❶ 液压电磁阀!和液压油缸!连接油管有上下分别不
电磁阀上的管口一般会标有字母P、T、A、B。
其中,P接压力油进口,就是泵出口管路;
T接回油箱管路;
A/B口接油缸两腔,没有严格要求,大小腔根据实际安装情况接就可以的。
❷ 液压控制阀的连接方式有几种
(1)螺纹连接
阀体油口上带螺纹的阀称为管式阀。将管式阀的油口用螺纹管接头和管道连接,并由此固定在管路上。这种连接方式适用于小流量的简单液压系统。其优点是连接方式简单,布局方便,系统中各阀间油路一目了然。其缺点是元件分散布置,所占空间较大,管路交错,接头繁多,不便于装卸维修。
(2)法兰连接
法兰连接是通过阀体上的螺钉孔(每个油口多为4个螺钉孔)与管件端部的法兰用螺钉连接在一起,这种阀称为法兰连接式阀。适用于通径32mm以上的大流量液压系统。其优缺点与螺纹连接相同。
(3)板式连接
板式连接的液压阀的各油口均布置在同一安装平面上,并留有连接螺钉孔,这种阀称为板式阀,电磁换向阀多为板式阀。将板式阀用螺钉固定在与阀有对应油口的平板式或阀块式连接体上,再通过板上的孔道或与板连接的管接头和管道同其他元件连接。还可把几个阀用螺钉分别固定在一个集成块的不同侧面上,由集成块上加工出的孔道连接各阀组成回路。由于这种连接方式更换元件方便,不影响管路,并且有可能将阀集中布置,故这种连接方式应用广泛。与板式阀相连的连接体有连接板和集成块两种形式。
①连接板。将板式阀固定在连接板上面,阀间油路在板后用管接头和管子连接。这种连接板简单,检查油路较方便,但板上油管多,装配极为麻烦,占空间也大。
②集成块。集成块是一个正六面连接体。将板式阀用螺钉固定在集成块的三个侧面上,通常三个侧面各装一个阀,有时在阀与集成块间还可以用垫板安装一个简单的阀,如单向阀、节流阀等。剩余的一个侧面则安装油管,连接执行元件。集成块的上、下面是块与块的接合面,在各集成块的结合面上同一坐标位置的垂直方向钻有公共通油孔,如压力油孔、回油孔、泄漏油孔以及安装螺栓孔,有时还有测压油路孔。块与块之间及块与阀之间接合面上的各油口用O形密封圈密封。在集成块内钻孔,沟通各阀组成回路。每个集成块与装在其周围的阀类零件构成一个集成块组。每个集成块组就是一个典型回路。根据各种液压系统的不同要求,选择若干不同的集成块组叠加在一起,即可构成整个集成块式液压装置。这种集成方式的优点是结构紧凑,占地面积小,便于装卸和维修,可把液压系统的设计简化为集成块组的选择,因而得到广泛应用。但它也有设计工作量大,加工复杂,不能随意修改系统等缺点。
(4)叠加式连接
将各种液压阀的上、下面都做成像板式阀底面那样的连接面,相同规格的各种液压阀的连接面中,油口位置、螺钉孔位置、连接尺寸都相同(按相同规格的换向阀的连接尺寸确定),这种阀称为叠加阀。按系统的要求,将相同规格的各种功能的叠加阀按一定次序叠加起来,即可组成叠加阀式液压装置。叠加阀式液压装置的最下面一般为底块,底块上开有进油口、回油口及通往执行元件的油口和压力表油口。一个叠加阀组一般控制一个执行元件。若系统中有几个执行元件需要集中控制,可将几个垂直叠加阀组并安装在底板上。用叠加阀组成的液压系统,元件间的连接不使用管子,也不使用其他形式的连接体,因而结构紧凑,体积小,系统的泄漏损失及压力损失较小,尤其是液压系统更改较方便、灵活。叠加阀为标准化元件,设计中仅需绘出叠加阀式液压系统原理图,即可进行组装,因而设计工作量小,应用广泛。
(5)插装式连接
插装阀是取消了阀体的圆筒形专用元件。将插装阀直接插入布有孔道的阀块(集成块)的插座孔中,构成液压系统。其结构十分紧凑。各种压力阀、流量阀、方向阀、比例阀等均可制成插装阀形式。
❸ 液压电磁阀的原理图
1.工作原理图4-3a显示了滑阀换向阀的工作原理图。当阀芯向右移动一段时间后,液压泵输入的压力油从阀门的p口通过a口流入液压缸的右腔,液压缸右腔中的油通过b口返回油箱,液压缸的活塞向右移动。反之,如果阀芯向右移动一定的间隔,液流反向,活塞向左移动。图4-3b是图形符号。
