Ⅰ 如何合理利用私募基金量化选股策略
随着近期指数增强产品的兴起,量化选股的概念再一次进入了投资者的眼帘,伴随近些年国内量化投资的高速发展,量化选股策略早已大量应用在了私募产品的投资策略之中。
量化选股的定义
简单来说,量化选股就是利用数量化的方法构建模型,进而选择股票组合,期望该股票组合能够获得超越基准收益率的投资方法。
量化选股为什么能赚钱?
由于A股市场不是特别有效的市场,在非有效的市场下,量化模型对于市场微观交易机会的把握和处理是远强于人脑的,市场的非理性机会,各种各样的套利机会,很多都需要通过大量的数据统计和挖掘来发现。
另一方面,量化选股策略由于是程序化操作,其纪律性,客观性,准确性,及时性的特征,能够更好的把握市场机遇,不会受人为情绪因素所影响,而且对交易机会的发现和执行要比人为判断更加迅速。再者,量化选股因为是通过数据挖掘,模型选股,所以构建的投资组合可以同时持有数百只股票,而且可以高频率的交易,这样能很好的起到分散风险并提高收益的作用。
量化选股的风险特征如何?
一、市场中性策略
对于市场中性策略来说,其目标主要是通过量化选股的方法选出高阿尔法的股票构建组合,并做股指期货对冲。以此来剥离股票组合的市场风险,并收获纯阿尔法收益。所以一般情况下中性策略相对纯股票多头产品回撤风险要小,波动平滑,最大回撤一般较小,属于相对比较稳健的投资策略。
二、指数增强策略
市场上现在比较主流的指数增强策略主要由原来的市场中性策略演变而来,为了能够提高资金使用效率和搏取更高的收益,将市场中性策略中的股指期货对冲部分去除,直接构建股票纯多头组合,运用量化选股的方法选择一揽子股票,追踪指数,控制跟踪误差。目的是在承担市场风险的前提下,获取能比市场指数更高的收益,不仅获取中性策略中所提供的纯阿尔法收益,也获取市场本身所带来的收益。
中天嘉华优财富平台通过深度调研甄选出市场中优质的理财产品,供理财师和投资者选择。优财富平台产品种类丰富,包括固定收益、私募股权、私募证券、海外投资等多个投资品类。产品交易结构透明、项目优势明显、不存在过度包装。除了产品本身,优财富平台还为理财师提供了数以千计的产品投资组合以及相应的存续服务、高佣金、费用结算等服务,同时还会推出紧跟市场的投资策略和极具前瞻性的投资观点。
Ⅱ 如何进行量化选股
我们知道量化选股是通过股票重组,并且依托于市场行为,但是现在好像很多的工具都能实现量化选股,比如说量邦天语,免费使用,我觉得还好,你可以去官网试用一下。不谢
Ⅲ 量化选股的介绍
量化选股就是利用数量化的方法选择股票组合,期望该股票组合能够获得超越基准收益率的投资行为,研究表明,板块、行业轮动在机构投资者的交易中最为获利的盈利模式是基于行业层面进行周期性和防御性的轮动配置,这也是机构投资者最普遍采用的策略。此外,周期性股票在扩张性货币政策时期表现较好,而在紧缩环境下则支持非周期性行业。行业收益差在扩张性政策和紧缩性政策下具有显着的差异。
Ⅳ 什么是量化选股 量化选股的风险特征
什么是量化选股?
简单来说,量化选股就是利用数量化的方法构建模型,进而选择股票组合,期望该股票组合能够获得超越基准收益率的投资方法。
量化选股的风险特征如何?
