导航:首页 > 解决方法 > 谷胱甘肽的检测方法

谷胱甘肽的检测方法

发布时间:2022-11-18 15:08:13

⑴ 测定多肽浓度时,为什么谷胱甘肽可以作为标准样品

Bicinchoninicacid(BCA)法是近来广为应用的蛋白定量方法。其原理与Lowery法蛋白定量相似,即在碱性环境下蛋白质与Cu2+络合并将Cu2+还原成Cu1+。BCA与Cu1+结合形成稳定的紫蓝色复合物,在562nM处有高的光吸收值并与蛋白质浓度成正比,据此可测定蛋白质浓度。凯氏定氮法原理:蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,即为蛋白质含量。Brarford法原理:考马斯亮兰G-250染料,在酸性溶液中与蛋白质结合,使染料的最大吸收峰的位置(lmax),由465nm变为595nm,溶液的颜色也由棕黑色变为兰色。经研究认为,染料主要是与蛋白质中的碱性氨基酸(特别是精氨酸)和芳香族氨基酸残基相结合。在595nm下测定的吸光度值A595,与蛋白质浓度成正比。甲醛滴定法原理:水溶液中的氨基酸为兼性离子,因而不能直接用碱滴定氨基酸的羧基。甲醛可与氨基酸上的—N+H3结合,形成—NH—CH2OH、—N(CH2—OH)2等羟甲基衍生物,使N+H3上的H+游离出来,这样就可以用碱滴定N+H3放出H+,测出氨基氮,从而计算氨基酸的含量。综上,甲醛滴定法直接排除,因为是计算氨基酸含量的。BCA法和Brarford法原理对蛋白质中的某些氨基酸的要求比较严格,适用于大型蛋白的定量,而如果你是较短的多肽的话可能会有比较大误差。因此凯氏定氮法比较准确。

⑵ 谷胱甘肽的检测标准

Glutathionum
C10H17N3O6S Mr:307.3
DEFINITION
谷胱甘肽
定义描述
L-r谷氨酰基-L-半胱氨酰基甘氨酸
含量:按干燥品计算,98.0%-101.0%
性状
外观性状:白色或几乎白色结晶性粉末或无色的结晶。
溶解度:易溶于水,微溶于96%乙醇及二氯甲烷。
鉴别
A 比旋度符合特定的光学旋转测定(见测定项)。
B 红外吸收光谱检测(2.2.24)
对比:谷胱甘肽CRS.
测定
溶液S:取该品5.0g,蒸馏水R溶解并稀释至50ml。
溶液澄清度溶液S澄清(2.2.1),无色(2.2.2,Method II)
比旋度(2.2.7)-15.5~-17.5(干品物质)
取该品1.0g,蒸馏水R溶解并稀释至25.0ml。
有关物质采用毛细管电泳法(2.2.47)
溶液应临用前新鲜配制
毛细管
-材料:石英(未涂层)
-尺寸:有效长度0.5m,总长:0.6m,内径75 μm
温度:25℃
电解质溶液:取无水磷酸二氢钠R1.50g,加水R230.0ml,用磷酸R调节PH值为1.80。加水R稀释至150.0ml,检测PH值,如有必要,用磷酸R或氢氧化钠溶液R调节PH值。
检测:采用分光光度计在200 nm处检测
新毛细管的预处理:在首次进样前在压力138Kpa下用0.1mol/L盐酸溶液前冲洗毛细管20min,138Kpa压力下用水R冲洗10分钟已达到全平衡状态,用电解质溶液在350kpa条件下冲洗40min,在电压20kv条件下保持60min。
预处理的毛细管:138 kPa压力下,用电解质溶液冲洗毛细管40min;
批间冲洗:138 kPa压力下,依次用水R冲洗毛细管1min,0.1mol/L氢氧化钠溶液冲洗2min;水R冲洗1min,0.1mol/L盐酸溶液冲洗3min,最后用电解质溶液冲洗10min;
进样:3.45 kPa压力下维持5s;注入电解质溶液(空白溶液),对照溶液(b)、(c)和供试溶液a、b
迁移:电压为20KV
运行时间:45min
相对迁移率:相对于内标物质(约14min)
杂质A=约0.77
杂质B=约1.04;杂质E=约1.2
杂质C=约1.26;杂质D=约1.3
系统适用性
分辨率:内标物质产生的峰与对照溶液C中那个杂质B产生的峰之间最低为1.5,如有必要,使用稀氢氧化钠溶液上调PH值
峰-谷比:最低位2.5.其中:HP=杂质D产生的基线峰以上的高度
HV=对照溶液中谷胱甘肽产生的峰的分离曲线的最低点以上的高度
如有必要采用磷酸下调PH。
电泳法测定以上项目,供试溶液a在与内标物质在相同的迁移时间里没有出现峰(可用苯丙氨酸峰进行校正)
限度供试溶液B
校正面积:相对迁移时间除以所有峰面积之和
校正因子:
杂质A、B、E:
氯化物不得大于200ppm
取溶液S2.5ml,加水R稀释至15ml。
硫酸盐不得大于300ppm
取溶液S2.5ml,加蒸馏水R稀释至15ml
铵盐不得超过200ppm
铁不得超过10ppm

⑶ gsh-px(谷胱甘肽过氧化物酶)怎么测定

谷胱甘肽过氧化物酶可以催化GSH产生GSSG,而谷胱甘肽还原酶可以利用NADPH催化GSSG产生GSH,通过检测NADPH的减少量就可以计算出谷胱甘肽过氧化物酶的活力水平。在上述反应中谷胱甘肽过氧化物酶是整个反应体系的限速步骤,因此NADPH的减少量和谷胱甘肽过氧化物酶的活力线性相关。
具体可以购买谷胱甘肽过氧化物酶检测试剂盒进行测定!

