导航:首页 > 解决方法 > 十种逆矩阵的解决方法

十种逆矩阵的解决方法

发布时间:2022-06-29 00:07:48

㈠ 求逆矩阵

求逆矩阵常用的有两种方法:

  1. 伴随阵法:A^(-1)=(1/|A|)×A* ,其中A^(-1)表示矩阵A的逆矩阵,其中|A|为矩阵A的行列式的值,A*为矩阵A的伴随矩阵。

  2. 行初等变换法:(A|E)经过初等变换得到(E|A^(-1))。

    注意:初等变化只用行(列)运算,不能用列(行)运算。E为单位矩阵。

  3. 一般计算中,或者判断中还会遇到以下11种情况来判断是否为可逆矩阵:

    1 秩等于行数

    2 行列式不为0

    3行向量(或列向量)是线性无关组

    4 存在一个矩阵,与它的乘积是单位阵

    5 作为线性方程组的系数有唯一解

    6 满秩

    7 可以经过初等行变换化为单位矩阵

    8伴随矩阵可逆

    9 可以表示成初等矩阵的乘积

    10 它的转置矩阵可逆

    11 它去左(右)乘另一个矩阵,秩不变

  4. 可逆矩阵的性质

    1 矩阵A可逆的充要条件是A的行列式不等于0。

    2可逆矩阵一定是方阵。

    3 如果矩阵A是可逆的,A的逆矩阵是唯一的。

    4 可逆矩阵也被称为非奇异矩阵、满秩矩阵。

    5 两个可逆矩阵的乘积依然可逆。

    6 可逆矩阵的转置矩阵也可逆。

    7矩阵可逆当且仅当它是满秩矩阵。

  5. 求解逆矩阵的举例,对于如下行列式A:(以二阶方阵为例)

    |3 0|

    |2 1|

    对于元素3,其代数余子式是(-1)^(1+1)*1=1;对于元素0,其代数余子式是(-1)^(1+2)*2=-2;对于元素2,其代数余子式是(-1)^(2+1)*0=0;对于元素1,其代数余子式是(-1)^(2+2)*3=3,所以矩阵A的伴随阵A*是:

    |1 0|

    |-2 3|
    而A的行列式|A|=3*1-2*0=3所以A^(-1)=(1/|A|)*(A*)=

    1/3|1 0|

|-2 3|

㈡ 计算逆矩阵有那些常用方法

在线性代数中逆矩阵是按其伴随矩阵定义的,若则方阵可逆,且,其中为的伴随矩阵。要计算个阶的列式才能得到一个伴随矩阵,在数值计算中因其计算工作量大而不被采用。通常对做行的初等的效换,在将化成的过程中得到。在数值计算中,这仍然是一种行之有效的方法。

由逆矩阵的定义 令,有

化为个方程组

j

是第个分量为1,其余分量为0的维向量。或记为:。

用直接法或迭代法算出也就完成了逆矩阵计算。

如果依次对用高斯若尔当消元法,组合起来看有(当然也能组合起来做):

这正是在线性代数中用初等变换计算逆矩阵的方法。

由此可见,计算一个阶逆矩阵的工作量相当于解个线性方程组。在数值计算中常常将计算矩阵逆的问题转化为解线性方程组的问题。

例如,已知方阵和向量有迭代关系式,在计算中不是先算出,再作与的乘积得到;而将作为线性方程组系数矩阵,求解方程组作为常驻数项解出。

㈢ 求逆矩阵的三种方法

设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。

  1. 待定系数法

待定系数法顾名思义是一种求未知数的方法。将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。

2.伴随矩阵法

3.初等变换法

一般采用的是初等行变换

定义:所谓数域P上矩阵的初等行变换是指下列3种变换:

1)以P中一个非零的数乘矩阵的某一行

2)把矩阵的某一行的c倍加到另一行,这里c是P中的任意一个数

3)互换矩阵中两行的位置

以上就是初等变换法的全部内容,这个方法主要得经常练习,要不然就会解得很慢,要么出错,另外行变换时一定要仔细认真。

以上是求解逆矩阵的三种方法,都需要多加练习,才能熟能生巧。

㈣ 求逆矩阵有什么简便快速方法

简便快速的不一定有,但通常的方法也很有效:
1、初等行变换:对 (AE) 施行初等行变换,把前面的 A 化为单位矩阵,则后面的 E 就化为了 A^-1 。
2、伴随矩阵法:如果 A 可逆,则 A^-1 = 1/|A| * (A^*) 其中 |A| 是 A 的行列式,A^* 是 A 的伴随矩阵。
3、如果 A 是二阶矩阵,倒是有简便快速的方法:主对角交换,副对角取反,再除行列式。这其实仍是伴随矩阵法。

