① 大数据安全问题有哪些类型
【导读】大数据运用有助于公司改善事务运营并猜测职业趋势。然而,这项技能可能会被歹意利用,如果没有适当的数据安全策略,黑客就有可能对用户隐私造成重大要挟。那么,大数据安全问题有哪些类型呢?
1、散布式体系
大数据解决方案将数据和操作散布在许多体系上,以便更快地进行处理和分析。这种散布式体系能够平衡负载,并避免发生单点故障。然而,这样的体系很简单遭到安全要挟,黑客只需攻击一个点就能够渗透到整个网络。因而,网络犯罪分子能够很简单地获取敏感数据并损坏连网体系。
2、数据拜访
大数据体系需求拜访控制来约束对敏感数据的拜访,否则,任何用户都能够拜访机密数据,有些用户可能将其用于歹意目的。此外,网络犯罪分子能够侵入与大数据体系相连的体系,以盗取敏感数据。因而,运用大数据的公司需求查看并验证每个用户的身份。
3、不正确的数据
网络犯罪分子能够经过操纵存储的数据来影响大数据体系的精确性。为此,网络罪犯分子能够创立虚伪数据,并将这些数据提供给大数据体系,例如,医疗机构能够运用大数据体系来研究患者的病历,而黑客能够修正此数据以生成不正确的诊断成果。这种有缺陷的成果不简单被发现,公司可能会持续运用不精确的数据。此类网络攻击会严重影响数据完整性和大数据体系的性能。
4、侵略隐私权
大数据体系通常包括机密数据,这是许多人十分关怀的问题。这样的大数据隐私要挟现已被全球的专家们评论过了。此外,网络犯罪分子经常攻击大数据体系,以损坏敏感数据。
以上就是小编今天给大家整理分享关于“大数据安全问题有哪些类型?”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。
② 大数据安全问题及应对思路研究
大数据安全问题及应对思路研究
随着互联网、物联网、云计算等技术的快速发展,全球数据量出现爆炸式增长。与此同时,云计算为这些海量的多样化数据提供了存储和运算平台,分布式计算等数据挖掘技术又使得大数据分析规律、研判趋势的能力大大增强。在大数据不断向各个行业渗透、深刻影响国家的政治、经济、民生和国防的同时,其安全问题也将对个人隐私、社会稳定和国家安全带来巨大的潜在威胁,如何应对面临巨大挑战。
一、大数据安全关键问题
随着数字化进程不断深入,大数据逐步渗透至金融、汽车、制造、医疗等各个传统行业,甚至到社会生活的每个角落,大数据安全问题影响也日益增大。
(一)国家数据资源大量流失。互联网海量数据的跨境流动,加剧了大数据作为国家战略资源的大量流失,全世界的各类海量数据正在不断汇总到美国,短期内还看不到转变的迹象。随着未来大数据的广泛应用,涉及国家安全的政府和公用事业领域的大量数据资源也将进一步开放,但目前由于相关配套法律法规和监管机制尚不健全,极有可能造成国家关键数据资源的流失。
(二)大数据环境下用户隐私安全威胁严重。随着大数据挖掘分析技术的不断发展,个人隐私保护和数据安全变得非常紧迫。一是大数据环境下人们对个人信息的控制权明显下降,导致个人数据能够被广泛、详实的收集和分析。二是大数据被应用于攻击手段,黑客可最大限度地收集更多有用信息,为发起攻击做准备,大数据分析让黑客的攻击更精准。三是随着大数据技术发展,更多信息可以用于个人身份识别,个人身份识别信息的范围界定困难,隐私保护的数据范围变得模糊。四是以往建立在“目的明确、事先同意、使用限制”等原则之上的个人信息保护制度,在大数据场景下变得越来越难以操作。
(三)基于大数据挖掘技术的国家安全威胁日益严重。大数据时代美国情报机构已抢占先机,美国通过遍布在全球的国安局监听机构如地面卫星站、国内监听站、海外监听站等采集各种信息,对采集到的海量数据进行快速预处理、解密还原、分析比对、深度挖掘,并生成相关情报,供上层决策。2013年6月底,美中情局前雇员斯诺登爆料,美国情报机关通过思科路由器对中国内地移动运营商、中国教育和科研计算机网等骨干网络实施长达4年之久的长期监控,以获取网内海量短信数据和流量数据。