⑷ 急!!!!!!!!!植物谷胱甘肽还原酶如何检测,跪求检测的步骤和方法。

希尔(Hill)反应
将谷胱甘肽还原酶GS-SG、NADP和叶绿体混合一起用光照射,就会放氧

详细请在 网络 搜索 希尔反应

⑸ 在植物体内测定半胱氨酸和谷胱甘肽含量相对于动物血液中测定的方法有什么困难能具体说说吗

半胱氨酸可能的分子式为:C3H9O3NS. 已知:谷胱甘肽(C10H17O6N3S)是三肽,所以形成它的三个氨基酸的各原子数要加上三个水的原子数,因为形成它要脱去三个水,也就是6个H和3个O;所以谷胱甘肽(C10H17O6N3S)再加6个H和3个O就是C10H23O9N3S, 用它减去谷氨酸(C5H9O4N)、甘氨酸(C2H5O2N),剩下的就是半胱氨酸分子式, 即C3H9O3NS.

⑹ 细胞凋亡的早期检测方法哪些

1、PS(磷脂酰丝氨酸)在胞外膜分布的检测
PS从胞膜内侧转移到外侧现象是在细胞凋亡的早期即可发生标志。AnnexinV是一种钙依赖性的磷脂结合蛋白,能专一性的结合暴露在胞膜外侧的PS,使用荧光素标记的AnnexinV 蛋白(如Annexin V-FITC)即可检测细胞凋亡。由于这是一种凋亡早期的活细胞检测(悬浮细胞和贴壁细胞都适用),可与DNA染料或别的晚期检测方法相结合来标记凋亡的发展阶段。操作简便快速,10分钟就可完成检测。灵敏度高,可作为流式方法分析凋亡细胞的基础。
2、细胞内氧化还原状态改变的检测
正常状态下,谷胱甘肽(GSH)作为细胞内的一种重要的氧化还原缓冲剂。细胞内有毒的氧化物通过被GSH还原而清除,氧化型的GSH又可被GSH还原酶迅速还原。这一反应在线粒体中尤为重要,许多呼吸作用中副产物的氧化损伤将由此被消化除。在细胞膜中有可被凋亡信号启动的ATP依赖的GSH转移系统。当细胞内GSH的排除非常活跃时,细胞液就由还原环境转为氧化环境,这可能导致了凋亡早期细胞线粒体膜电位的降低,从而使细胞色素C(三羧酸循环中的重要组分)从线粒体内转移到细胞液中,启动凋亡效应器caspase的级联反应。
3、细胞色素C的检测
细胞色素C作为一种信号物质,在细胞凋亡中发挥着重要的作用。正常情况下,它存在于线粒体内膜和外膜之间的腔中,而不存在于胞浆内。凋亡信号刺激后可使其从线粒体释放到胞浆中,结合Apaf-1后而启动caspase级联活化反应,首先可激活caspase-9,后者再激活caspase-3和下游的其它caspase分子。凋亡发生的早期,细胞色素C泄漏到胞浆中,检测胞浆中细胞色素c的含量可反映细胞的早期凋亡。
4、线粒体膜电位变化的检测
在细胞凋亡的早期,线粒体在形态学上没有明显变化。但线粒体可发生很多生理生化的改变。例如在受到凋亡诱导后,线粒体的转膜电位发生变化,导致膜穿透性改变。MitoSensorTM是一种阳离子染色剂,对此膜电位改变非常敏感,可呈现出不同的荧光染色。正常细胞中,它在线粒体中形成聚集体,发出强烈的红色荧光。凋亡细胞中,因线粒体跨膜电位改变,它则以单体形式停留于胞浆中,发出绿色荧光。用荧光显微镜或流式细胞仪可清楚地分辨这两种不同的荧光信号。

⑺ G6PD测定方法及正常值

抽血去检验就可以了,不是所有医院都能做.去三甲医院好一些。

正常值是1300-4000U/L

小孩出生两个多月得急症去世了,后来才知道是肝炎病毒引发G6PD缺乏症导致,早做检查很重要.

⑻ 什么是植物活性肽

现代营养学研究发现:人类摄食蛋白质经消化道的酶作用后,大多是以低肽形式消化吸收的,以游离氨基酸形式吸收的比例很小。进一步的试验又揭示了肽比游离氨基酸消化更快、吸收更多,表明肽的生物效价和营养价值比游离氨基酸更高。这也正是活性肽的无穷魅力所在。

生物活性肽是蛋白质中20个天然氨基酸以不同组成和排列方式构成的从二肽到复杂的线性、环形结构的不同肽类的总称,是源于蛋白质的多功能化合物。活性肽具有多种人体代谢和生理调节功能,易消化吸收,有促进免疫、激素调节、抗菌、抗病毒、降血压、降血脂等作用,食用安全性极高,是当前国际食品界最热门的研究课题和极具发展前景的功能因子。

