导航:首页 > 方法技巧 > 新的口算方法和技巧

新的口算方法和技巧

发布时间:2022-05-27 13:04:02

‘壹’ 小学口算技巧

1、直观表象助口算

从运算形式看,小学低年级的口算是从直观感知过渡到表象的运算。如教学建立9+2的表象:先出示装有9个皮球的盒子,另外再准备2个皮球,让孩子想一想,“应该怎样摆才能一眼就看出一共有几个皮球?”孩子很快就会通过直观感受说出:从盒子外面的2个皮球中拿1个皮球放进盒子里,盒子里就有10个皮球,外面还有一个,一共11个。这种方法叫做“凑十法”,即看到9就想到9和几凑成10。这样,表象建立了,口算的准确性也就有基础了。

2、理清算理助口算

基本口算的教学,不在于单一的追求口算速度,而在于使学生理清算理,只有弄清了算理,才能有效地掌握口算的基本方法。因此,应重视抓好算理教学。

例如:教学8+5=13时,要从实际操作入手,让孩子理解:8比10少2,求8与5之和, 把5分成3和2,8与2组成10,还剩下3,10与3直接相加的和为3。抽象出进位加法的法则:“看大数,分小数,凑成10,再加几。”

3、说理训练助口算

抓好说理训练,能使孩子有效地掌握基本口算,培养孩子思维的灵活性。例如教20以内的退位减法时,先出示“13-8=?”,“13-8等于几呢?”“等于5。”又问:“是怎样想出来的?”“做减法,想加法。”再鼓励孩子:“能不能想出另外的口算方法呢?”在孩子说出几种口算方法后,归纳出不同的退位减法,并要求孩子就不同的方法加强说理训练,以提高口算的速度。

高 级 口 算 技 巧

当孩子都能熟练基本口算之后,就应转入拔高训练,即教给学生口算方法和规律:

(一)用“凑十法”口算

根据式题的特征,应用定律和性质使运算数据“凑整”:

1.加数“凑整”。如14+5+6=?启发孩子:几个数相加,如果有几个数相加能凑成整十的数,可以调换加数的位置,把几个数相加。

2.运用减法性质“凑整”。如50-13,启发孩子说出思考过程,说出几种口算方法并通过比较,让孩子总结出:从一个数里连续减去几个数,如果减数的和能凑成整十的数,可以把减数先加后再减。这种口算比较简便。

3.连乘中因数“凑整”。如25×1×4×4,25与4的积100,可直接口算出结果是140。

(二)运用“分解法”口算

就是把题目中的某数“拆开”分别与另一个数运算,如2×32×5,原式变成2×5×4×8=10×4×8=80。

(三)运用速算技巧进行口算

1.首同尾合10的两个两位数相乘的乘法速算。即用其中一个十位上的数加1再乘以另一个数的十位数,所得积作两个数相乘积的百位、千位,再用两个数个位上数的积作两个数相乘的积的个位、十位。如:14×16=224(4×6=24作个位、十位、(1+1)×1=2位)。

2.头差1尾合10的两个两位数相乘的乘法速算。即用较大的因数的十位数的平方,减去它的个位数的平方。如:48×52=2500-4=2496。

3.采用“基准数”速算。如623+595+602+600+588可选择600为基数,先把每个数与基准数的差累计起来,再加上基数与项数的积。

4.掌握一些运算规律。 例如,两个分母互质数且分子都为1的分数相减,可以把分母相乘的积作分母,把分母的差作分子;两个分母互质数且分子相同,可以把分母相乘的积作为分母,分母相减的差再乘以分子作分子,等等。

