导航:首页 > 方法技巧 > 如何求数列通项公式方法总结

如何求数列通项公式方法总结

发布时间:2022-03-03 18:54:39

❶ 求数列通项公式方法

一、公式法

二、累加法

三、累乘法

四、待定系数法

五、对数变换法

六、迭代法

七、数学归纳法

八、换元法

❷ 求数列通向公式有几种方法具体怎么样做

一、观察法
即归纳推理,一般用于解决选择、填空题。过程:观察→概括、推广→猜出一般性结论。
例1、数列 的前四项为:11、102、1003、10004、……,则 _____。
分析: 即

二、公式法
即已知数列前n项和,求通项。

三、递推公式
1、累差法
递推式为:an+1=an+f(n) (f(n)可求和)
思路::令n=1,2,…,n-1可得
a2-a1=f(1)
a3-a2=f(2)
a4-a3=f(3)
……
an-an-1=f(n-1)
将这个式子累加起来可得
an-a1=f(1)+f(2)+…+f(n-1)
∵f(n)可求和
∴an=a1+f(1)+f(2)+ …+f(n-1)
当然我们还要验证当n=1时,a1是否满足上式
可能要用到的一些公式:

例3、已知数列{a}中,a1=1,an+1=an+2,求an
解: 令n=1,2,…,n-1可得
a2-a1=2
a3-a2=22
a4-a3=23
……
an-an-1=2n-1
将这个式子累加起来可得
an-a1=f(1)+f(2)+…+f(n-1)
∵f(n)可求和
∴an=a1+f(1)+f(2)+…+f(n-1)
当n=1时,a1适合上式
故an=2n-1

2、累商法
递推式为:an+1=f(n)an(f(n)要可求积)
思路:令n=1,2, …,n-1可得
a2/a1=f(1)
a3/a2=f(2)
a4/a3=f(3)
……
an/an-1=f(n-1)
将这个式子相乘可得an/a1=f(1)f(2) …f(n-1)
∵f(n)可求积
∴an=a1f(1)f(2) …f(n-1)
当然我们还要验证当n=1时,a1是否适合上式

例4、在数列{an}中,a1=2,an+1=(n+1)an/n,求an
解: 令n=1,2, …,n-1可得
a2/a1=f(1)
a3/a2=f(2)
a4/a3=f(3)
……
an/an-1=f(n-1)
将这个式子相乘后可得an/a1=2/1×3/24×/3×…×n/(n-1)
即an=2n
当n=1时,an也适合上式
∴an=2n

3、构造法
(1)、递推关系式为an+1=pan+q (p,q为常数)
思路:设递推式可化为an+1+x=p(an+x),得an+1=pan+(p-1)x,解得x=q/(p-1)
故可将递推式化为an+1+x=p(an+x)
构造数列{bn},bn=an+q/(p-1)
bn+1=pbn即bn+1/bn=p,{bn}为等比数列.
故可求出bn=f(n)再将bn=an+q/(p-1)代入即可得an

例5、(06重庆)数列{an}中,对于n>1(nN)有an=2an-1+3,求an
解: 设递推式可化为an+x=2(an-1+x),得an=2an-1+x,解得x=3
故可将递推式化为an+3=2(an-1+3)
构造数列{bn},bn=an+3
bn=2bn-1即bn/bn-1=2,{bn}为等比数列且公比为3
bn=bn-1•3,bn=an+3
bn=4×3n-1
an+3=4×3n-1,an=4×3n-1-1

(2)、递推式为an+1=pan+qn (p,q为常数)
思路:在an+1=pan+qn两边同时除以qn+1得
an+1/qn+1=p/qan/qn+i/q
构造数列{bn},bn=an/qn可得bn+1=p/qbn+1/q
故可利用上类型的解法得到bn=f(n)
再将代入上式即可得an

例6、数列{an}中,a1+5/6,an+1=(1/3)an+(1/2)n,求an
解: 在an+1=(1/3)an+(1/2)n两边同时除以(1/2)n+1得
2n+1an+1=(2/3)×2nan+1
构造数列{bn},bn=2nan可得bn+1=(2/3)bn+1
故可利用上类型解法解得bn=3-2×(2/3)n
2nan=3-2×(2/3)n
an=3×(1/2)n-2×(1/3)n

(3)、递推式为:an+2=pan+1+qan (p,q为常数)
思路:设an+2=pan+1+qan变形为an+2-xan+1=y(an+1-xan)
也就是an+2=(x+y)an+1-(xy)an,则可得到x+y=p,xy= -q
解得x,y,于是{bn}就是公比为y的等比数列(其中bn=an+1-xan)
这样就转化为前面讲过的类型了.