几种重要活性肽研究简介

乳肽 国际上在乳肽食品的开发研究和生产方面以日本森永乳业公司为代表。早在20世纪50年代,该公司即以奶酪蛋白酶解制取了第一代的酪蛋白肽和氨基酸混合物,含5~8个氨基酸组成的肽和70%以上的游离氨基酸,用于低抗原性防过敏牛奶粉,在市场上行销40多年;60~70年代,开发出第二代的高度水解乳清蛋白肽混合物,含10~12个氨基酸组成的肽和40%~60%的游离氨基酸。以上两代产品的游离氨基酸含量过高,影响了产品的风味和生物效价;90年代,推出了低度水解乳清蛋白肽混合物,含10~15个氨基酸组成的肽和20%以下的游离氨基酸,产品风味明显改善,生物效价提高。

1992年,Haque.Z.U和Mozffar.Z研究了胰蛋白酶、凝乳蛋白酶等酶的固定化反应器制取乳肽的工艺,可以通过调节流速来控制反应程度,并通过重复使用酶来降低成本。1989年,Maubois.J.D.和Ieonil.j.研究了带超滤膜的酶反应器,在反应器内加入钙和磷酸根离子,用于制备酪蛋白磷酸肽和去磷酸化酪蛋白多肽。

我国对乳肽的研究不多,主要是进行蛋白酶的筛选和酶解工艺的优化,如1991年,肖安乐等人筛选出胰蛋白酶的胰酶是水解变性乳清蛋白质的最佳酶种;1994年,王凤翼等人对胰蛋白酶控制水解α-酪蛋白的最佳条件进行了优选;张和平等人采用胰蛋白酶水解热敏性乳清蛋白,获得热稳定好、易溶解的多肽,并以此开发出稳定性良好的乳清饮料;1995年,于江虹也从牛奶酪蛋白中分离提纯获得酪蛋白磷酸肽,证实了其在小肠中可与钙、铁等矿物质形成可溶性络合物,促进人体对钙、铁的吸收;广州市轻工研究所生产的酪蛋白磷酸肽CPP含量达85%以上,易溶于水,加工性能稳定,已在我国市场上推出。最近,我国生物工作者开发了采用微生物发酵控制、蛋白转化率高的乳肽产品,其中氨态氮占20%左右、肽态氮占80%左右,产品无不良气味,已获专利;湖北工学院吴思方等人进行了固定化胰蛋白酶生产酪蛋白磷酸肽的研究,CPP得率为21.3%,产品中CPP总含量为15%,此工艺中酶可重复多次使用,既降低了成本,又有利于产品分离和生产自动化。
[NextPage]

大豆肽 大豆肽是大豆蛋白质经酸法或酶法水解后分离、精制而得到的多肽混合物,以3~6个氨基酸组成的小分子肽为主,还含有少量大分子肽、游离氨基酸、糖类和无机盐等成分,分子质量在1000μ以下。大豆肽的蛋白质含量为85%左右,其氨基酸组成与大豆蛋白质相同,必需氨基酸的平衡良好,含量丰富。大豆肽与大豆蛋白相比,具有消化吸收率高、提供能量迅速、降低胆固醇、降血压和促进脂肪代谢的生理功能以及无豆腥味、无蛋白变性、酸性不沉淀、加热不凝固、易溶于水、流动性好等良好的加工性能,是优良的保健食品素材。

大豆肽的生产有酸法水解和酶法水解。酸法因水解程度不易控制、生产条件苛刻、氨基酸受到损害而很少采用;酶法水解易控制、条件温和、不损害氨基酸而大多被采用。酶的选择至关重要。通常选用胰蛋白酶、胃蛋白酶等动物蛋白酶,也可选用木瓜和菠萝等植物蛋白酶。但应用较广的主要是放线菌166、枯草芽孢杆菌1389、栖土曲霉3942、黑曲霉3350和地衣型芽杆菌2709等微生物蛋白酶。

20世纪70年代初,美国首先研制出大豆肽,D.S公司建成了年产5000吨食用大豆肽装置;日本于80年代开始研制大豆肽,不二制油公司首先采用酶法规模化生产出3种大豆肽,雪印和森永等乳业公司应用大豆肽生产食品。

我国近几年也开展了大豆肽的生产和应用研究。江西省科学院高科技中心李雄辉等人采用ASI389中性蛋白酶和木瓜蛋白酶双酶水解生产大豆肽,使大豆肽生成率为62.9%,肽态氮含量大于85%,游离氨基酸含量小于8%,平均肽键长度5~8,分子质量2000μ左右。双酶水解工艺既缩短了酶解时间、提高了蛋白质水解度,又减轻了产品苦味。华南理工大学黄惠华等人用木瓜蛋白酶对大豆分离蛋白进行水解试验,测得木瓜蛋白酶的动力学常数。另外,无锡轻工大学的葛文光对大豆肽的生理功能及作用效果进行了研究;郭敏亮采用豆粕生产出大豆肽饮料等。

根据大豆肽的理化特性,可用大豆肽为基本素材,开发肠胃功能不良者和消化道手术病人康复的肠道营养食品的流态食品、降胆固醇、降血压、预防心血管疾病的保健食品,增强肌肉和消除疲劳的运动员食品、婴幼儿及老年人保健食品、促进脂肪代谢的减肥食品、酸性蛋白饮料和用作促进微生物生长、代谢的发酵促进剂等。

高F值寡肽 高F值寡肽即是由动、植物蛋白酶解后制得的具有高支链、低芳香族氨基酸组成的寡肽,以低苯丙氨酸寡肽为代表,具有独特的生理功能。F值是指支链氨基酸(BCAA)与芳香族氨基酸(AAA)的摩尔比值。