‘贰’ 能快速口算的技巧有哪些方法

一、一种做多位乘法不用竖式的方法.我们都可以口算1X1 10X1,但是,11X12 12X13 12X14呢?这时候,大家一般都会用竖式,通过竖式计算,得数是132、156、168.其中有趣的规律:即个位上的数字正好是两个因数个位数字的积.十位上的数字是两个数字个位上的和.百位上的数字是两个因数十位数字的积.例如:
12X14=168 1=1X1 6=2+4 8=2X4如果有进位怎么办呢?这个定律对有进位的情况同样适用,在竖式时只要~满几时,就向下一位进几.~例如:
14X16=224 4=4X6的个位 2=2+4+6 2=1+1X1 试着做做看下面的题:
12X15= 11X13= 15X18= 17X19=二、几十一乘以几十一的速算方法 例如: 21×61= 41×91= 41×91= 51×61= 81×91= 41×51= 41×81= 71×81= 这些算式有什么特点呢?是“几十一乘以几十一”的乘法算式,我们可以用:先写十位积,再写十位和(和满10 进1),后写个位积.“先写十位积,再写十位和(和满10 进1),后写个位积”就是一见到几十一乘以几十一的乘法算式,如果十位数的和是一位数,我们先直接写十位数的积,再接着写十位数的和,最后写上1 就一定正确;如果十位数的和是两位数,我们先直接写十位数的积加1 的和,再接着写十位数的和的个位数,最后写一个1 就一定正确.我们来看两个算式:21×61=41×91= 用“先写十位积,再写十位和(和满10 进1),后写个位积”这种速算方法直接写得数时的思维过程.第一个算式,21×61=?思维过程是:2×6=12,2+6=8, 21×61 就等于1281.第二个算式,41×91=?思维过程是:4×9=36,4+9=13,36+1=37, 41×91 就等于3731. 试试上面题目吧!然后再看看下面几题 61×91= 81×81= 31×71= 51×41=一、10-20的两位数乘法及乘方速算方法:尾数相乘,被乘数加上乘数的尾数(满十进位)【例1】 1 2 X 1 3 ----------1 5 6 (1)尾数相乘2X3=6 (2)被乘数加上乘数的尾数12+3=15 (3)把两计算结果相连即为所求结果【例2】 1 5X 1 5------------2 2 5(1)尾数相乘5X5=25(满十进位)(2)被乘数加上乘数的尾数15+5=20,再加上个位进上的2即20+2=22(3)把两计算结果相连即为所求结果二、两位数、三位数乘法及乘方速算a.首数相同,尾数相加和是十的两位数乘法 方法:尾数相乘,首数加一再相乘 【例1】 5 4X 5 6---------3 0 2 4(1)尾数相乘4X6=24直接写在十位和个位上(2)首数5加上1为6,两首数相乘6X5=30(3)把两结果相连即为所求结果【例2】 7 5X 7 5----------5 6 2 5(1)尾数相乘5X5=25直接写在十位和个位上(2)首数7加上1为8,两首数相乘8X7=56(3)把两计算结果相连即可b.尾数是5的三位数乘方速算方法:尾数相乘,十位数加一,再将两首数相乘【例】 1 2 5X 1 2 5------------1 5 6 2 5(1)尾数相乘5X5=25直接写在十位和个位上(2)首数12加上1为13,再两数相乘13X12=156(3)两计算结果相连c.任意两位数乘法方法:尾数相乘,对角相乘再相加,首数相乘 【例】 3 7X X 6 2---------2 2 9 4(1)尾数相乘7X2=14(满十进位)(2)对角相乘3X2=6;7X6=42,两积相加6+42=48(满十进位)(3)首数相乘3X6=18加上十位进上的4为18+4=22(4)把计算结果相连即为所求结果b.任意两位数及三位平方速算方法:尾数的平方,首数乘尾数扩大2倍,首数的平方[例] 2 3X 2 3---------5 2 9 (1)尾数的平方3X3=9(满十进位)(2)首尾数相乘2X3=6扩大两倍为12写在十位上(满十进位)(3)首数的平方2X2=4加上十位进上的1为5(4)把计算结果相连即为所求结果c.