例7、已知数列{an}中,a1=1,a2=2,an+2=(2/3)•an+1+(1/3)•an,求an
解:设an+2=(2/3)an+1+(1/3)an可以变形为an+2-xan+1=y(an+1-xan)
也就是an+2=(x+y)an+1-(xy)an,则可得到x+y=2/3,xy= -1/3
可取x=1,y= -1/3
构造数列{bn},bn=an+1-an
故数列{bn}是公比为-1/3的等比数列
即bn=b1(-1/3)n-1
b1=a2-a1=2-1=1
bn=(-1/3)n-1
an+1-an=(-1/3)n-1
故我们可以利用上一类型的解法求得an=1+3/4×[1-(-1/3)n-1](nN*)

四、求解方程法
若数列 满足方程 时,可通过解方程的思想方法求得通项。
例8、已知 ,数列 满足 ,求数列 的通项公式。
解:

五、用不完全归纳法猜想,用数学归纳法证明.
思路:由已知条件先求出数列前几项,由此归纳猜想出an,再用数学归纳法证明
例9、(2002全国高考)已知数列{an}中,an+1=a2n-nan+1,a1=2,求an
解:由已知可得a1=2,a2=3,a3=4,a4=5,a5=6
由此猜想an=n+1,下用数学归纳法证明:
当n=1时,左边=2,右边=2,左边=右边
即当n=1时命题成立
假设当n=k时,命题成立,即ak=k+1
则 ak+1=a2k-kak+1
=(k+1)2-k(k+1)+1
=k2+2k+1-k2-2k+1
=k+2
=(k+1)+1
∴当n=k+1时,命题也成立.
综合(1),(2),对于任意正整数有an=n+1成立
即an=n+1

❸ 求数列通项公式有哪些方法

求数列通项公式常用以下几种方法:
一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。
例:在数列{an}中,若a1=1,an+1=an+2(n1),求该数列的通项公式an。
解:由an+1=an+2(n1)及已知可推出数列{an}为a1=1,d=2的等差数列。所以an=2n-1。此类题主要是用等比、等差数列的定义判断,是较简单的基础小题。
二、已知数列的前n项和,用公式
S1 (n=1)
Sn-Sn-1 (n2)
例:已知数列{an}的前n项和Sn=n2-9n,第k项满足5
(A) 9 (B) 8 (C) 7 (D) 6
解:∵an=Sn-Sn-1=2n-10,∴5<2k-10<8 ∴k=8 选 (B)
此类题在解时要注意考虑n=1的情况。
三、已知an与Sn的关系时,通常用转化的方法,先求出Sn与n的关系,再由上面的(二)方法求通项公式。
例:已知数列{an}的前n项和Sn满足an=SnSn-1(n2),且a1=-,求数列{an}的通项公式。
解:∵an=SnSn-1(n2),而an=Sn-Sn-1,SnSn-1=Sn-Sn-1,两边同除以SnSn-1,得---=-1(n2),而-=-=-,∴{-} 是以-为首项,-1为公差的等差数列,∴-= -,Sn= -,
再用(二)的方法:当n2时,an=Sn-Sn-1=-,当n=1时不适合此式,所以,
- (n=1)
- (n2)
四、用累加、累积的方法求通项公式
对于题中给出an与an+1、an-1的递推式子,常用累加、累积的方法求通项公式。
例:设数列{an}是首项为1的正项数列,且满足(n+1)an+12-nan2+an+1an=0,求数列{an}的通项公式
解:∵(n+1)an+12-nan2+an+1an=0,可分解为[(n+1)an+1-nan](an+1+an)=0
又∵{an}是首项为1的正项数列,∴an+1+an ≠0,∴-=-,由此得出:-=-,-=-,-=-,…,-=-,这n-1个式子,将其相乘得:∴ -=-,
又∵a1=1,∴an=-(n2),∵n=1也成立,∴an=-(n∈N*)