(四)基础设施安全防护能力不足引发数据资产失控。一是基础通信网络关键产品缺乏自主可控,成为大数据安全缺口。我国运营企业网络中,国外厂商设备的现网存量很大,国外产品存在原生性后门等隐患,一旦被远程利用,大量数据信息存在被窃取的安全风险。二是我国大数据安全保障体系不健全,防御手段能力建设处于起步阶段,尚未建立起针对境外网络数据和流量的监测分析机制,对棱镜监听等深层次、复杂、高隐蔽性的安全威胁难以有效防御、发现和处置。
二、国外大数据安全相关举措及我国应对思路
目前世界各国均通过出台国家战略、促进数据融合与开放、加大资金投入等推动大数据应用。相比之下,各国在涉及大数据安全方面的保障举措则起刚刚起步,主要集中在通过立法加强对隐私数据的保护。德国在2009年对《联邦数据保护法》进行修改并生效,约束范围包括互联网等电子通信领域,旨在防止因个人信息泄露导致的侵犯隐私行为;印度在2012年批准国家数据共享和开放政策的同时,通过拟定非共享数据清单以保护涉及国家安全、公民隐私、商业秘密和知识产权等数据信息;美国在2014年5月发布《大数据:把握机遇,守护价值》白皮书表示,在大数据发挥正面价值的同时,应该警惕大数据应用对隐私、公平等长远价值带来的负面影响,建议推进消费者隐私法案、通过全国数据泄露立法、修订电子通信隐私法案等。
我国在布局、鼓励和推动大数据发展应用的同时,也应提早谋划、积极应对大数据带来的安全挑战,从战略制定、法律法规、基础设施防护等方面应对大数据安全问题。
(一)将大数据资源保护上升为国家战略,建立分级分类安全管理机制。一是把数据资源视为国家战略资源,将大数据资源保护纳入到国家网络空间安全战略框架中,构建大数据环境下的信息安全体系,提高应急处置能力和安全防范能力,提升服务能力和运作效率。二是通过国家层面的战略布局,明确大数据资源保护的整体规划和近远期重点工作。三是对国内大数据资源按实施分级分类安全保护思路,保障数据安全、可靠,积极开展大数据安全风险评估工作,针对不同级别大数据特点加强安全防范。五是尽快制定不同级别的大数据采集、存储、备份、迁移、处理和发布等关键环节的安全规范和标准,配套完善相应的监管措施。
(二)完善法律法规,加大个人信息保护监管力度。一是积极推动个人信息保护法律的立法工作,探索通过技术标准、行业自律等手段解决法律出台前的个人信息保护问题。加快《网络安全法》的出台,在《网络安全法》中对电信和互联网行业用户信息保护作出明确法律界定,为相关工作开展提供法律依据。二是加强对个人隐私保护的行政监管,同时要加大对侵害个人隐私行为的打击力度,建立对个人隐私保护的测评机制,推动大数据行业的自律和监督。
(三)加强国家信息基础设施保护,提升大数据安全保障与防范能力。一是促进技术研究和创新,通过加大财政支持力度,激励关系国家安全和稳定的政府和国有企事业单位采用安全可控的产品,提升我国基础设施关键设备的安全可控水平。二是加强大数据信息安全系统建设,针对大数据的收集、处理、分析、挖掘等过程设计与配置相应的安全产品,并组成统一的、可管控的安全系统,推动建立国家级、企业级的网络个人信息保护态势感知、监控预警、测评认证平台。三是充分利用大数据技术应对网络攻击,通过大数据处理技术实现对网络异常行为的识别和分析,基于大数据分析的智能驱动型安全模型,把被动的事后分析变成主动的事前防御;基于大数据的网络攻击追踪,实现对网络攻击行为的溯源。
以上是小编为大家分享的关于大数据安全问题及应对思路研究的相关内容,更多信息可以关注环球青藤分享更多干货
③ 大数据存在哪些安全问题
一、分布式体系