三位数的平方与两位数的平方速算方法相同[例] 1 3 2 X 1 3 2------------1 7 4 2 4(1)尾数的平方2X2=4写在个位(2)首尾数相乘13X2=26扩大2倍为52写在个位上(满十进位)(3)首数的平方13X13=169加上十位进上的5为174(4)把计算结果相连即为所求结果〖注意:三位数的首数指前两位数字!〗三、大数的平方速算方法:把题目与100相差,相差数称之为差数;先算差数的平方写在个位和十位上(缺位补零),再用题目减去差数得一结果;最后把两结果相连即为所求结果【例】 9 4X 9 4-----------8 8 3 6(1)94与100相差为6(2)差数6的平方36写在个位和十位上(3)用94减去差数6为88写在百位和千位上(4)把计算结果相连即为所求结果 B55 × 55 = ? 27 × 23 = ? 91 × 99 = ? 43 × 47 = ? 88 × 82 = ? 74 × 76 = ?大家能够很快算出这些算式的正确答案吗?注意,是很快哦!你能吗?我能--3025 ; 621 ; 9009 ;2021 ; 7216 ; 5624 ;很神气吧!速算秘诀:(就以第一题为例好啦)(1)分别取两个数的第一位,而后一个的要加上一以后,相乘.[5×(5+1)]=30;(2)再将末尾数相乘的得数写在后面就可以得出正确的答案了.5×5=25;(3)3025!Bingo!其它依次类推就行了.仔细看每一个式子里的两位数的十位是相同的,而个位的两数则是相补的.这样的速算秘诀只能够适用于这种情况的算式.所以说大家千万不要把巧算和真正的速算混淆在一起,真正的速算是任何数都能算的.一、关于9的数学速算技巧(两位数乘法)
关于9的口诀:
1 × 9 = 9 2 × 9 = 18 3 × 9 = 27 4 × 9 = 36
5 × 9 = 45 6 × 9 = 54 7 × 9 = 63 8 × 9 = 72
9 × 9 = 81从上面的口诀口有没有看到从1到9任何一个数和9相乘的积,个位数和十位数的和还是等于9.
你看上面的:0 + 9 =9;1 + 8 = 9;2 + 7 = 9;3 + 6 = 9;
4 + 5 = 9;5 + 4 = 9;6 + 3 = 9;7 + 2 = 9;8 + 1 = 9下面我们再做一些复杂一点的乘法:
18 × 12 = ? 27 × 12 = ? 36 × 12 = ? 45 × 12 = ?
54 × 12 = ? 63 × 12 = ? 72 × 12 = ? 81 × 12 = ?
关于两位数的乘法,上面的题目中,前面的乘数都是9的倍数,而且个位和十位的和都等于9.
这样我们能不能找到一种简便的算法呢?也就是把两位数的乘法变成一位数的乘法呢?
我们先把上面这些数变一变.
18 = 1 × 10 + 8;27 = 2 × 10 + 7;36 = 3 × 10 + 6;
45 = 4 × 10 + 5;54 = 5 × 10 + 4;63 = 6 × 10 + 3;
72 = 7 × 10 + 2;81 = 8 × 10 + 1;
我们再把上面的数变一变
1 × 10 + 8 = 1 × 9 + 1+8 = 1 × 9 + 9 = 1 × 9 + 9 = 2 × 9
当然如果知道口诀你们可以直接把18 = 2 × 9同样的方法你们可以拆出下面的数,也可以背口诀27 = 3 × 9 ; 36 = 4 × 9 ;45 = 5 × 9
54 = 6 × 9 ; 63 = 7 × 9 ;72 = 8 × 9
81 = 9 × 9
为了找到计算上面问题的方法,我们把上面的式子再变一次.
18 = 2×(10-1);27 = 3×(10-1);36 = 4×(10-1)
45 = 5×(10-1);54 = 6×(10-1);63 = 7×(10-1)
72 = 8×(10-1);81 = 9×(10-1)
现在我们来算上面的问题:
18 × 12 = 2×(10-1)× 12
= 2 ×(12 ×10 - 12)
= 2 ×(120- 12)
120 - 12 = 108;
这样就有了
18 × 12 = 2 × 108 = 216
是不是把一个两位数的乘法变成了一位数的乘法?
而且可以通过口算就得出结果?我用这种方法教威威算乘法,他只需要我算这一个,后边的题目就自己会算了.
上面我们的计算好象很麻烦,其实现在总结一下就简单了.