我们以市场上较为典型的两种运用量化选股方法的策略举例:
一、市场中性策略
对于市场中性策略来说,其目标主要是通过量化选股的方法选出高阿尔法的股票构建组合,并做股指期货对冲。以此来剥离股票组合的市场风险,并收获纯阿尔法收益。所以一个标准的纯市场中性策略,应该较少的受到市场波动的影响,进而稳定的获得一个不错的超额收益。所以一般情况下中性策略相对纯股票多头产品回撤风险要小,波动平滑,最大回撤一般较小,属于相对比较稳健的投资策略。
二、指数增强策略
市场上现在比较主流的指数增强策略主要由原来的市场中性策略演变而来,为了能够提高资金使用效率和搏取更高的收益,将市场中性策略中的股指期货对冲部分去除,直接构建股票纯多头组合,运用量化选股的方法选择一揽子股票,追踪指数,控制跟踪误差。目的是在承担市场风险的前提下,获取能比市场指数更高的收益,不仅获取中性策略中所提供的纯阿尔法收益,也获取市场本身所带来的收益。
现在的指数增强产品主要有沪深300指数增强和中证500指数增强产品两种,以跟踪中证500指数的产品相对更多。由于去掉了股指对冲,指数增强的产品是完全暴露市场风险的,以此来搏取更高的收益。所以指数增强的产品就具备了高风险,高收益的特征。一般情况下,会跟随产品所追踪的指数进行波动,同涨同跌,但一般会在上涨中比指数涨的更高,而在下跌中比指数亏损的较少,尽管策略整体波动相对较大,在投资期间也可能发生较大的回撤,但由于指数增强产品相比纯中性产品资金使用效率更高而且有更强的复利效应,在市场没有极大风险的情况下,更可能获得比中性产品更高的收益。
最常见的量化选股模型
市场较为主流的量化选股策略总的来说可以分为两类:第一类是基本面选股,第二类是市场行为选股。其中基本面选股模型主要有:多因子模型、风格轮动模型和行业轮动模型。市场行为选股模型主要有:资金流模型、动量反转模型、一致预期模型、趋势追踪模型和筹码选股模型。
市场中从事量化投资的机构运用了各种量化选股模型构建股票组合,通过借助现代统计学、数学的方法,从海量历史大数据中寻找能够带来投资组合稳定收益的多种“大概率”策略和规律,在此基础上,综合归纳成因子和模型程序,最终纪律严明地按照这些数量化模型组合来进行独立投资。在众多的选股模型中,多因子选股模型是各个量化选股机构用的比较多的一种,多因子模型基本原理是采用一系列的因子作为选股标准,满足这些因子的股票则被买入,不满足的则卖出。
多因子模型的核心原理就是找到那些与企业的收益率最相关的因子。各种多因子模型核心的区别主要有两点,第一是选择的因子可能不同,第二是对因子的组合和权重分配会有所不同。综合这两点,就会导致不同机构最终选择出的股票组合是不同的。一般而言,多因子选股模型具体的选股方法分为打分法和回归法两种。
打分法就是根据各个因子的大小对股票进行打分,然后按照一定的权重加权得到一个总分,根据总分再对股票进行筛选。
回归法就是用过去的股票的收益率对多因子进行回归,得到一个回归方程,然后再把最新的因子值代入回归方程得到一个对未来股票收益的预判,然后再以此为依据进行选股。
Ⅳ 如何理解量化选股和量化择时之间的关系
所谓量化投资,就是通过定量或统计的方法,不断地从历史数据中挖掘有效的规律并在投资行为中加以利用,甚至通过计算机程序自动执行下单的动作。也就是说,量化投资方法是靠“概率”取胜,其最鲜明的特征就是可定量化描述的模型、规律或策略。
对于股票市场,量化投资主要包括量化选股、量化择时、算法交易、股票组合配置、资金或仓位管理、风险控制等。我们这里重点聊一聊量化选股和择时策略,其中前者解决哪些股票值得关注或持有,后者解决何时买入或卖出这些股票,以期在可承受的风险程度下,获得尽可能多的收益。
第一阶段:选股
选股的目标是从市场上所有可交易的股票中,筛选出适合自己投资风格的、具有一定安全边际的股票候选集合,通常称为“股票池”,并可根据自己的操作周期或市场行情变化,不定时地调整该股票池,作为下一阶段择时或调仓的基础。
量化选股的依据可以是基本面,也可以是技术面,或二者的结合。常用的量化选股模型举例如下:
1多因子模型
多因子模型:采用一系列的“因子”作为选股标准,满足这些因子的股票将作为候选放入股票池,否则将被移出股票池。这些因子可以是一些基本面指标,如 PB、PE、EPS 增长率等,也可以是一些技术面指标,如动量、换手率、波动率等,或者是其它指标,如预期收益增长、分析师一致预期变化、宏观经济变量等。多因子模型相对来说比较稳定,因为在不同市场条件下,总有一些因子会发生作用。
2板块轮动模型