大数据解决方案将数据和操作分布在许多体系上,以便更快地进行处理和分析。这种分布式体系能够平衡负载,并避免发生单点故障。然而,这样的体系很容易遭到安全要挟,黑客只需进犯一个点就能够渗透到整个网络。
二、数据拜访
大数据体系需要拜访操控来限制对敏感数据的拜访,不然,任何用户都能够拜访秘要数据,有些用户可能将其用于恶意意图。此外,网络犯罪分子能够侵入与大数据体系相连的体系,以盗取敏感数据。
三、不正确的数据
网络犯罪分子能够通过操作存储的数据来影响大数据体系的准确性。为此,网络罪犯分子能够创建虚假数据,并将这些数据提供给大数据体系,例如,医疗机构能够使用大数据体系来研究患者的病历,而黑客能够修改此数据以生成不正确的确诊结果。
四、侵犯隐私权
大数据体系通常包括秘要数据,这是许多人非常关怀的问题。这样的大数据隐私要挟已经被全球的专家们评论过了。此外,网络犯罪分子经常进犯大数据体系,以损坏敏感数据。此类数据泄露已成为头条新闻,致使数百万人的敏感数据被盗。
五、云安全不足
大数据体系收集的数据通常存储在云中,这可能是一个潜在的安全要挟。网络罪犯分子已经损坏了许多闻名公司的云数据。如果存储的数据没有加密,而且没有适当的数据安全性,就会出现这些问题。
关于大数据存在哪些安全问题,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
④ 大数据安全问题 这六点你知道了吗
【导读】当涉及到大数据和分析时,列出企业应该远离的陷阱清单也同样重要,大多数组织为其成功实施项目工作,都已经制定了一套大数据的最佳做法。那么大数据安全问题有哪些?我们在进行大数据分析的时候需要注意什么呢?下面我们就来具体了解一下。
1、需要某些安全审核
在每个系统开发中,几乎都是需要安全审核的地方,特别是在大数据不安全的地方。但是,考虑到使用大数据已经带来了广泛的挑战,这些安全审核通常被忽略,这些审核只是添加到列表中的另一件事。这种态度与以下事实结合在一起:许多公司仍需要能够设计和实施此类安全审核的合格人员。
2、使访问变得困难
使大数据生态系统有效的另一个重要因素是粒度访问控制。根据等级、权限可以授予不同人员不同级别的主数据访问权限。名义上,访问控制使大数据更加安全。但是,随着组织使用大量数据,增加复杂的控制面板可能变得更加微妙,并可能为更多潜在漏洞打开门户。
3、分散的框架
使用大数据的公司可能需要在不同系统之间分布数据分析。例如,Hadoop是一种开放源代码软件,旨在在大数据生态系统中进行灵活和分散的计算。但是,该软件初根本没有安全性,因此在分散的框架中有效的安全性仍然是要实现的挑战。
4、实时合规
实时大数据分析在公司的竞争中越来越受欢迎。但是,实时实施这种工具更加复杂,并且还会产生大量的数据。
此类工具的开发方式应使它们在现实中不存在威胁时能够规避对违规行为的错误警告。因此,发现此类错误警告可能很耗时。他们分散了白帽黑客的注意力,使其免受真正的故障和攻击并浪费资源。
5、数据来源
找到我们的数据来源确实有助于确定违规的来源。你可以使用元数据来跟踪数据流。无论如何,即使对于大型公司,元数据管理也是一个自我战略问题。如果没有正确的框架,实时跟踪此类非结构化数据将是一个挑战。尽管这是一个持续存在的问题,但它并不是大数据问题。
6、使数据易受攻击
如今,所有数据都是数字化的,并且数量巨大,黑客始终可以在恶意内部人员的帮助下找到进入入侵的方式。如果他们以某种方式可以访问你的关键数据,他们可以根据自己的目的进行修改,甚至删除其中的一些数据。这就是为什么完全依赖物联网、大数据和实时数据分析的公司限制访问并采取某些步骤来检测假数据形成的原因。这是其数据保护协议的关键部分。