2.换向阀结构1)手动换向阀利用手动杠杆改变阀芯位置。有两种:弹簧主动复位(a)和弹簧钢球定位(b)。2)柔性换向阀柔性换向阀又称行程阀,是控制机械运动部件停止的重要部件,也有助于安装在工作台上的挡铁或凹轮迫使阀芯运动,从而掌握液体流动的方向。3)电磁换向阀利用电磁铁开关,间接推回阀芯控制流向。它不是电气系统和液压系统之间切换的元件。图4-9a为更换二位三通交换电磁阀的结构。在图中所示的位置,油口P和A连接,油口B关闭;当电磁体通电时,拉杆1向左拉动阀芯2。此时,油芯P与A断开,与b连通,电磁铁断电释放,弹簧3推动阀芯复位。图4-9b替换了它的图形符号。4)液压换向阀应利用保持油路中的压力油来改变阀芯位置的换向阀。阀芯两端薄密封腔外的油压力差不会使阀芯向后移动。如图,压力油从K2进入滑阀左腔时,K1开启回油,阀芯向右移动,使P和B连通,A和T连通;当K1交通压力油和K2交通回油时,阀芯向左移动,使P和A连通,B和T连通;当K1和K2进行回油时,阀芯返回两端。5)电液换向阀由电磁阀和液压滑阀组成。电磁阀用于下落后引导兴趣,可以改变持液方向,从而改变液压滑阀阀芯的位置。用于大西液压设备外。
❹ 液压传动的换向阀的图形符号有什么方法可以容易记忆…
你应该问的是怎么记中位机能代号和图形符号吧?这个简单了,中位机能代号都是大写英文字母,一般,图形符号中位的各阀口连接形状大体与之对应的代号想象。比如H型阀,阀芯处于中位时A、B、P、T四口互通呈一“H”形,图形的左、右两位基本都一样可不予考虑
❺ 在液压传动中,减压阀的出口与系统( )相连
在液压传动中,减压阀的出口与系统( )相连。
减压阀的进油口接系统的高压,出口接比系统压力低,又需要保持压力恒定的局部支路,
减压阀的泄油口接系统的油箱。
你说该填啥呢?
❻ 手动液压换向阀 怎么接,六通
可以
通常情况下,换向阀都有A/B两个出油口,液压锁装在其中一个口上,例如A口。因为A/B口是交替工作的,当A口回油时,液压锁要打开,这是恰好B口有高压,就可以从B口接一个控制油管,用来打开A口的液压锁。如果液压锁装在B口,或者A、B口都有液压锁,也是通过另一侧的油口的压力油打开的。
❼ 油压传动阀的液压传动的特点
液压传动的优点
(1)体积小、重量轻,因此惯性力较小,当突然过载或停车时,不会发生大的冲击;
(2)能在给定范围内平稳的自动调节牵引速度,并可实现无极调速;
(3)换向容易,在不改变电机旋转方向的情况下,可以较方便地实现工作机构旋转和直线往复运动的转换;
(4)液压泵和液压马达之间用油管连接,在空间布置上彼此不受严格限制;
(5)由于采用油液为工作介质,元件相对运动表面间能自行润滑,磨损小,使用寿命长;
(6)操纵控制简便,自动化程度高;
(7)容易实现过载保护。
液压传动有许多突出的优点,因此它的应用非常广泛,如一般工业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置等等;船舶用的甲板起重机械、船头门、舱壁阀、船尾推进器等;特殊技术用的控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。
液压传动的缺点
(1)使用液压传动对维护的要求高,工作油要始终保持清洁;
(2)对液压元件制造精度要求高,工艺复杂,成本较高;
(3)液压元件维修较复杂,且需有较高的技术水平;
(4)用油做工作介质,在工作面存在火灾隐患;
(5)传动效率低。
❽ 液压传动中调速阀的进出口接反有什么结果
使用调速阀时,进出油口不能接反。因为节流阀上游压力总是大于下游压力,当进出油口接反时,定差减压阀阀芯在弹簧力和节流阀两端的压差作用下,使开口始终处于最大值,调速阀只能起到节流阀的作用,没有稳定速度的功能。
❾ 油压传动阀的液压传动的介绍
1795年英国Joseph Braman以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。
第一次世界大战后液压传动广泛应用,特别是1920年以后,发展更为迅速。
液压元件大约在19 世纪末20 世纪初的20年间,才开始进入正规的工业生产阶段。
1925 年F.Vikers发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。
20 世纪初G·Constantimsco对能量波动传递所进行的理论及实际研究;1910年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。
第二次世界大战期间,在美国机床中有30%应用了液压传动。在1955年前后,日本迅速发展液压传动,1956 年成立了“液压工业会”。