‘叁’ 10以内口算速算技巧

10以内口算速算技巧如下:

1、加法

大数记心里,小数往上数,如4+2= 把4记在心里,往上数两个数,5、6,之后得出结果4+2=6。

2、减法

大数记在心里,小数往下数,如6-3= 把6记在心里,往下数三个数,5、4、3, 之后得出结果6-3=3。

(3)新的口算方法和技巧扩展阅读:

20以内加减法技巧

1、进位加法

口诀:“加九减一,加八减二,加七减三,加六减四,加五减五。”怎样用口诀,以“加九减一”为例,“加九减一”是指一个数与9相加,将这个数减去1作为它们和的个位。

例如:8+9=( )就拿 8减去1结果7,用7来作和的个位,即8+9=17, 5+9=( )就拿5减去1等于4,用4来作和的个位,即5+9=14

2、退位减法

口诀:“减九加一,减八加二,减七加三,减六加四,减五加五。”如何用口诀,以“减九加一”为例,“减九加一”是指一个数减去9,将这个数的个位加上1所得的结果就是它们的差。

‘肆’ 口算速算技巧

1、个位数是1。

速算口诀:头乘头,头加头,尾是1,头加头如果超过10要进位。

2、十位数是1。

速算口诀:头是1,尾加尾,尾乘尾,超过10要进位。

3、个位数都是9

速算口诀:头数各加1,相乘再乘10,减去相加数,最后再减1。

(4)新的口算方法和技巧扩展阅读:

1,加法速算:计算任意位数的加法速算,方法很简单学习者只要熟记一种加法速算通用口诀——“本位相加(针对进位数)减加补,前位相加多加一”就可以彻底解决任意位数从高位数到低位数的加法速算问题。

例如:67+48=(6+5)×10+(7-2)=115,(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。

2,减法速算:计算任意位数的减法速算方法也同样是用一种减法速算通用口诀——“本位相减(针对借位数)加减补,前位相减多减一”就可以彻底解决任意位数从高位数到低位数的减法速算问题。

例如:67-48=(6-5)×10+(7+2)=19,(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。

‘伍’ 二年级口算技巧与方法

1.多做多练,熟能生巧

“冰冻三尺,非一日之寒”,口算能力是孩子必备的基本功,我们应作出长计划,短安排,有目的、有计划、有步骤地进行教学和训练,体现出循序渐进的基本原则和按新的课程标准进行教学。

在日常生活中每天要坚持3—5分钟的口算训练,每天坚持练习1条口算题。开始是在家长的督促下完成,慢慢可放手使孩子形成习惯,自觉、自愿的完成。

2.保质、保量的训练

每次练习要记录完成1页所用的时间,做完后马上订正对错并分析错误原因。每做一次训练,都与上一次的速度比较一下,看看有没有进步,进步了,家长应当适当地赞扬一下小孩,说“真棒,有进步!”

孩子这时需要及时鼓励,正如在球场上拼搏的球员需要自己的队友当啦啦队一样,也可将他们优秀的练习张贴在家中醒目的地方作为激励,有时也可以给他们一个小小的奖品。

家长切不可一见自己的小孩的速度稍慢就急不可耐,说“真笨,怎么搞的!”如果当家长这样会对孩子有不利的影响,这是一件需要耐心和爱心才能做好的事情。

对有退步的孩子则可以和孩子一起分析退步的原因,然后再轻轻地摸着他们的头提出在以后口算中应该怎样去做,如果下次成绩提高了就及时表扬,鼓励他们继续努力,树立自信。

3.训练形式多样化

多做多练是前提,但孩子习惯对新鲜事物感兴趣,尤其喜欢在游戏中学习从中增长知识,如果长期单独某种练习,孩子是容易感到厌倦情绪的。

由此,口算练习要活泼、生动、多样化,在练习中可以采用的补充方式有:玩扑克牌(24点),听算,开火车,对口令,夺红旗,送信,找朋友,争擂台大王,定期检测等等。(要注意讲究实效、简便易行)

同时通过一些数学实践活动让孩子体会口算能力的培养对我们日常生活的重要性,(如买菜,逛超市等)。

4.理解算理,掌握巧算的方法

口算能力的提高,有赖于孩子对算理的理解,只有在理解的基上,才能收到举一反三的效果,大大提高口算的速度和准确性,并形成口算能力。为此要重视加强孩子对算理的理解。

例如:口算中常用的凑整法、凑十法、分解法,以及熟记一些常见的数据等。来看25×4=100 ,125×8=1000时,提醒孩子们能经常用它们作为口算的拐杖,有的时候还可以利用分解法将题目转换成有25×4=100,125×8=1000的形式。