关于大数据安全问题,就介绍到这里了,如果您还想了解更多关于大数据工程师的技巧及素材等内容,可以通过其他文章进行学习,或者找专业的老师进行咨询了解,掌握自己的学习方向。
⑤ 大数据需留意的六个安全问题
1、使数据易受攻击
如今,所有数据都是数字化的,并且数量巨大,黑客始终可以在恶意内部人员的帮助下找到进入入侵的方式。如果他们以某种方式可以访问你的关键数据,他们可以根据自己的目的进行修改,甚至删除其中的一些数据。这就是为什么完全依赖物联网、大数据和实时数据分析的公司限制访问并采取某些步骤来检测假数据形成的原因。这是其数据保护协议的关键部分。
2、使访问变得困难
使大数据生态系统有效的另一个重要因素是粒度访问控制。根据等级、权限可以授予不同人员不同级别的主数据访问权限。名义上,访问控制使大数据更加安全。但是,随着组织使用大量数据,增加复杂的控制面板可能变得更加微妙,并可能为更多潜在漏洞打开门户。
3、需要某些安全审核
在每个系统开发中,几乎都是需要安全审核的地方,特别是在大数据不安全的地方。但是,考虑到使用大数据已经带来了广泛的挑战,这些安全审核通常被忽略,这些审核只是添加到列表中的另一件事。这种态度与以下事实结合在一起:许多公司仍需要能够设计和实施此类安全审核的合格人员。
4、分散的框架
使用大数据的公司可能需要在不同系统之间分布数据分析。例如,Hadoop是一种开放源代码软件,旨在在大数据生态系统中进行灵活和分散的计算。但是,该软件初根本没有安全性,因此在分散的框架中有效的安全性仍然是要实现的挑战。
5、数据来源
找到我们的数据来源确实有助于确定违规的来源。你可以使用元数据来跟踪数据流。无论如何,即使对于大型公司,元数据管理也是一个自我战略问题。如果没有正确的框架,实时跟踪此类非结构化数据将是一个挑战。尽管这是一个持续存在的问题,但它并不是大数据问题。
6、实时合规
实时大数据分析在公司的竞争中越来越受欢迎。但是,实时实施这种工具更加复杂,并且还会产生大量的数据。
此类工具的开发方式应使它们在现实中不存在威胁时能够规避对违规行为的错误警告。因此,发现此类错误警告可能很耗时。他们分散了白帽黑客的注意力,使其免受真正的故障和攻击并浪费资源。
关于大数据需留意的六个安全问题,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
⑥ 大数据安全的六大挑战
大数据安全的六大挑战_数据分析师考试
大数据的价值为大家公认。业界通常以4个“V”来概括大数据的基本特征——Volume(数据体量巨大)、Variety(数据类型繁多)、Value(价值密度低)、Velocity(处理速度快)。当你准备对大数据所带来的各种光鲜机遇大加利用的同时,请别忘记大数据也会引入新的安全威胁,存在于大数据时代“潘多拉魔盒”中的魔鬼可能会随时出现。
挑战一:大数据的巨大体量使得信息管理成本显着增加
4个“V”中的第一个“V”(Volume),描述了大数据之大,这些巨大、海量数据的管理问题是对每一个大数据运营者的最大挑战。在网络空间,大数据是更容易被“发现”的显着目标,大数据成为网络攻击的第一演兵场所。一方面,大量数据的集中存储增加了泄露风险,黑客的一次成功攻击能获得比以往更多的数据量,无形中降低了黑客的进攻成本,增加了“攻击收益”;另一方面,大数据意味着海量数据的汇集,这里面蕴藏着更复杂、更敏感、价值巨大的数据,这些数据会引来更多的潜在攻击者。
在大数据的消费者方面,公司在未来几年将处理更多的内部生成的数据。然而在许多组织中,不同的部门像财务、工程、生产、市场、IT等之间的信息仍然是孤立的,各部门之间相互设防,造成信息无法共享。那些能够在不破坏壁垒和部门现实优势的前提下更透明地沟通的公司将更具竞争优势。
