = 60 ÷ 4 = 15
如:420÷2.5÷4 = 420÷(2.5×4 )= 420 ÷ 10 = 42
除法性质2、 (a-b)÷c=a÷c-b÷c
除法性质3、 A ÷ ( B ÷ C ) = A ÷ B × C
除法性质4、 A × ( B ÷ C ) = A × B ÷ C
小数乘除法的递等式计算
小数乘除法的递等式计算方法与整数的一样,能简便的要简便,
但也有的是不能简便比如: 3.6+6.4×0.5 不能掉进先加后乘的陷阱里。
3.6×5+15×6.4 不能掉进应用乘法分配率的陷阱里。
I. 简便计算题乘除法
乘法的简便运算技巧:
增补简便运算。对数字进行补增或差分。目的是形成后几位为0的整数,如40、 567900等。
位数差分。将数字差分为各个位数,如56789=50000+6000+700+80+9。利用乘法运算性质,分别相乘。这种方法运算简单,但需要注意的是若乘号前后数字均为复杂的多位数,该方法虽然简化的乘法运算,但却增加了加法运算难度。
除法的简便运算技巧
将除法转化为分数,对分子、分母同时提取公约数,减少多位数运算难度。
差分分子,形成多个由分母倍数组成的多项式加法运算。例如 768/8=(800+8-40)/8.
当分子小于分母时,也可以考虑将分子、分母上下倒置,差分新分子,计算结果。但须注意倒置后的结果是原题结果的倒数。