板块轮动模型:一种被称作风格轮动,它是根据市场风格特征进行投资,比如有时市场偏好中小盘股,有时偏好大盘股,如果在风格转换的初期介入,则可以获得较大的超额收益;另一种被称作行业轮动,即由于经济周期的原因,总有一些行业先启动行情,另有一些(比如处于产业链上下游的)行业会跟随。在经济周期过程中,依次对这些轮动的行业进行配置,比单纯的买入持有策略有更好的效果。
3一致性预期模型
一致性预期模型:指市场上的投资者可能会对某些信息产生一致的看法,比如大多数分析师看好某一只股票,可能这个股票在未来一段时间会上涨;如果大多数分析师看空某一只股票,可能这个股票在未来一段时间会下跌。一致性预期策略就是利用大多数分析师的看法来进行股票的买入卖出操作。
与此类似的思路还有基于股吧、论坛、新闻媒体等对特定股票提及的舆情热度或偏正面/负面的消息等作为依据。还有一种思路是反向操作,回避羊群效应(物极必反),避免在市场狂热时落入主力资金出货的陷阱。
4资金流模型
资金流模型:其基本思想是根据主力资金的流向来判断股票的涨跌,如果资金持续流入,则股票应该会上涨,如果资金持续流出,则股票应该下跌。所以可将资金流入流出情况编制成指标,利用该指标来预测未来一段时间内股票的涨跌情况,作为选股依据。
第二阶段:择时
择时的目标是确定股票的具体买卖时机,其依据主要是技术面。取决于投资周期或风格(例如中长线、短线,或超短线),择时策略可以从比较粗略的对股票价位相对高低位置的判断,到依据更精确的技术指标或事件消息等作为信号来触发交易动作。
一般来说,择时动作的产生可以基于日K线(或周K线),也可以基于日内的小时或分钟级别K线,甚至tick级的分时图等。具体的量化择时策略可以分为如下几种:
1趋势跟踪型
趋势跟踪型策略适用于单边上升或单边下降(如果可做空的话)的行情——当大盘或个股出现一定程度的上涨和一定程度的下跌,则认为价格走势会进一步上涨或下跌而做出相应操作(买入->持有->加仓->继续持有->卖出)。
2高抛低吸型
高抛低吸型:高抛低吸型策略适用于震荡行情——当价格走势在一定范围的交易区间(箱形整理)或价格通道(平行上升或下降通道)的上下轨之间波动时,反复地在下轨附近买入,在上轨附近卖出,赚取波段差价利润(下轨买入->上轨卖出->下轨买入->上轨卖出->…)。
3横盘突破型
横盘突破型:价格走势可能在一定区间范围内长时间震荡,总有一天或某一时刻走出该区间,或者向上突破价格上轨(如吸筹阶段结束开始拉升),或者向下突破价格下轨(如主力出货完毕,或向下一目标价位跌落以寻找有效支撑),此时行情走势变得明朗。
横盘突破型策略就是要抓住这一突破时机果断开多或开空,以期用最有利价位和最小风险入场,获得后续利润(空仓或持仓等待机会->突破上轨则买入或平空/突破下轨则卖出或做空)。
常见的趋势跟踪型策略有:短时和长时移动均线交叉策略,均线多头排列和空头排列入场出场策略,MACD的DIFF和DEA线交叉策略等。如下图所示:
常见的高抛低吸型策略一般通过震荡类技术指标,如KDJ、RSI、CCI等,来判断价格走势的超卖或超卖状态,或通过MACD红绿柱或量能指标与价格走势间的背离现象,来预测波动区间拐点的出现。如下图所示:
常见的横盘突破策略包括布林带上下轨突破、高低价通道突破、Hans-123、四周法则等。如下图所示:
必须要强调的是,趋势跟踪型策略和高抛低吸型策略适用于完全不同的市场行情阶段——如果在单边趋势中做高抛低吸,或是在震荡行情中做趋势跟踪,则可能会造成很大亏损。因此,对这二者的使用,最关键的是,第一要尽量准确地判断当前行情类型,第二是要时刻做好止损保护(和及时止盈)。
总结一下:
在疯牛秘籍和疯牛形态系列产品中,提供了大量对股市规律的揭示、以及基于这些规律制定的量化策略,例如基于各类公告事件、资金动向、技术指标等制定的策略和规律,以及次日机会、底部形态反转等对应的交易时机。
这些实时动态的策略可为投资者的选股和择时操作提供高效的、有价值的参考。
Ⅵ 通达信量化选股公式是什么
通达信量化选股公式是由一些代码构成的,一串串的英文字符以及数字搭配起来的就是我们的选股公式的代码,公式都是由代码运行产生的。选股公式的代码编写需要找一些教程学习才能够学会并且掌握,使用选股公式是能够去选择出来一些对应形态的股票,这样能够大大的节省人力。
拓展资料:
1、“量化指标”—是指能用具体数据来体现的指标!如量比。量比是一个衡量相对成交量的指标,它是开市后每分钟的平均成交量与过去5 个交易日每分钟平均成交量之比。 其公式为: 量比=现成交总手/(过去5日平均每分钟成交量*当日累计开市时间(分)) 。个人投资者就不要量化投资了,还是集中投资好,量化是给那些基金公司的