【解决方案】 首先要找到有安全管理经验并受过大数据管理所需要技能培训的人员,尤其是在今天人力成本和培训成本不断上升的节奏中,这一定足以让许多CEO肝颤,但这些针对大数据管理人员的巨额教育和培训成本,是一种非常必要的开销。
与此同时,在流程的设计上,一定要将数据分散存储,任何一个存储单元被“黑客”攻破,都不可能拿到全集,同时对于不同安全域要进行准确的评估,像关键信息索引的保护一定要加强,“好钢用在刀刃上”,作为数据保全,能够应对部分设施的灾难性损毁。
挑战二:大数据的繁多类型使得信息有效性验证工作大大增加
4个“V”中的第二个“V”(Variety),描述了数据类型之多,大数据时代,由于不再拘泥于特定的数据收集模式,使得数据来自于多维空间,各种非结构化的数据与结构化的数据混杂在一起。
未来面临的挑战将会是从数据中提取需要的数据,很多组织将不得不接受的现实是,太多无用的信息造成的信息不足或信息不匹配。我们可以考虑这样的逻辑:依托于大数据进行算法处理得出预测,但是如果这些收集上来的数据本身有问题又该如何呢?也许大数据的数据规模可以使得我们无视一些偶然非人为的错误,但是如果有个敌手故意放出干扰数据呢?现在非常需要研究相关的算法来确保数据来源的有效性,尤其是比较强调数据有效性的大数据领域。
正是因为这个原因,对于正在收集和储存大量客户数据的公司来说,最显而易见的威胁就是在过去的几年里,存放于企业数据库中数以TB计,不断增加的客户数据是否真实可靠,依然有效。
众所周知,海量数据本身就蕴藏着价值,但是如何将有用的数据与没有价值的数据进行区分看起来是一个棘手的问题,甚至引发越来越多的安全问题。
【解决方案】 尝试尽可能使数据类型具体化,增加对数据更细粒度的了解,使数据本身更加细化,缩小数据的聚焦范围,定义数据的相关参数,数据的筛选要做得更加精致。与此同时,进一步健全特征库,加强数据的交叉验证,通过逻辑冲突去伪存真。
挑战三:大数据的低密度价值分布使得安全防御边界有所扩展
4个“V”中的第三个“V”(Value),描述了大数据单位数据的低价值。这种广种薄收似的价值量度,使得信息效能被摊薄了,大数据的安全预防与攻击事件的分析过程更加复杂,相当于安全管理范围被放大了。
大数据时代的安全与传统信息安全相比,变得更加复杂,具体体现在三个方面:一方面,大量的数据汇集,包括大量的企业运营数据、客户信息、个人的隐私和各种行为的细节记录,这些数据的集中存储增加了数据泄露风险;另一方面,因为一些敏感数据的所有权和使用权并没有被明确界定,很多基于大数据的分析都未考虑到其中涉及的个体隐私问题;再一方面,大数据对数据完整性、可用性和秘密性带来挑战,在防止数据丢失、被盗取、被滥用和被破坏上存在一定的技术难度,传统的安全工具不再像以前那么有用。
【解决方案】 确立有限管理边界,依据保护要求,加强重点保护,构建一体化的数据安全管理体系,遵循网络防护和数据自主预防并重的原则,并不是实施了全面的网络安全护理就能彻底解决大数据的安全问题,数据不丢失只是传统的边界网络安全的一个必要补充,我们还需要对大数据安全管理的盲区进行监控,只有将二者结合在一起,才是一个全面的一体化安全管理的解决方案
挑战四:大数据的快速处理要求使得独立决策的比例显着降低
“4个“V”中最后一个“V”(Velocity),决定了利用海量数据快速得出有用信息的属性。
大数据时代,对事物因果关系的关注,转变为对事物相关关系的关注。如果大数据系统只是一种辅助决策系统,这还不是最可怕的。事实上,今天大数据分析日益成为一项重要的业务决策流程,越来越多的决策结果来自于大数据的分析建议,对于领导者最艰难的事情之一,是让我的逻辑思考来做决定,还是由机器的数据分析做决定,可怕的是,今天看来,机器往往是正确的,这不得不让我们产生依赖。试想一下,如果收集的数据已经被修正过,或是系统逻辑已经被控制了呢!但是面对海量的数据收集、存储、管理、分析和共享,传统意义上的对错分析和奇偶较验已失去作用。
