⑴ 怎样比较两个数的大小
数的大小比较有以下几种方法:
1、先看位数,位数多的数大
比如:100大于20,因为100有3位数,而20只有2位数
2、位数相同,从最高位看起,相同数位上的数大那个数就大。
比如:320大于310,位数相同,最高位百位都是3,所以接着看下一位十位,320的十位是2,310的十位是1,2>1,因此320大于310。
1、先比较两个数的整数部分,整数部分大的那个数就大;
比如:6.1大于5.9,因为6.1整数部分是6,5.9整数部分是5,6>5,因此6.1大于5.9。
2、整数部分相同,再看它们的小数部分,从高位看起,依数位比较,相同数位上的数大的那个数就大。
比如:0.0223大于0.0199。
分母相同的分数,分子大的分数大;分子相同的分数,分母小的分数大;分母不同的分数,先通分在比较。
比如:6/9大于5/9 |注意:“x/y”格式代表“y分之x”
1、比较两个根式(根式外没有数字)根号下的数字,根号下数字大的,根式也大。
比如:√3大于√2
2、若根号外有数字,则先把根号外的数字平方后放进根号里面(乘以根号内的数字),再通过以上方法比较。
比如:3√2大于2√3
3√2中,把3放进根号内,式子变成√(3×3×2)=√18
2√3中,把2放进根号内,式子变成√(2×2×3)=√12
因此3√2大于2√3
万能比较公式(作差法):
假设给定两个数x和y,若要判断它们之间的大小关系,则可以使用作差法。具体如下:
已知x,y两个数,作x-y,若x-y>0,则通过不等式的左右数字移动可得x>y。同理若x-y<0,
则x<y。
举例:判断 3/8 与 1/3 的大小。
解:令3/8-1/3,则
3/8-1/3=9/24-8/24=1/24
由于(1/24)>0,因此3/8>1/3。
⑵ 比较两个数的大小有哪几种方法
数的大小比较有以下几种方法:
1、先看位数,位数多的数大
比如:100大于20,因为100有3位数,而20只有2位数
2、位数相同,从最高位看起,相同数位上的数大那个数就大。
比如:320大于310,位数相同,最高位百位都是3,所以接着看下一位十位,320的十位是2,310的十位是1,2>1,因此320大于310。
1、先比较两个数的整数部分,整数部分大的那个数就大;
比如:6.1大于5.9,因为6.1整数部分是6,5.9整数部分是5,6>5,因此6.1大于5.9。
2、整数部分相同,再看它们的小数部分,从高位看起,依数位比较,相同数位上的数大的那个数就大。
比如:0.0223大于0.0199。
分母相同的分数,分子大的分数大;分子相同的分数,分母小的分数大;分母不同的分数,先通分在比较。
比如:6/9大于5/9 |注意:“x/y”格式代表“y分之x”
1、比较两个根式(根式外没有数字)根号下的数字,根号下数字大的,根式也大。
比如:√3大于√2
2、若根号外有数字,则先把根号外的数字平方后放进根号里面(乘以根号内的数字),再通过以上方法比较。
比如:3√2大于2√3
3√2中,把3放进根号内,式子变成√(3×3×2)=√18
2√3中,把2放进根号内,式子变成√(2×2×3)=√12
因此3√2大于2√3
万能比较公式(作差法):
假设给定两个数x和y,若要判断它们之间的大小关系,则可以使用作差法。具体如下:
已知x,y两个数,作x-y,若x-y>0,则通过不等式的左右数字移动可得x>y。同理若x-y<0,
则x<y。
举例:判断 3/8 与 1/3 的大小。
解:令3/8-1/3,则
3/8-1/3=9/24-8/24=1/24
由于(1/24)>0,因此3/8>1/3。
⑶ 两个数比较大小又哪些方法1
两个数比较大小有四种方法:
(1)相减法,差跟零进行比较,例如3-1>0,说明3大于1。
(2)相除法,商跟1进行比较,例如3÷2,商是3/2,大于1,说明3大于2。
(3)通分比较法,该方法适合两个分数间进行比较。例如3/5和1/2进行比较时,3/5通分为6/10,1/2通分为5/10,显然6/10大于5/10,所以3/5>1/2。
(4)分子相同时,比较分母的大小。例如1/2和1/3进行比较,因为2小于3,所以1/2大于1/3。