1、十位数是1的两位数相乘
乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。
2、个位是1的两位数相乘
十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。
3、十位相同个位不同的两位数相乘
被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。
4、首位相同,两尾数和等于10的两位数相乘
十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。
5、首位相同,尾数和不等于10的两位数相乘
两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。
‘贰’ 如何快速算加减法
要快速计算加减法时,需要有很好的计算方法。
在快速计算加法的时候,要动动脑,像:348+95=348+100-5=448-5=443。这样的快速方法,用一句话来说就是“多加要减去”。
还有一种快速的加法是:392+103=392+100+3=492+3=495,这个快速计算的方法,要用一句话来说,就是“少加要加上”。
快速计算减法,也需要有方法,像:648-98=648-100+2=548+2=550。这样的加法计算,可以用一句话来说,就是“多减要加上”。
还有最后一种快速计算,是610-104=610-100-4=510-4=506,这是最后一种快速计算方法,用一句话来说,就是,“少减要减去”。
多减要加上;少减要减去;多加要减去;少加要加上。这四句话就是快速计算加减法的最好方法。
‘叁’ 加减法心口算的口诀
一、20以内加减法的口算 1、加法 20以内进位加法思维训练的方法很多:点数法、接数法、凑十法,口决法,推导法、减补法等。 其中减补法: 两个可以凑成10的数是互为补数,1和9,2和8,3和7等。都是互为补数。 方法是:用第一个加数减去第二个加数的补数,再加上10 。比如:9+4=13 思考方法:第二个加数的补数是6;第一个加数9减去4的补数6得3;3加上10,得13。 即 9+4 = 9 - 6+10 = 3+10 = 13 2、减法 20以内退位减法是以20以内加法为基础的,方法有:想加法计算减法、破十法、分解减法后连减法、记小数数到大数、推导法、加补法等。 重点介绍加补法: 方法是:用被减数个位上的数加上减数的补数,同时去掉十位上的“1”,比如:13 - 4 = 9 思维方法:被减数个位上的3不够减;减数4的补数是6;6加上被减数个位上的3,得9,同时去掉十位上的“1”。 二、两位数加减法口算: 两位数加减法这里重点介绍减补法和加补法,首先我们规定:两个和为100的数互为百补数。 1、加法 两位数加法有四种现象,即个位、十位都不进位的;个位进位十位不进位的;十位进位个位不进位的;个位十位都进位的。 (1)个位十位都不进位的两位数加法,用数的组成法直接相加。例:34 + 52 = 30 + 50 + 4 + 2 = 86 (2)个位进位十位不进位的两位数加法, 思维方法是: 一个加数十位上的数字加上另一个加数十位上的数字再加“1”,得十位上的数字,个位用一个加数个位上的数字减去另一个加数个位上数字的百补数,得个位上的数字。 例:36+ 47 = 83 口算过程:十位上的数字是3 + 4 + 1=8 个位上的数字是6 - 3(3是7的十补数)=3 或 7 - 4(4是6的十补数)=3 所以:36+47十位数字是8,个位数字是3,等于83。 (3)十位进位个位不进位的两位数加法,思维方法是:首先确定“百”位数字是“1”,然后用一个加数十位上的数字减去另一个加数十位上数字的十补数,得十位上的数字,个位上的数用数的组成法直接相加。 例:83 + 64 = 147 口算过程:百位是“1”. 十位数字是 8 - 4 = 4 或 6 - 2 = 4. 个位是 3 +4 = 7. 所以:83 + 64百位数字是1,十位数字是4,个位数字是7,等于147 (4)个位十位都进位的两位数加法,思维方法是:首先确定百位数字是“1”,然后用一个加数减去另一个加数的百补数,得十位和个位上的数字。 例:86 + 59= 145 口算过程:百位是“1”. 十位和个位上的数字用 86 - 41(59的百补数)=45 或 59 - 14(86的百补数) =45. 所以:86+59百位是1,十位和个位是45,等于145.2 退位减法 两位数减法我们重点探讨退位减法。 (1)两位数减两位数, 思维方法是:首先用被减数十位数字减去减数十位数字再减“1”,是差的十位数字,然后用被减数个位数字加上减数个位数字的十补数,是差的个位数字。 例:83 - 26 = 57 口算过程:十位数字是 8 - 2 -1 = 5 个位数字是 3+4(4是6的十补数)=7 所以 83-26十位数字是5,个位数字是7,等于57. (2)被减数是一百几十的退位减法,思维方法是:首先确定百位是1-1=0 即这个数的差是几十几,然后用被减数十位和个位的数字加上减数十位和个位数字的百补数,就是差。例132 - 67 = 65 口算过程:32+33(33是67的百补数)=65.