2、量化就是数字化也就是你们的考核指标(业绩,出勤,全勤率。)不管什么指标都变成数量,或者百分数什么的比如你2022年的业务指标已经完成80%了,你的销售额已经突破你的目标的120%了 等.相信你一定理解了!-----业绩,出勤,全勤率..这些都是指标。
3、大智慧金融终端。 量化投资你要使用量加,进行科学的选股。 什么是量化投资呢?其实,。 西医靠指标,通过一系列的检查数据综合判断病情。量化投资无非就是用指标和公式驱动。量化选股的方法有很多种,总的来说,可以分为公司估值法、趋势法和资金法三大类量化择时股市的可预测性问题与有效市场假说密切相关。使用通达信公式根据股票名的某个字节来选股,要用到公式函数 NAMEINCLUDE。 NAMEINCLUDE函数是查找品种名称中是否含有指定的文字。 如: XG:IF (NAMEINCLUDE ('科技'),1,0); 如果股票名字中含有科技两字,则XG=1,否则XG=0; 用这个公式。
Ⅶ 通达信量化选股公式
通达信的选股公式为xg:v>ref(v,1)*2 and c>ref(c,1)。公式的定义为今天的量大于等于昨天量的2倍,股价上涨。此公式的使用说明有以下几点:1、五行量化指标(浅灰色实心空心方格):实心代表趋势走好,空心代表趋势走坏;2、操盘动力线指标(黄金线):短线灵敏指标,低位拐头向上可跟进,高位拐头向下要警惕,附有高低位买卖提示;3、海洋状态指标(彩带):彩带颜色代表短中期多空趋势,低位转红可跟进,高位变色宜减仓、清仓。
量化选股的方法
1、多因素模型(Multiple-factor regression)
多因素模型将那些引起证券价格联动的因素直接加入到收益率公式之中,然后开发基于这些因素的模型,简化投资组合分析所要求的关于证券之间相关系数的输入。模型效果的好坏主要取决于因素的选取,即那些被选定的因素是否足以证明,证券收益率之间联动效应的根源在于那些因素对各证券的共同影响。
2、动量反转选股
有效市场假说分三个层次,分别为弱有效市场、 半强有效市场、 强有效市场分别代表价格反映了历史信息、公开信息和全部信息。
动量效应(Momentum Effect)指的是投资策略或组合的持有期业绩方向和形成期业绩方向一致的股价波动现象;
而反转效应(ContrarianEffect)则指的是投资策略或组合的持有期业绩方向和形成期业绩方向相反的股价波动现象。
3、分类和回归树(Classification and regression tree)
分类和回归树是数据挖掘技术的一种,以递归分割技术为基础(常用于制药学的研究),包括分类树和回归树:分类树产生定性输出,回归树处理定量输出。
4、神经网络(Neural networks)
因为股市的建模与预测所处理的信息量往往十分庞大,因此对算法有很严格要求,它的非线性动力学特性也非常复杂,所以一般传统的方法对于股市的预测往往难如人意。人工神经网络不仅具有大规模并行模拟处理、网络全局作用和非线性动力学等特点,而且有很强的自适应、自学习以及容错能力,具备传统的建模方法所不具有的许多优点,其可以不必事先知道有关被建模对象的参数、结构以及动态特性等方面的知识, 对被建模对象经验知识要求不高。 而只需给出对象的输入和输出数,通过网络本身的学习功能即可实现输入和输出之间的映射。
Ⅷ 量化选股的基本面量化选股模型
基本面选股主要有多因子模型、风格轮动模型和行业轮动模型三类 筹码选股是另外一种市场行为策略,基本思想是,如果主力资金要拉升一支股票,会慢慢收集筹码,如果主力资金要卖出一支股票,则会慢慢分派筹码,所以根据筹码的分布和变动情况,就可以预测股票的未来是上涨还是下跌。
Ⅸ 如何量化炒股
我在其中遇到很多烦恼,在量化投资中,不知道你是不是有这样的烦恼,下面是我的烦恼:
1、专业量化炒股工具太复杂,有没有适合普通股民的量化分析工具呢? 有自己的选股方法和参考指标,如何去验证是否能带来收益呢? 很多牛人都有自己的炒股策略,谁的才是真的好呢? 增减或替换选股指标,需要大量的数据运算,耗时费力,该如何避免呢?
不过这些问题数库多因子量化平台可以帮你解决,3分钟量化选股,做自己的股票分析师。
数库多因子量化平台是数库公司为了普及量化投资,为广大股民提供的新型可视化量化工具,通过寻找与股票未来收益最相关的因子作为选股标准,综合运用多因子构建模型对股票进行评价,选取综合得分高的股票,以期获得超额收益。
总结:无论你是小白还是专业人士,都可以在数库多因子量化平台上尽情施展自己的炒股策略,炒股变得不再乏味烦心,而是便捷高效,轻松实现高收益。