㈤ 逆矩阵的求解方法有几种

行初等变换法,求伴随矩阵法
行初等变换法比较常用,我说明一下其方法以及方法的来源和证明过程。
行初等变换法
:
因为矩阵A可逆,则逆矩阵A-1可逆(AA-1=E
det(AA-1)=detA*detA-1=detE=1
则detA-1!=0)矩阵A经过一系列的初等变换(包括行变换和列变换得到E(需要证明)
证明:(证明前说明一个问题:一个矩阵进行一次行变换相当于左乘一个m阶初等矩阵,进行一次列变换相当于右乘一个n阶初等矩阵(初等矩阵就是由单位矩阵进行一次初等变换得到的矩阵(初等变换包括三种方式即:交换矩阵某两行,某两列或者将矩阵的某一行或某一列的k倍加到另一行或另一列去))那么即是p1*p2*……*pn*A*q1*q2*……qn=E(并不是直接得到E,而是一个只与E和O有关的矩阵,但由于qn,pn的行列式都不为0,则得到的与和O有关的矩阵的行列式不为0,则该矩阵为E,这里说明A必须为n阶矩阵)p1*p2*……*pn*A*q1*q2*……qn=E两边同时乘以pn,qn的逆矩阵)则得到A=pn-1*……p1-1*qn-1*……*q1-1)
,那么同理我们可以将A-1表示为A-1=G1*G2*……Gn,(G1、G2……Gn均为初等矩阵)也可以写成A-1=G1*G2*……Gn*E(因为一个矩阵乘以E还是原矩阵)两边同时右乘A,即A-1*A=G1*G2*……Gn*A,则E=G1*G2*……Gn*A,这就是说E经过一系列行初等变换(就是交换E的两行或者将E的某一行的K倍加到另一行去)得到A-1,而A经过与上面相同的行变换得到E,那么我们可以这样表示(A,E)~一系列行变换~(E,A-1),因此我们可以把A,E放在一起形成一个2n阶矩阵,在经过一系列行初等变换,当A变为E时,E变为A-1.

㈥ 求逆矩阵的常用方法

1.待定系数法
2.利用伴随矩阵求逆矩阵
3.初等变换求逆矩阵

㈦ 逆矩阵的计算方法有哪几种

逆矩阵的求法主要有两种,一种是利用伴随矩阵,即A⁻¹=A*/|A|,另一种是利用初等行变换,即(A|E)→(E|A⁻¹)

㈧ 求逆矩阵方法

1、初等变换法

将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵

(8)十种逆矩阵的解决方法扩展阅读:

可逆矩阵的性质定理

1、可逆矩阵一定是方阵。

2、如果矩阵A是可逆的,其逆矩阵是唯一的。

3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。

4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T(转置的逆等于逆的转置)

5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。

6、两个可逆矩阵的乘积依然可逆。

7、矩阵可逆当且仅当它是满秩矩阵。

阅读全文

与十种逆矩阵的解决方法相关的资料

热点内容
整理家务的技巧和方法 浏览:410
如何实现阅读教学方法的优化组合 浏览:375
研究叶绿体时所采用的色谱方法 浏览:3
在字的教学方法幼儿园 浏览:173
电脑电源线理线方法 浏览:185
恐龙怎么灭亡简单方法 浏览:772
练习电脑方法 浏览:967
简述涡流检测工艺操作方法 浏览:132
高层电梯基坑检测方法 浏览:316
全部手机关掉广告的方法 浏览:554
侧身瑜伽支撑训练方法 浏览:327
下水管道高于地砖用什么方法解决 浏览:626
水光针正确使用方法 浏览:916
内痔疮痒最佳的自愈方法 浏览:104
快捷设置在哪里设置方法 浏览:216
开屏方法出自哪里 浏览:319
钢构z字型条安装方法 浏览:475
花素描方法图片 浏览:883
测量人体重心时减小误差的方法 浏览:854
疤痕敌使用方法图片 浏览:641