‘肆’ 100以内的加减法用什么方法计算又快又准
加法速算
凑整加法:凑整加法就是凑整加差法,先凑成整数后加差数,就能算的快。8+7=15计算时先将8凑成10 8加2等于10 7减2等于5 10+5=15,如17+9=26计算程序是17+3=20 9-3=6 20+6=26。
补数加法:补数加法速度快,主要是没有逐位进位的麻烦。补数就是两个数的和为10 100 1000等等。8+2=10 78+22=100 8是2的补数,2也是8的补数,78是22的补数,22也是78的补数。利用补数进行加法计算的方法是十位加1,个位减补。例如6+8=14计算时在6的十位加上1,变成16,再从16中减去8的补数2就得14。如6+7=13先6+10=16后16-3=13,如27+8=35 27+10=37 37-2=35,如25+85=110 25+100=125 125-15=110,如867+898=1765 867+1000=1867 1867-102=1765。
调换位置的加法:两个十位数互换位置,有速算方法是:十位加个位,和是一位和是双,和是两位相加排中央。例如61+16=77,计算程序是6+1=7 7是一位数,和是双,就是两个7,61+16=77再如83+38=121计算程序是8+3=11 11就是两位数,两位数相加1+1=2排中央,将2排在11中间,就得121。
减法速算:
①两位减一位补数减法:两位数减一位数的补数减法是:十位减1,个位加补。如15-8=7,15减去10等于5, 5加个位8的补数2等于7。
②多位数补数减法:补数减法就是减1加补,三位减两位的方法:百位减1,十位加补,如268-89=179,计算程序是268减100等于168,168加89的补数11就等于179。
③调换位置的减法:两个十位数互换位置,有速算方法:十位数减个位数,然后乘以9,就是差数。如86-68=18,计算程序是8-6=2,2乘以9等于18。
‘伍’ 怎样算加减法最快
要快速计算加减法时,需要有很好的计算方法。 在快速计算加法的时候,要动动脑,像:348+95=348+100-5=448-5=443。这样的快速方法,用一句话来说就是“多加要减去”。 还有一种快速的加法是:392+103=392+100+3=492+3=495,这个快速计算的方法,要用一句话来说,就是“少加要加上”。 快速计算减法,也需要有方法,像:648-98=648-100+2=548+2=550。这样的加法计算,可以用一句话来说,就是“多减要加上”。 还有最后一种快速计算,是610-104=610-100-4=510-4=506,这是最后一种快速计算方法,用一句话来说,就是,“少减要减去”。 多减要加上;少减要减去;多加要减去;少加要加上。这四句话就是快速计算加减法的最好方法。
‘陆’ 几十加减几十口算
几十加减几十的口算,一般来说,我们就可以直接进行十位口算得到答案,比如说20+20=40。
‘柒’ 加减法速算技巧是什么
加法速算技巧:
1、加大减差法
前面加数加上后面加数的整数,减去后面加数与整数的差等于和。
例题:1376+98=1474
计算方法:1376+100-2
2、求数字位置颠倒两个两位数的和
一个数的十位数加上它的个位数乘以11等于和。
例题:47+74=121
计算方法:(4+7)x11=121
减法速算技巧:
1、减大加差法
被减数减去减数的整数,再加上减数与整数的差,等于差。
例题:321-98=223
计算方法:减100,加2
2、求数字位置颠倒两个两位数的差
被减数的十位数减去它的个位数乘以9,等于差。
例题:74-47=27
计算方法:(7-4)x9=27
(7)十位数连加减的快速口算方法扩展阅读:
运算法则
笔算加法,要记三条:
1、相同数位对齐。
2、从个位加起。
3、个位满10向十位进1。
笔算减法,要记三条:
1、相同数位对齐。
2、从个位减起。