❹ 求数列通项公式的几种常见方法

一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。
例:在数列{an}中,若a1=1,an
1=an
2(n1),求该数列的通项公式an。
解:由an
1=an
2(n1)及已知可推出数列{an}为a1=1,d=2的等差数列。所以an=2n-1。此类题主要是用等比、等差数列的定义判断,是较简单的基础小题。
二、已知数列的前n项和,用公式
s1
(n=1)
sn-sn-1
(n2)
例:已知数列{an}的前n项和sn=n2-9n,第k项满足5
(a)
9
(b)
8
(c)
7
(d)
6
解:∵an=sn-sn-1=2n-10,∴5<2k-10<8
∴k=8

(b)
此类题在解时要注意考虑n=1的情况。
三、已知an与sn的关系时,通常用转化的方法,先求出sn与n的关系,再由上面的(二)方法求通项公式。
例:已知数列{an}的前n项和sn满足an=snsn-1(n2),且a1=-,求数列{an}的通项公式。
解:∵an=snsn-1(n2),而an=sn-sn-1,snsn-1=sn-sn-1,两边同除以snsn-1,得---=-1(n2),而-=-=-,∴{-}
是以-为首项,-1为公差的等差数列,∴-=
-,sn=
-,
再用(二)的方法:当n2时,an=sn-sn-1=-,当n=1时不适合此式,所以,
-
(n=1)
-
(n2)
四、用累加、累积的方法求通项公式
对于题中给出an与an
1、an-1的递推式子,常用累加、累积的方法求通项公式。
例:设数列{an}是首项为1的正项数列,且满足(n
1)an
12-nan2
an
1an=0,求数列{an}的通项公式
解:∵(n
1)an
12-nan2
an
1an=0,可分解为[(n
1)an
1-nan](an
1
an)=0
又∵{an}是首项为1的正项数列,∴an
1
an
≠0,∴-=-,由此得出:-=-,-=-,-=-,…,-=-,这n-1个式子,将其相乘得:∴
-=-,
又∵a1=1,∴an=-(n2),∵n=1也成立,∴an=-(n∈n*)
五、用构造数列方法求通项公式
题目中若给出的是递推关系式,而用累加、累积、迭代等又不易求通项公式时,可以考虑通过变形,构造出含有
an(或sn)的式子,使其成为等比或等差数列,从而求出an(或sn)与n的关系,这是近一、二年来的高考热点,因此既是重点也是难点。
例:已知数列{an}中,a1=2,an
1=(--1)(an
2),n=1,2,3,……
(1)求{an}通项公式
(2)略
解:由an
1=(--1)(an
2)得到an
1--=
(--1)(an--)
∴{an--}是首项为a1--,公比为--1的等比数列。
由a1=2得an--=(--1)n-1(2--)
,于是an=(--1)n-1(2--)
-
又例:在数列{an}中,a1=2,an
1=4an-3n
1(n∈n*),证明数列{an-n}是等比数列。
证明:本题即证an
1-(n
1)=q(an-n)
(q为非0常数)
由an
1=4an-3n
1,可变形为an
1-(n
1)=4(an-n),又∵a1-1=1,
所以数列{an-n}是首项为1,公比为4的等比数列。
若将此问改为求an的通项公式,则仍可以通过求出{an-n}的通项公式,再转化到an的通项公式上来。
又例:设数列{an}的首项a1∈(0,1),an=-,n=2,3,4……(1)求{an}通项公式。(2)略
解:由an=-,n=2,3,4,……,整理为1-an=--(1-an-1),又1-a1≠0,所以{1-an}是首项为1-a1,公比为--的等比数列,得an=1-(1-a1)(--)n-1

❺ 求数列通项公式的方法大全

构造法求数列的通项公式

在数列求通项的有关问题中,经常遇到即非等差数列,又非等比数列的求通项问题,特别是给出的数列相邻两项是线性关系的题型,在老教材中,可以通过不完全归纳法进行归纳、猜想,然后借助于数学归纳法予以证明,但新教材中,由于删除了数学归纳法,因而我们遇到这类问题,就要避免用数学归纳法。这里我向大家介绍一种解题方法——构造等比数列或等差数列求通项公式。