【解决方案】 在依靠大数据进行分析、决策的同时,还应辅助其他的传统决策支持系统,尽可能明智地使用数据所告诉我们的结果,让大数据为我们所用。但绝对不要片面地依赖于大数据系统。
挑战五:大数据独特的导入方式使得攻防双方地位的不对等性大大降低
在大数据时代,数据加工和存储链条上的时空先后顺序已被模糊,可扩展的数据联系使得隐私的保护更加困难。过去传统的安全防护工作,是先扎好篱笆、筑好墙,等待“黑客”的攻击,我们虽然不知道下一个“黑客”是谁,但我们一定知道,它是通过寻求新的漏洞,从前面逐层进入。守方在明处,但相比攻方有明显的压倒性优势。而在大数据时代,任何人都可以是信息的提供者和维护者,这种由先天的结构性导入设计所带来的变化,你很难知道“它”从哪里进来,“哪里”才是前沿。这种变化,使得攻、防双方的力量对比的不对等性大大下降。
同时,由于这种不对等性的降低,在我们用数据挖掘和数据分析等大数据技术获取有价值信息的同时,“黑客”也可以利用这些大数据技术发起新的攻击。“黑客”会最大限度地收集更多有用信息,比如社交网络、邮件、微博、电子商务、电话和家庭住址等信息,大数据分析使“黑客”的攻击更加精准。此外,“黑客”可能会同时控制上百万台傀儡机,利用大数据发起僵尸网络攻击。
【解决方案】 面对大数据所带来新的安全问题,有针对性地更新安全防护手段,增加新型防护手段,混合生产数据和经营数据,多种业务流并行,增加特征标识建设内容,增强对数据资源的管理和控制。
挑战六:大数据网络的相对开放性使得安全加固策略的复杂性有所降低
在大数据环境下,数据的使用者同时也是数据的创造者和供给者,数据间的联系是可持续扩展的,数据集是可以无限延伸的,上述原因就决定了关于大数据的应用策略要有新的变化,并要求大数据网络更加开放。大数据要对复杂多样的数据存储内容做出快速处理,这就要求很多时候,安全管理的敏感度和复杂度不能定得太高。此外,大数据强调广泛的参与性,这将倒逼系统管理者调低许多策略的安全级别。
当然,大数据的大小也影响到安全控制措施能否正确地执行,升级速度无法跟上数据量非线性增长的步伐,就会暴露大数据安全防护的漏洞。
【解决方案】 使用更加开放的分布式部署方式,采用更加灵活、更易于扩充的信息基础设施,基于威胁特征建立实时匹配检测,基于统一的时间源消除高级可持续攻击(APT)的可能性,精确控制大数据设计规模,削弱“黑客”可以利用的空间。
大数据时代已经到来,大数据已经产生出巨大影响力,并对我们的社会经济活动带来深刻影响。充分利用大数据技术来挖掘信息的巨大价值,从而实现并形成强有力的竞争优势,必将是一种趋势。面对大数据时代的六种安全挑战,如果我们能够予以足够重视,采取相应措施,将可以起到未雨绸缪的作用。
以上是小编为大家分享的关于大数据安全的六大挑战的相关内容,更多信息可以关注环球青藤分享更多干货
⑦ 大数据存在的安全问题有哪些
一、分布式系统
大数据解决方案将数据和操作分布在许多系统中,以实现更快的处理和分析。这种分布式系统可以平衡负载,避免单点故障。但是这样的系统容易受到安全威胁,黑客只要攻击一个点就可以渗透整个网络。
二.数据存取
大数据系统需要访问控制来限制对敏感数据的访问,否则,任何用户都可以访问机密数据,有些用户可能会出于恶意使用。此外,网络犯罪分子可以入侵与大数据系统相连的系统,窃取敏感数据。因此,使用大数据的公司需要检查和验证每个用户的身份。
三.数据不正确
网络犯罪分子可以通过操纵存储的数据来影响大数据系统的准确性。因此,网络犯罪分子可以创建虚假数据,并将这些数据提供给大数据系统。比如医疗机构可以利用大数据系统研究患者的病历,而黑客可以修改这些数据,产生不正确的诊断结果。
四.侵犯隐私