1976年,Yamashita等人首次利用胃蛋白酶和链霉蛋白酶从鱼蛋白和大豆分离蛋白酶解中制得含低苯丙氨酸的寡肽混合物,产率分别为69.3%和60.9%,苯丙氨酸含量分别为0.05%和0.23%。1982年,Nakhost等人用α-胰凝乳蛋白酶和羧肽酶A酶解大豆蛋白,也制得相似的产物。1986年,Soichi等人进行了多种酶分别酶解乳清蛋白制取低苯丙氨酸寡肽的多种工艺、方法试验,结果以胃蛋白酶-链霉蛋白酶两步水解法为佳,产品得率为81.0%、苯丙氨酸含量为0.30%。1991年,Shinya等人用嗜碱蛋白酶和肌动蛋白酶水解玉米醇溶蛋白,制取了无苦味高F值寡肽,产率为56.0%,F值20.00,AAA含量为1.86%。
[NextPage]

1996年,西班牙的Bautista等人用肌动蛋白酶和Kerase中性蛋白酶酶解葵花浓缩蛋白,制取高F值寡肽,产率为24.8%,F值为20.47,AAA含量为1.01%。王梅也在1992年首次采用碱性蛋白酶和木瓜蛋白酶降解玉米黄粉;成功地研制出高F值寡肽混合物,产率为7.9%,F值为31.00,AAA含量为0.06%,完全符合高F值制剂的要求,为解决玉米湿法淀粉厂副产品——黄粉的综合利用开创了新路子。

高F值寡肽具有消除或减轻肝性脑病症状、改善肝功能和改善多种病人蛋白质营养失常状态及抗疲劳等功能,除可制作治疗肝疾药品外,还可广泛用作保肝、护肝功能食品,烧伤、外科手术、脓毒血症等高付出病人及消化酶缺乏患者的蛋白营养食品和肠道营养剂,高强度劳动者和运动员食品营养强化剂等。

谷胱甘肽(GSH) 谷胱甘肽是由谷氨酸、半胱氨酸和甘氨酸经肽键缩合而成的活性三肽,广泛存在于动物肝脏、血液、酵母和小麦胚芽中,各种蔬菜等植物组织中也有少量分布。谷胱甘肽具有独特的生理功能,被称为长寿因子和抗衰老因子。日本在50年代开始研制并应用于食品,现已在食品加工领域得到广泛应用。我国对谷胱甘肽的研究尚处于起步阶段。

谷胱甘肽的生产方法主要有溶剂萃取法、化学合成法、微生物发酵法和酶合成法等4种,其中利用微生物细胞或酶生物合成谷胱甘肽极具发展潜力,目前即以酵母发酵法生产为主。

由于谷胱甘肽分子有一个特异的γ-肽键,决定了它在人机体中的许多重要生理功能,如蛋白质和核糖核酸的合成、氧及营养物质的运输、内源酶的活力、代谢和细胞保护、参与体内三羧酸循环及糖代谢,具有抗氧化、抗疲劳、抗衰老、清除体内过多自由基、解毒护肝、预防糖尿病和癌症等功效,因此而成为机体防御功能肽的代表。谷胱甘肽除可在临床上用作治疗眼角膜疾病,解除丙烯酯、氟化物、重金属、一氧化碳、有机溶剂等中毒症状的解毒药物外,还可用于运动营养食品和功能食品添加剂等。

活性肽的分类

活性肽的分类可按原料来源和保健功能来划分。按原料划分的类别有:

乳肽 主要由动物乳中酪蛋白与乳清蛋白酶解制得,比原蛋白更易溶解于水和被人体消化吸收,且耐酸、耐热、渗透压低,是活性肽中需求量最大、应用最广的保健食品素材。
[NextPage]

大豆肽 由大豆蛋白酶解制得。具有低抗原性、抑制胆固醇、促进脂质代谢及发酵等功能。用于食品能快速补充蛋白质源,消除疲劳以及作为双歧杆菌增殖因子。

玉米肽 由玉米蛋白酶解制得。具有抗疲劳,改善肝、肾、肠胃疾病患者营养的功能,并可促进酒精代谢,用做醒酒食品。

豌豆肽 酶解豌豆蛋白制得。口味温和、价廉,可用于婴儿配方乳粉。

卵白肽 酶解卵蛋白制得。具有易消化吸收、低抗原、耐热等特点,可用于流动食品、营养食品或糕点中。

畜产肽 由牲畜肌肉、内脏、血液中的蛋白经酶解而制得,如脱脂牛肉酶解制得牛肉肽,含较高支链氨基酸和肉毒碱,是低热量蛋白质补充剂;新鲜猪肝经酶解、脱色、脱臭、超滤精制得肝肽,可作促铁吸收剂,用于婴儿食品、饮料、糕点等;猪血经酶解制得血球蛋白肽,可用于各类食品。

水产肽 各种鱼肉蛋白酶解制得的肽,如沙丁鱼肽,是血管紧张素转换酶抑制肽,不含苦味,可用于制作防治高血压的保健食品或制剂。

丝蛋白肽 蚕茧丝蛋白经酶解制得的低肽,具有促进酒精代谢、降低胆固醇、预防痴呆等多种功能,可用于醒酒食品和特种保健食品。

复合肽 动植物、水产、畜产等多种蛋白质混合物经酶解制得的复合肽,具有改善脂质代谢功能,可用于各类保健食品。

按活性肽保健功能分类有 易消化吸收肽:主要是二肽、三肽等低肽,比氨基酸消化吸收快,吸收率高,并具有低抗原性、低渗透压,不会引起过敏、腹泻等不良反应,适用于胃功能低下、消化道疾病患者术后恢复、耐久力运动员、婴幼儿及老人的滋补食品。