让孩子将平时发现的巧算方法记下来,与同学分享。这样同时也培养了孩子口算的兴趣。

5.养成良好的计算习惯

养成良好的计算习惯,是提高孩子计算能力切实有效的办法。帮助孩子养成以下良好计算习,应该做到“一看、二想、三计算”的认真计算习惯。

计算是一件非常严肃认真的事情,来不得半点马虎,但恰恰有孩子没有良好学习习惯,拿到计算题后,没有看清数字,没有弄清运算顺序,就盲目的算起来。

例如:在计算6+4÷2这样一道简单的计算题时,由于孩子马虎,结果算成了5。如果在计算时,只要仔细一点,很容易看出这道题的运算顺序是先算除法再算加法,正确结果应该是8。

‘陆’ 口算的方法和技巧

首先运用直观表象助口算
其次采用理清算理助口算
最后运用说理训练助口算

‘柒’ 小学三年级口算技巧和方法

方法一:带符号搬家法

当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。

a+b+c=a+c+b

a+b -c=a -c+b

a -b+c=a+c -b

a-b-c=a-c-b

a×b×c=a×c×b

a÷b÷c=a÷c÷b

a×b ÷c=a ÷c×b

a÷b ×c=a ×c÷b)

方法二:结合律法

(一)加括号法

1.在 加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。

2.在 乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。

(二)去括号法

1.在 加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要 变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加。)。

2.在 乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要 变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)。

方法三:乘法分配律法

1.分配法

括号里是加或减运算,与另一个数相乘,注意分配

例:8×(3+7)

=8×3+8×7

=24+56

=80

2.提取公因式

注意相同因数的提取。

例: 9×8+ 9×2

= 9×(8+2)

=9×10

=90

3.注意构造,让算式满足乘法分配律的条件。

例:8×99

=8×(100-1)

=8×100-8×1

=800-8

=792

方法四:凑整法

看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难嘛。

例:9999+999+99+9

=(10000-1)+(1000-1)+(100-1)+(10-1)

=(10000+1000+100+10)-4

=11110-4

=11106

方法五:拆分法

拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如: 2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。

例: 32×125×25

= 4×8×125×25

=( 4×25)×( 8×125)

=100×1000

‘捌’ 口算速算的方法

1.速算之凑整先算。
【点拨】:加法、减法的简便计算中,基本思路是“凑整”,根据加法(乘法)的交换律、结合律以及减法的性质,其中若有能够凑整的,可以变更算式,使能凑整的数结成一对好朋友,进行凑整计算,能使计算简便。

例:298+304+196+502

【分析】:本题可以运用加法交换律和结合律,把能够凑成整十、整百、整千……的数先加起来,可以使计算简便。

【解答】:原式=(298+502)+(304+196)=800+500=1300

2.速算之带符号搬家。
【点拨】:在加减混合,乘除混合同级运算中,可以根据运算的需要以及题目的特点,交换数字的位置,可以使计算变得简便。特别提醒的是:交换数字的位置,要注意运算符号也随之换位置。

例:464-545+836-455

【分析】:观察例题我们会发现,如果按照惯例应该从左往右计算,464减545根本就不够减,在小学阶段,学生没办法做,所以要想做这道题,学生必须先观察数字特点,进行简便计算。

思考:4.75÷0.25-4.75能带符号搬家吗?什么情况下才能带符号搬家?带符号搬家需要注意什么?

3.速算之拆数凑整。
【点拨】:根据运算定律和数字特点,常常灵活地把算式中的数拆分,重新组合,分别凑成整十、整百、整千。

例:998+1413+9989

【分析】:给998添上2能凑成1000,给9989添上11凑成10000,所以就把1413分成1400、2与11三个数的和。

【解答】:
原式=(998+2)+1400+(11+9989)=1000+1400+10000=12400

例:73.15×9.9

【分析】:把9.9看作10减0.1的差,然后用乘法分配率可简化运算。

【解答】:
原式=73.15×(10-0.1)=73.15×10-73.15×0.1=731.5-7.315=724.185

4.速算之等值变化。
【点拨】:等值变化是小学数学中重要的思想方法。做加法时候,常常利用这样的恒等变形:一个加数增加,另一个加数就要减少同一个数,它们的和才不变。而减法中,是被减数和减数同时增加或减少相同的数,差才不变。
例:1234-798

【分析】:把798看作800,减去800后,再在所得差里加上多减去的2.