大数据系统通常包含机密数据,这是很多人非常关心的问题。这样的大数据隐私威胁已经被全世界的专家讨论过了。此外,网络犯罪分子经常攻击大数据系统以破坏敏感数据。这种数据泄露已经成为头条新闻,导致数百万人的敏感数据被盗。
五、云安全性不足
大数据系统收集的数据通常存储在云中,这可能是一个潜在的安全威胁。网络犯罪分子破坏了许多知名公司的云数据。如果存储的数据没有加密,并且没有适当的数据安全性,就会出现这些问题。
关于大数据存在的安全问题有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
⑧ 大数据应用存在哪些问题,采取哪些安全防护措施
目前我国大数据应用现存的一些问题主要有以下几点:
首先,大数据不是IT公司的专利。第一批国家统计局引入的战略合作伙伴,大多数还是聚焦在IT公司,其实不是只有IT公司才有大数据,如线下零售巨头企业在实体经济中积累了很大的数据资源,他们数据的深度和广度不亚于甚至超过互联网公司。
第二,拥有大数据的IT公司和非IT公司应该打破数据格局。国内巨头企业掌握着搜索和社交和消费的数据,本来是三方的数据汇总才能拼凑出比较完整的网上信息图谱,但是巨头公司们为了彼此的商业利益,并没有体现出数据合作的意愿,而是互相封杀,这将给社会数据的流动带来伤害。因此,在保证一定商业利益的基础上,巨头的眼光应该放远一点,打破数据割据。
第三,应该呼吁政府相关部门进一步开放市场,因为围绕大数据不管是应用还是创业,最核心的是要有数据的源头,然后才能进行采集、编辑,重新编制。现在大量的关于国民经济或者说民生的数据其实还在封闭状态,在工商部门、银行、保险、公安、医院、社保,包括电信运营商机构的手里。如何让这些数据流动起来,能让大家更方便,其实应该由政府带头实现等级制数据的开放共享。
⑨ 大数据存在的安全问题有哪些
【导读】互联网时代,数据已成为公司的重要资产,许多公司会使用大数据等现代技术来收集和处理数据。大数据的应用,有助于公司改善业务运营并预测行业趋势。那么,大数据存在的安全问题有哪些呢?今天就跟随小编一起来了解下吧!
一、分布式系统
大数据解决方案将数据和操作分布在许多系统中,以实现更快的处理和分析。这种分布式系统可以平衡负载,避免单点故障。但是这样的系统容易受到安全威胁,黑客只要攻击一个点就可以渗透整个网络。
二.数据存取
大数据系统需要访问控制来限制对敏感数据的访问,否则,任何用户都可以访问机密数据,有些用户可能会出于恶意使用。此外,网络犯罪分子可以入侵与大数据系统相连的系统,窃取敏感数据。因此,使用大数据的公司需要检查和验证每个用户的身份。
三.数据不正确
网络犯罪分子可以通过操纵存储的数据来影响大数据系统的准确性。因此,网络犯罪分子可以创建虚假数据,并将这些数据提供给大数据系统。比如医疗机构可以利用大数据系统研究患者的病历,而黑客可以修改这些数据,产生不正确的诊断结果。
四.侵犯隐私
大数据系统通常包含机密数据,这是很多人非常关心的问题。这样的大数据隐私威胁已经被全世界的专家讨论过了。此外,网络犯罪分子经常攻击大数据系统以破坏敏感数据。这种数据泄露已经成为头条新闻,导致数百万人的敏感数据被盗。
五、云安全性不足
大数据系统收集的数据通常存储在云中,这可能是一个潜在的安全威胁。网络犯罪分子破坏了许多知名公司的云数据。如果存储的数据没有加密,并且没有适当的数据安全性,就会出现这些问题。
以上就是小编今天给大家整理分享关于“大数据存在的安全问题有哪些?”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。
⑩ 大数据安全面临哪些挑战,如何解决
就是数据安全,怕数据泄露,因此要物理隔绝大数据集群。数据标签化,应用程序要安全审计、身份认证等等。