构造法就是在解决某些数学问题的过程中,通过对条件与结论的充分剖析,有时会联想出一种适当的辅助模型,以此促成命题转换,产生新的解题方法,这种思维方法的特点就是“构造”.若已知条件给的是数列的递推公式要求出该数列的通项公式,此类题通常较难,但使用构造法往往给人耳目一新的感觉. 供参考。

1、构造等差数列或等比数列

由于等差数列与等比数列的通项公式显然,对于一些递推数列问题,若能构造等差数列或等比数列,无疑是一种行之有效的构造方法.

例1 设各项均为正数的数列 的前n项和为Sn,对于任意正整数n,都有等式: 成立,求 的通项an.

解: , ∴

,∵ ,∴ .

即 是以2为公差的等差数列,且 .



例2 数列 中前n项的和 ,求数列的通项公式 .

解:∵

当n≥2时,

令 ,则 ,且

是以 为公比的等比数列,

∴ .

2、构造差式与和式

解题的基本思路就是构造出某个数列的相邻两项之差,然后采用迭加的方法就可求得这一数列的通项公式.

例3 设 是首项为1的正项数列,且 ,(n∈N*),求数列的通项公式an.

解:由题设得 .

∵ , ,∴ .



.

例4 数列 中, ,且 ,(n∈N*),求通项公式an.

解:∵

∴ (n∈N*)

3、构造商式与积式

构造数列相邻两项的商式,然后连乘也是求数列通项公式的一种简单方法.

例5 数列 中, ,前n项的和 ,求 .

解:







4、构造对数式或倒数式

有些数列若通过取对数,取倒数代数变形方法,可由复杂变为简单,使问题得以解决.

例6 设正项数列 满足 , (n≥2).求数列 的通项公式.

解:两边取对数得: , ,设 ,则

是以2为公比的等比数列, .

, , ,



例7 已知数列 中, ,n≥2时 ,求通项公式.

解:∵ ,两边取倒数得 .

可化为等差数列关系式.