抗菌肽 又称抗微生物肽,广泛分布于自然界,在原核生物和真核生物中都存在。如植物、微生物、昆虫和脊椎动物在微生物感染时迅速合成而得,也可采用基因克隆技术生产,如乳链菌肽(Nisin)即具有很强杀菌作用。抗菌肽主要用于食品防腐保鲜。

吗啡片肽 源于动物乳中酪蛋白、乳清蛋白、乳球蛋白分离和血红蛋白、植物蛋白酶解而得,是最早的食品蛋白肽,具有镇痛、调节人体情绪、呼吸、脉搏、体温、消化系统及内分泌等功能。

类吗啡拮抗肽 用牛乳K-酪蛋白经胰蛋白酶作用分离而得,与类吗啡肽相拮抗,具有抑制血管紧张素转换酶与平滑肌收缩活性等功用。

血管紧张素转换酶抑制肽(简称ACEI肽) 从天然蛇毒中分离和细菌胶原酶降解胶原蛋白或牛奶酪蛋白、大豆、玉米、沙丁鱼、磷虾蛋白等酶解而制得的ACEI肽,是血管紧张素转换酶抑制剂,具有降血压的显着功效。其低肽易消化吸收,具有促进细胞增殖、提高毛细血管通透性等作用,可用做降压功能食品基料。
[NextPage]

抑制胆固醇作用肽 大豆等植物蛋白经胃蛋白酶或胰酶作用而制得,具有高疏水性,能刺激甲状腺素的分泌,促进胆固醇的胆汁酸化,增加胆固醇排泄,用于降胆固醇的保健食品。

促进矿物质吸收肽 主要是动物乳中酪蛋白经胰蛋白酶作用后制得的酪蛋白磷酸肽(CPP),具有促进钙、铁吸收的功能,可用于幼儿、老年食品和耐乳糖过敏的酸奶等产品。

机体防御功能肽 如谷胱甘肽(GSH),系用微生物细胞或酶生物合成,也可用大肠杆菌重组生产,具有多种重要生理功能。

苦味肽 是蛋白质酶解液中的苦味物质,由某些疏水基因和疏水性氨基酸构成,可用活性炭吸附或用某些端肽酶、乳酸菌、酿酒酵母等微生物进一步水解,脱除或减轻苦味后,其必需氨基酸含量比酶解液中更高,营养价值更大,可用做食品营养强化剂。

肝性脑病防治肽 如F值寡肽,系由动物或植物蛋白酶解制得,用于防治肝性脑病药品和护肝保健食品或抗疲劳食品。

活性肽的生产方法

天然活性肽的分离提取 存在于细菌、真菌、动植物等生物体内的激素、酶抑制剂等天然活性肽,经分离提取而得。

食品蛋白质水解制取活性肽 一般采用酸水解,工艺简单、成本低,但因氨基酸受损严重、水解难控制而较少应用。

化学合成活性肽 采用液相或固相化学合成法可制取任意需要的活性肽,但因成本高、副反应物及残留化合物多等因素而制约其发展。

基因重组法制取活性肽 采用DNA重组技术制取活性肽的试验研究尚在进行中。

酶法生产活性肽 产品安全性极高,生产条件温和,水解易控制,可定位生产特定的肽,成本低,已成为最主要的生产方法。

酶法生产活性肽工艺一般流程为:选择原料蛋白→预处理→酶解→精制→成品

原料选择原则 根据所需生产的活性肽的氨基酸组成或结构特点来选择相应原料;选用廉价农副产品、食品工业废水及废物,开展综合利用,变废为宝,减少环境污染,降低生产成本。

酶的选择主要是对酶按原料蛋白组成与酶的专一性进行筛选,也可根据活性肽的结构,应用酶工程生产高活性特定酶。由于单一酶系往往转化效果不佳,采用复合酶系降解作用较好。
[NextPage]

酶法生产活性肽的下游技术主要包括分离、精制和分析试验。由于目标活性肽在生产反应体系中含量甚微,传统分离技术往往无能为力,必须采用吸附分离、色谱分离、超滤膜分离、反渗透等现代分离技术和脱色、脱臭、脱苦等提纯精制技术。尤其是苦味直接影响食品的风味和口感,往往决定了活性肽的应用前景,因此,脱苦技术研究日盛。研究发现,蛋白质酶解液中的苦味主要来自于苦味肽——由某些疏水基因及疏水性氨基酸构成的苦味物质。要脱苦则必须使这些碱性氨基酸从苦味上解放出来。应用微生物直接脱苦效果好,很有发展前景,如端肽酶能从线性肽链的末端移去若干个氨基酸分子,使苦味肽的苦味减轻,对于完整的环形结构的蛋白质大分子,端肽酶无法发挥作用,必须先用内切酶切断肽链,再用端肽酶脱苦。通常将内切酶与端肽酶联合使用。以水解疏水性氨基酸残基及脯氨酸构成肽链的端肽酶脱苦作用最有效。由于肽酶价格昂贵,限制了其在食品工业上的应用。乳酸菌、酿酒酵母等微生物的内源酶中存在着广泛的肽酶谱系,同样具有较好的脱苦作用,且价格低廉、来源广泛,很有发展前景。