【解答】:原式==1234-800+2=436。

5.速算之去括号法。
【点拨】:在加减混合运算中,括号前面是“加号或乘号”,则去括号时,括号里的运算符号不变;如果括号前面是“减号或除号”,则去括号时,括号里的运算符号都要改变。

例题:(4.8×7.5×8.1)÷(2.4×2.5×2.7)

【分析】:首先根据“去括号原则”把括号去掉,然后根据“在同级运算中每个数可带着它前边的符号‘搬家’”进行简算。

【解答】:原式=4.8×7.5×8.1÷2.4÷2.5÷2.7
=(4.8÷2.4)×(7.5÷2.5)×(8.1÷2.7)
=2×3×3
=18

6.速算之同尾先减。
【点拨】:在减法计算时,若减数和被减数的尾数相同,先用被减数减去尾数相同的减数,能使计算简便。

【分析】:算式中第二个减数256与被减数2356的尾数相同,可以交换两个数的位置,让2356先减256

7.速算之提取公因数
【点拨】:乘法分配率的反应用,出错率比较高,一般包括三种类型。

‘玖’ 三年级数学快速口算方法

只要熟练掌握计算法则和运算顺序,根据题目本身的特点,使用合理、灵活的计算方法,化繁为简,化难为易,就能算得又快又准确。先为大家介绍5个速算技巧:

1. 方法一:带符号搬家法

当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。

例如:

23-11+7=23+7-11

4×14×5=4×5×14

10÷8×4=10×4÷8

2. 方法二:结合律法

加括号法

(1)在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。

例如:

23+19-9=23+(19-9)

33-6-4=33-(6+4)

(2)在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。

例如:

2×6÷3=2×(6÷3)

10÷2÷5=10÷(2×5)

去括号法

(1)在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加)。

例如:

17+(13-7)=17+13-7

23-(13-9)=23-13+9

23-(13+5)=23-13-5

(2)在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)

例如:

1×(6÷2)=1×6÷2

24÷(3×2)=24÷3÷2

24÷(6÷3)=24÷6×3

3. 方法三:乘法分配律法

分配法

括号里是加或减运算,与另一个数相乘,注意分配。

例如:

8×(5+11)=8×5+8×11

提取公因式法

注意相同因数的提取。

例如:

9×8+9×2=9×(8+2)

4. 方法四:凑整法

看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦,有借有还,再借不难嘛。

例如:

99+9=(100-1)+(10-1)

5. 方法五:拆分法

拆分法就是为了方便计算,把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。

例如:

32×125×25

=4×8×125×25

=(4×25)×(8×125)

=100×1000

要想让孩子熟练运用速算方法,需要通过持之以恒的练习,提升计算能力,这样,无论平时做作业还是考试都能游刃有余。

建议家长每天抽出5分钟时间,帮助孩子进行口算练习,培养孩子快速、准确口算的能力。在练习过程中,也要记录好用时,做完后马上核对正误,并分析做错的原因。

阅读全文

与新的口算方法和技巧相关的资料

热点内容
宽容哪些方法 浏览:980
中考实心球的方法与技巧 浏览:531
如何瘦脸练成瓜子脸的四种方法 浏览:949
肾阳不足的锻炼方法 浏览:576
新鲜莲子的食用方法视频 浏览:807
如何降低敏感度训练方法 浏览:20
三星5的qq红包铃声在哪里设置方法 浏览:31
刷墙平米计算方法 浏览:164
论文研究方法如何概括 浏览:756
苹果手机网页提取文字的方法 浏览:293
星露谷物语铁锭快速入手方法 浏览:120
摩托机油尺正确的测量方法 浏览:801
炸虾的正确方法图片 浏览:429
a型血人最佳解压方法 浏览:110
调整金牛座的最佳方法 浏览:381
以实践为基础的研究方法及意义 浏览:545
魅蓝拦截的信息在哪里设置方法 浏览:403
雕刻牛字最简单的方法 浏览:36
武汉恋爱挽回方法操作步骤 浏览:433
戒掉手机的四个方法 浏览:575