如何求一个数列的通项公式

求数列通项公式的基本方法:
累加法
递推公式为a(n+1)=an+f(n),且f(n)可以求和
例:数列{an},满足a1=1/2,a(n+1)=an+1/(4n^2-1),求{an}通项公式
解:a(n+1)=an+1/(4n^2-1)=an+[1/(2n-1)-1/(2n+1)]/2
∴an=a1+(1-1/3+1/3-1/5+……+1/(2n-3)-1/(2n-1))
∴an=1/2+1/2 (1-1/(2n-1))=(4n-3)/(4n-2)
累乘法
递推公式为a(n+1)/an=f(n),且f(n)可求积
例:数列{an}满足a(n+1)=(n+2)/n an,且a1=4,求an
解:an/a1=an/a(n-1)×a(n-1)/a(n-2)×……×a2/a1=2n(n+1)
构造法
将非等差数列、等比数列,转换成相关的等差等比数列
适当的进行运算变形
例:{an}中,a1=3,a(n+1)=an^2,求an
解:ln a(n+1)=ln an^2=2ln an
∴{ln an}是等比数列,q=2,首项为ln3
∴ln an =(2^(n-1))ln3
故an=3^[2^(n-1)]
倒数变换法(适用于a(n+1)=Aan/(Ban+C),其中,A、B、C∈R)
例:{an}中,a1=1,a(n+1)=an/(2an+1)
解:1/a(n+1)=(2an+1)/an=1/an +2
∴{1/an}是等差数列,首项是1,公差是2
∴an=1/(2n-1)
待定系数法
A.递推式为a(n+1)=pan+q(p,q为常数),可以构造递推数列{an+x}为 以p为公比的等比数列,
即a(n+1)+x=p(an+x),其中x=q/(p-1) (或者可以把设定的式子拆开,等于原子)
例:{an}中a1=1,a(n+1)=3an+4,求an
解:a(n+1)+2=3(an+2)
∴{an+2}是等比数列 首项是3,公比是3
∴an=3^n-2
B.递推公式为a(n+1)=pan+q^n(p,q是常数)
常规变形,将两边同时除以q^(n+1),
得到a(n+1)/q^(n+1)=p/q an/q^n+1/q
再令bn=an/q^n,
可以得到b(n+1)=kbn+m(k=p/q , m=1/q)
之后就用上面A中提到的方法来解决
C.递推公式为a(n+2)=pa(n+1)+qan,(p,q是常数)
可以令a(n+2)=x^2 , a(n+1)=x , an=1
解出x1和x2,可以得到两个式子
a(n+1)-x1an=x2(an-x1a(n-1))
a(n+1)-x2an=x1(an-x2a(n-1))
然后,两式子相减,左边可以得出kan来(k为系数)
右边就用等比数列的方法得出来
例:{an}中,a1=1,a2=2,a(n+2)=2/3 a(n+1)=1/3 an
解:x^2=2x/3=1/3
x1=1,x2=-1/3
可以得到方程组
a(n+1)-an=-1/3 (an-a(n-1))
a(n+1)+1/3 an=an+1/3 a(n-1)
解得an=7/4-3/4×(-1/3)^(n-1)
D.递推式a(n+1)=pan+an+b(a,b,p是常数)
可以变形为a(n+1)+x(n+1)+y=p(an+xn+y)
然后和原式子比较,可以得出x,y,
即可以得到{an+xn+y}是个 以p为公比的等比数列
例:{an}中,a1=4, an=3a(n-1)+2n-1(n≥2)
解:原式=>an+n+1=3[a(n-1)+(n-1)+1]
∴{an+n+1}为等比数列,q=3,首项是6
∴an=2×3^n-n-1
特征根法
递推式为a(n+1)=(Aan+B)/(Can+D) (A,B,C,D是常数)
令a(n+1)=an=x,原式则为x=(Ax+B)/(Cx+D)
(1)若解得相同的实数根x0,则可以构造数列{1/(an-x0)}为等差数列
例:{an}满足a1=2,a(n+1)=(2an-1)/(4an+6),求an
解:x=(2x-1)/(4x+6)
解得x0=-1/2
1/(an+1/2)=1/[(2a(n-1)-1)/(4a(n-1)+6) +1/2]=1/[a(n-1)+1/2] +1
∴{1/(an+1/2)}是等差数列,d=1,首项是2/5
∴an=5/(5n-3) -1/2
(2)若解得两个相异实根x1,x2,则构造{(an-x1)/(an-x2)}为等比数列(x1,x2的位置没有顺序,可以调换)
例:{an}满足a1=2,a(n+1)=(an+2)/(2an+1)
解:由题可得(an-1)/(an+1)=-1/3 [a(n-1)-1]/[a(n-1)+1]
则{(an-1)/(an+1)}是等比数列,q=-1/3,首项是1/3
∴an=[1+(-1)^(n-1) (1/3)^n]/[1-(-1)^(n-1) (1/3)^n]
(3)如果没有实数根,那么这个数列可能是周期数列
例:{an}中,a1=2,满足a(n+1)=(an-1)/an(n≥2)
解:a1=2 , a2=1/2 , a3=-1 , a4=2 , a5=1/2 ……
所以an=2(n MOD 3=1),1/2(n MOD3=1),-1(nMOD3=0)
(准确的应该是有大括号像分段函数那样表示,但是这里无法显示)
连加相减,连乘相除
例:{an}满足a1+2a2+3a3+……+nan=n(n+1)(n+2)
解:令bn=a1+2a2+3a3+……+nan=n(n+1)(n+2)
nan=bn-b(n-1)=n(n+1)(n+2)-(n-1)n(n+1)
∴an=3(n+1)
通项公式:按一定次序排列的一列数称为数列,而将数列{a n } 的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。这正如函数的解析式一样,通过代入具体的n值便可求知相应a n 项的值。而数列通项公式的求法,通常是由其递推公式经过若干变换得到。