活性炭吸附脱苦简单易行,十分有效,也是常用方法之一。活性肽的分析检测常用方法有毛细管电泳法(CE)、聚丙烯酰胺凝胶电泳法(SDS-PAGE)、凝胶过滤法、荧光分析法、质谱分析法、红外分光分析法、液相色谱分析法(HPLC)等,其中液相色谱分析应用最广。只有完善了下游技术,并建立起灵敏的肽活性指标检测体系,才能畅通肽生产的全流程,形成活性肽工业化生产体系。

⑼ 什么是氧化损伤拜托各位了 3Q

谷胱甘肽(GSH)是广泛存在于细胞内的小分子三肽化合物,它参与细胞内氨基酸转运、糖代谢和DNA合成调节,在拮抗外源性毒物、氧自由基损伤、调节机体免疫功能、维持细胞蛋白质结构和功能、抑制细胞凋亡等方面发挥着重要作用[1]。多年来,人们试图根据GSH被氧化还原的程度来评估氧自由基脂质过氧化损伤,并取得了不少进展。 一、谷胱甘肽的一般生理特性 GSH由谷氨酸、半胱氨酸和甘氨酸组成,是细胞内呈液态、含巯基最为丰富的一类化合物,半胱氨酸α氨基上的-SH为该分子化合物活性中心。GSH在不同脏器浓度不同,以肝内最高,依次为脾、肾、肺、脑、心、胰和骨髓,血液中浓度最低[2];同一器官不同部位浓度相差亦较大,而同一细胞内不同细胞器间GSH含量亦不一致。 谷胱甘肽氧化型(GSSG)为GSH的氧化形式,在氧化剂作用下GSH通过GSH-过氧化物酶(GSH-Px)氧化成GSSG;后者通过NADPH供氢,在谷胱甘肽还原酶(GSH-Rx)作用下又还原成GSH,二者构成一动态平衡,使GSSG维持在总GSH量的1%~10%水平[3],构成一有效的抗氧化系统。生理状态下,GSH/GSSG维持在高比率,而在氧化应激时,GSH氧化成GSSG,GSH/GSSG比率下降,故可借以评估脂质过氧化损伤情况。 GSH合成主要在肝内,其合成除与半胱氨酸及NADPH含量有关外,其合成限速酶谷胱甘肽合成酶(GCS)亦有重要作用。GCS有2个亚基GCLR和GCLS,以GCLR为主,GCLS起调节作用。在氧化状态,GCLR的mRNA高表达且有剂量依赖性,而低水平GSH对GCLR的mRNA影响则不明显;相反,抑制GSH-Rx后,GCLR的mRNA则高表达,提示GSSG对GCLR有调节作用,并进而反馈性调节GSH水平[4]。GSH清除主要在肾脏,占血循环总量50%~65%,双肾动脉中80%的GSH和GSSG经一次肾循环后被滤过,但可经Na+-依赖性GSH酶转运系统重吸收。 二、GSH拮抗自由基脂质过氧化损伤机理 GSH在拮抗氧化性毒物中发挥重要作用,一方面可与毒物分子及其代谢物发生结合反应降低毒物毒性;另一方面可通过氧化还原反应而降低毒物过氧化的能力,使含巯基酶免于被重金属和氧化剂激活或使已氧化的含巯基酶还原而使其恢复活性。 在自由基大量产生时,细胞膜不饱合脂肪酸氧化成脂过氧基,并引起一系列继发损伤。GSH可直接通过供H+拮抗氧自由基毒性,终止连锁反应,其本身则被氧化成GSSG。同样,GSH在对抗氧自由基过氧化并抑制由此引发的细胞凋亡、坏死及自稳态改变等方面亦发挥着重要作用。 GSH/GSSG体内代谢有多种途径,在氧化状态下,GSH一方面被氧化成GSSG,表现为相应GSH/GSSG的降升;另一方面,GSH与外源毒物及其代谢物发生结合反应,最终生成硫醇脲酸经尿排出,此时仅为相应GSH下降,而GSSG变化可能并不大,甚或因GSH消耗而GSSG亦降低[5]。GSSG除可被还原成GSH外,还可通过GST(谷胱甘肽-S-转移酶)发生结合反应。 三、体内影响GSH水平因素 由于血中GSH主要源于肝脏等器官,所以血浆GSH水平无疑是间接反映有关器官,如肝、肾内GSH水平的较理想指标。目前测定仍多停留在动物实验阶段,有关人血GSH浓度报道较少,近期报道人血浓度为1.000±0.167(715例)[1]。 在许多病理情况下,如糖尿病、酒精性肝病、肝硬化、外源性毒物致过氧化时,GSH水平下降。近期又发现艾滋病、帕金森病、衰老及低氧血症病人的GSH也下降,并发现老年人伴GSH低下者的身体健康状况较高GSH者差。 Hagg等报道,在生理状态下男性GSH水平高于女性,素食者高于非素食者,老年人GSH明显下降,黑人GSH高于白种人[1,6]。另外人们还发现,GSH水平与体育活动程度及营养有关。有趣的是,吸烟者GSH高于非吸烟者,这可能是机体对长期吸烟引起慢性氧化状态的适应性调节反应,这也进一步提示,GSH在体内抗氧化过程中的重要作用。 四、不同化学毒物诱导的脂质过氧化状态下GSH/GSSG的变化 体外试验显示,当细胞暴露于亚毒性浓度毒物时,GSH并不下降而是升高。 Cookson等[7]用神经胶质细胞分别与亚毒性浓度三甲基锡、三乙基锡共同培养24小时,细胞内GSH显着升高;Ochi[8]用中国仓鼠V79细胞与亚毒性浓度砷共同孵育时,发现在8小时GSH升高最大,之后降低;另外,亦有大量试验显示暴露于亚毒性浓度的铅、汞、甲基汞等化合物亦使GSH升高[9],提示可能是细胞在应激时采取的一种保护性机制,与长期吸烟致GSH升高情况类似。 Palmeira等[10]将雄性Wistar大鼠肝细胞分别和不同毒性浓度的除莠剂百草枯和2,4-D共同进行体外培养,用Hissin酶化学法检测GSH/GSSG。结果显示,GSH浓度随接触时间而降低,孵育2~3小时降至最低水平,且存在剂量-反应关系,而GSSG则呈正比升高。Lora等用雄性Fischer344大鼠与不同浓度的双氯乙基亚硝脲一起孵育并采用反相高效液相色谱(HPLC)法检测GSH/GSSG水平,亦得出同样结论[11]。 而在体内实验,情况则复杂得多。Stone等[12]以不同浓度的维生素K3(0、30、60和100 μmol/L)对鼠染毒,用Hissin-Hilf酶化学法分别测定GSH/GSSG,结果显示GSH降低及GSSG升高具有剂量依赖关系,但GSH下降与GSSG升高不成等比例,当GSH值(μmol/g)由1.45±0.28降到0.57±0.07时(61%),GSSG此时升高仅为GSH丢失的10%。有研究用甲醇(3.0和6.0 g/kg)对雄性大鼠染毒,并分别于不同时间测其肝细胞、红细胞及血浆GSH/GSSG,结果显示3.0 g/kg组GSH 12小时达最低,从4.4 μmol/g降至3.4 μmol/g(P<0.05),其后缓慢恢复,GSH-Px、GSH-Rx活性与GSH亦同步升降,但GSSG变化则不明显,这可能是由于GSH与新生成的甲醛直接结合而未生成GSSG[13]。另有实验则显示由于GSH与毒物结合,GSSG生成也减少,GSH/GSSG比率反较前升高[5,13]。 有些实验显示,外周血GSSG变化较GSH敏感,这可能与细胞受损后GSH、GSSG释放到细胞外水平不同有关。Navarro等[14]对成年OF1小鼠给予1~7 Gy的高能X线照射,并在不同时间测其血中GSH/GSSG。此外,对患乳腺癌及肺癌病人在接受不同剂量放射治疗时亦采用HPLC法测定上述指标,结果显示小鼠血中GSH浓度变化不显着,GSSG升高,GSH/GSSG下降,并与放射剂量有剂量和时间依赖性,尤以2 小时GSSG升高最显着;鼠肝、心、胰腺中变化亦明显,且同时有GSH下降并有统计学意义;肿瘤放疗病人结果亦显示外周血GSSG水平则随放疗累积量增加而升高,并有显着统计学意义,而GSH变化则不显着。 但在以该指标评估脂质过氧化损伤时,尚需注意到GSH/GSSG系统的参与情况。Lii等[15]采用雄性SD大鼠,分别予以百草枯(20和40 g/kg)、敌草快(85和190 mg/kg)染毒,结果见肝细胞GSH和GSSG及其比率变化均无统计学意义,而此时通过检测氧自由基脂质过氧化产物硫巴比土酸反应物,则显示肝细胞有较严重氧自由基脂质过氧化损伤,这可能与蛋白质-S-谷胱甘肽化有关,GSH/GSSG 系统则可能未参与上述过程。 以GSH/GSSG作为指标评估脂质过氧化损伤,诸多实验结果有不小差异,可能与以下因素有关: 1.测量方法:检测GSH/GSSG方法有多种,归纳起来主要有2类:酶化学法和HPLC法。前者主要根据GSH在氧化还原过程中酶代谢动力学改变,如利用GSH被二硫代对二硝基苯氧化,生成硫硝基苯酸盐的程度,间接反应GSH/GSSG的水平。HPLC法则可据实验波谱直接测定GSH/GSSG,敏感性、专一性较高,但操作复杂。两种方法的结果多数一致[1,15],而Floreani等[16]则认为HPLC较化学法敏感10倍以上,两方法所测结果有显着差别,但都面临同样问题,如GSH/GSSG在细胞内隔窒化(compartmentilization)和样本的预处理等。 2.质量控制:GSH接触到空气时,如不用稳定剂,可迅速被氧化而消耗;在不同温度下,其稳定性亦不一,如血样获取后立即在-70℃冷冻,GSH至少可保持3周,但在-20~4℃,GSH逐渐降解;而加入稳定剂后,-20℃下可存放1年,室温下亦可放置1天。所以样品的预处理对所测结果有直接而十分重要的影响。 3.机体的多抗氧化体系和GSH/GSSG代谢的多途径:如机体通过蛋白质-S-谷胱甘肽化、碳酸酐酶Ⅲ发挥保护细胞作用等,此时GSH/GSSG系统并未参与抗氧化代谢;生理状态下GSH/GSSG防御系统受到诸多酶活性制约,而病理状态下酶活性的改变亦会影响GSH/GSSG水平;GSH和GSSG还有着多种代谢途径,如GSSG不升高,可以反映低水平脂质过氧化或低GSH含量,但亦可能因GSH与毒物直接结合而不形成GSSG或新产生的GSSG又发生新结合反应等。 综上所述,GSH/GSSG可作为评价氧自由基脂质过氧化损伤的较敏感指标,并可借以探究毒物毒性机理,但仍需要根据毒物种类、浓度和相互作用时间等不同,对GSH/GSSG做综合分析;此外,GSH/GSSG作为氧自由基损伤指标的研究目前仍多处于动物实验阶段,而对人体研究则较少,对其特异性的提高仍是有待解决的问题。应用到对人群的监控或对临床中毒病人的评估仍有一定距离。 作者单位:100020 北京市劳动卫生与职业病防治研究所 参考文献 1 Richie JP Jr, Skowronski L, Abraham P,et al. Blood glutathione concentrations in a large-scale human study. Clin Chem,1996,42:64-70. 2 Benz FW,Nerland DE,Corbett D,et al.Biological markers of acute acrylonitrile intoxication in rats as a function of dose and time.Fundam Appl Toxicol, 1997,36:141-148. 3 Elliott SJ,Koliwad SK. Redox control of ion channel activity in vascular endothelial cells by glutathione. Microcirculation,1997,36:341-347. 4 Dalton T,Harrer J,Robinson L , et al . Glutamate-cysteine ligase regulatory (GCLR) subunit mRNA is increased in response to oxidative stress: evidence that oxidized glutathione (GSSG) mediates this effect. The Toxicologist,1998,42 Suppl 1:276. 5 Papageorgiou G, Iliadis S, Botsoglou N, et al. Lipid peroxidation of rat myocardial tissue following daunomycin administration . Toxicol,1998,126:83-91. 6 Flagg EW,Coates RJ,Jones DP,et al.Plasma total glutathione in humans and its association with demographic and health-related factors .Br J Nutr,1993,70 : 797-808. 7 Cookson MR,Slamon ND,Pentreath VW. Glutathione modifies the toxicity of triethyltin and trimethyltin in C6 glioma cells.Arch Toxicol,1998,72:197-202. 8 Ochi T.Arsenic compound-inced increases in glutathione levels in cultured Chinese hamster V79 cells and mechanisms associated with changes in gamma-glutamylcyteine synthetase activity, cystine uptake and utilization of cysteine. Arch Toxicol, 1997,71:730-740. 9 Cookson MR,Pentrenth UW. Protective roles of glutathione in the toxicity of mercury and cadimium compounds to C6 glioma cells.Toxicol Vitro,1996,10:257-264. 10 Palmeira CM,Moreno AJ,Madeira VM. Metabolic alterations in hypatocytes promoted by the herbcides paraquat, dinoseb and 2,4-D.Arch Toxicol,1994,68:24-31. 11 Rikans LE,Cai Y.Diquat-inced oxidative damage in BCNU-pretreated hepatocytes of mature and old rates .Toxicol Appl Pharmacol,1993,118:263-270. 12 Stone V,Coleman R,Chipman JK.Comparison of the effects of redox cycling and arylating quinones on hepatobiliary function and glutathione homeostasis in rat hepatocyte couplets.Toxicol Appl Pharmacol,1996,138:195-200. 13 Skrzydlewska E,Farbiszewski R.Glutathione consumption and inactivation of glutathione-related enzymes in liver, erythrocytes and serum of rats after methanol intoxication.Arch Toxicol,1997,71:741-745. 14 Navarro J,Obrador E,Pellicer JA,et al.Blood glutathione as an index of radiation-inced oxidative stress in mice and humans. Free Radic Biol Med,1997,22 : 1203-1209. 15 Lii CK,Wang ST,Chen HW.The detection of S-glutathionation of hepatic carbonic anhydrase Ⅲ in rats treated with paraquat or diquat .Toxicol Lett,1996,84:97-105. 16 Floreani M,Petrone M,Debetto P,et al . A comparison between different methods for the determination of reced and oxidized glutathione in mammalian tissues . Free Radic Res,1997,26:449-455.