❼ 求数列通项公式的基本方法

公式法、递推公式法、前n项和形式共计三类

❽ 求数列通项公式的方法,越多越好谢谢

一、 直接法
如果已知数列为等差(或等比)数列,可直接根据等差(或等比)数列的通项公式,求得 ,d(或q),从而直接写出通项公式。
例1. 等差数列 是递减数列,且 =48, =12,则数列的通项公式是( )
(A) (B) (C) (D)
解析:设等差数列的公差位d,由已知 ,
解得 ,又 是递减数列, ∴ , ,
∴ ,故选(D)。
例2. 已知等比数列 的首项 ,公比 ,设数列 的通项为 ,求数列 的通项公式。
解析:由题意, ,又 是等比数列,公比为
∴ ,故数列 是等比数列, ,

二、 归纳法
如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。
例3.(2002年北京春季高考)已知点的序列 ,其中 , , 是线段 的中点, 是线段 的中点,…, 是线段 的中点,…
(1) 写出 与 之间的关系式( )。
(2) 设 ,计算 ,由此推测 的通项公式,并加以证明。
(3) 略
解析:(1)∵ 是线段 的中点, ∴
(2) ,
= ,
= ,
猜想 ,下面用数学归纳法证明
当n=1时, 显然成立;
假设n=k时命题成立,即
则n=k+1时, =
=
∴ 当n=k+1时命题也成立,
∴ 命题对任意 都成立。
三、 累加(乘)法
对于形如 型或形如 型的数列,我们可以根据递推公式,写出n取1到n时的所有的递推关系式,然后将它们分别相加(或相乘)即可得到通项公式。
例4. 若在数列 中, , ,求通项 。
解析:由 得 ,所以
, ,…, ,
将以上各式相加得: ,又
所以 =
例5. 在数列 中, , ( ),求通项 。
解析:由已知 , , ,…, ,又 ,
所以 = … = … =
四、 构造法
有些数列本身并不是等差或等比数列,但可以经过适当的变形,构造出一个新的数列为等差或等比数列,从而利用这个数列求其通项公式。
例6. 在数列 中, , , ,求 。
解析:在 两边减去 ,得
∴ 是以 为首项,以 为公比的等比数列,
∴ ,由累加法得
=
= … = =
=
例7. (2003年全国高考题)设 为常数,且 ( ),
证明:对任意n≥1,
证明:设,
用 代入可得
∴ 是公比为 ,首项为 的等比数列,
∴ ( ),
即:
五、 公式法
公式法即利用公式 求数列通项公式的一种方法。
例8. 在数列 中, +2 +3 +…+ = ,求 。
解析:令 = +2 +3 +…+ = ,
则 = +2 +3 +…+ = ,
则 - = = - ,
∴ = - =
例9. 设数列 的前n项和 = ,求 。
解析:由 = ,得 = ,
∴ = - = - +( )
∴ = + ,两边同乘以 ,得 = +2,
∴ 是首项为1公差为2的等差数列,
∴ =2+ = , ∴ =
六、 代换法
例10. 已知数列 满足 , ,求 。
解析:设 ,∵ ,
∴ , ,…,
总之,求数列的通项公式,就是将已知数列转化成等差(或等比)数列,从而利用等差(或等比)数列的通项公式求其通项。

❾ 求数列通项公式总结

常用的 韦达法;待定系数法,逐差法。逐乘法,倒数法,分解因式法。可以去网络文库下载 数列知识点总结,很全的,自己对应做习题就行了

阅读全文

与如何求数列通项公式方法总结相关的资料

热点内容
小白摄像头使用方法 浏览:623
检测蛋白含量的方法 浏览:420
如何呵护友谊的方法 浏览:24
学生如何祛斑青少年祛雀斑方法 浏览:335
冬天给宝宝穿衣服最简单的方法 浏览:432
电缆安装方法 浏览:943
如何用土方法止牙疼 浏览:699
翡翠成品真假鉴定方法简单 浏览:233
常用装饰材料的计算方法 浏览:226
创维mb300电视使用方法 浏览:177
板条箱的使用方法视频 浏览:899
消费税应纳税额的计算方法和特点 浏览:925
烙铁海绵使用方法 浏览:900
颈椎疼医院采用什么方法 浏览:178
库函数C语言连接方法 浏览:629
冷料解决方法 浏览:539
贵妇眼膜正确使用方法 浏览:320
偏头痛的治疗方法及针灸 浏览:475
物质分类方法和技巧高中 浏览:349
羟基鉴定醛酮最常用的方法是 浏览:743