⑽ GSH-Px是什么什么意思有什么作用

谷胱甘肽过氧化物酶(GSH-Px)可以清除由活性氧和•OH诱发的脂质过氧化物,保护细胞膜结构和功能的完整性
体内GSH-Px活性的检测采用DTNB显色法。

阅读全文

与谷胱甘肽的检测方法相关的资料

热点内容
疫苗消耗系数计算方法 浏览:595
国庆节扎头发的简单方法 浏览:82
科普手工作品制作方法及图片 浏览:762
走出一身病的正确方法 浏览:545
纽扣的缝合方法视频 浏览:491
黄皮萝卜种植方法 浏览:990
帆布鞋怎么系鞋带简单方法 浏览:102
怎么煮大虾的方法 浏览:815
的的区分方法有哪些 浏览:661
单牌取胜的正确方法 浏览:92
夺圆率计算方法 浏览:752
精索静脉曲张用什么手术方法好 浏览:401
如何制作做馒头的方法 浏览:383
变压器线圈保护电阻测量方法 浏览:833
开挖工作坑常用的加固方法 浏览:186
农药喷洒方法有哪些 浏览:46
怎么打锁最简单的方法视频 浏览:230
主流经济学分析方法 浏览:496
粮食常用的保存方法有哪些 浏览:708
从白头到黑头有什么方法 浏览:321