3、个位不够减从十位退1,在个位加10再减。
‘捌’ 小学数学加减法速算方法与技巧
小学学生的加减法运算能力是非常重要的数学能力,运算能力不仅包括理解运算算理,掌握运算方法,还包括在遇到问题时能够找到合理简便的运算途径。
速算不仅能简化计算过程,化繁为简,化难为易,同时又会提高计算效率。
因此在学习过程中,不仅需要掌握计算法则,还需要学会一些运算技巧。
凑整"先计算
在进行加法运算时,若能对算式的各项恰当地分组,会使计算过程大大简化。两个数相加,若能恰好凑成整十、整百、整千、整万…则先计算。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:12+88=100,35+65=100,21+79=100,44+56=100,55+45=100。
在上面算式中,1叫9的"补数";79叫21的"补数",44也叫56的"补数",也就是说两个数互为"补数"。
例题1.计算53+55+47
解:原式=(53+47)+55
=155
计算23+39+61
解:原式=23+(39+61)
=23+100
=123
对于不能直接凑整的,可以把其中一个数进行拆分,再凑整。
例题2.计算87+15
解:原式=87+13+2
=(87+13)+2
=100+2
=102
计算54+79
解:原式=33+21+79
=33+(21+79)
=33+100
=133
计算65+18+27
解:原式=60+2+3+18+27
=60+(2+18)+(3+27)
=60+20+30
=110
对于没有直接凑整的数的,可以先凑整,最后再减去凑整的数。
例题3.计算:38+29+19
解:原式=(38+2)+(29+1)+(19+1)-4
=40+30+20-4
=90-4
=86
等差数列
计算等差连续数(等差数列)的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:
1,2,3,4,5,6,7,8,9
1,3,5,7,9
2,4,6,8,10
3,6,9,12,15
4,8,12,16,20等都是等差连续数
1、等差连续数的个数是奇数时,它们的和等于中间数乘以个数。
例题4.计算1+2+3+4+5+6+7+8+9
解:原式=5×9(中间数是5,共9个数)
=45
计算1+3+5+7+9+11+13
解:原式=7×7(中间数是7,共7个数)
=49
计算2+4+6+8+10
解:原式=6×5(中间数是6,共5个数)
=30
2、等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半。
例题5.计算1+2+3+4+5+6+7+8+9+10
共10个数,个数的一半是5,首数是1,末数是10。
解:原式=(1+10)×5
=11×5
=55
计算1+3+5+7+9+11+13+15
共8个数,个数的一半是4,首数是1,末数是15。
解:原式=(1+15)×4
=16×4
=64
计算2+4+6+8+10+12
共6个数,个数的一半是3,首数是2,末数是12。
解:原式=(2+12)×3
=14×3
=42
基准数法
先观察各个加数的大小接近什么数字,再把每个加数先按接近的数字相加,然后再把少算的加上,把多算的减去。
例题6.计算23+22+24+18+19+17
通过观察发现所有的加项比较接近20
解:原式=20×6+3+2+4-2-1-3
=120+9-6
=123
计算103+102+101+99+98
所有加项比较接近100
解:原式=100×5+3+2+1-1-2
=500+3
=503
减法中的巧算
1、把几个互为"补数"的减数先加起来,再从被减数中减去。
例题7.计算 400-63-37
解:原式= 400-(63+37)
=400-100
=300
计算1000-90-80-10-20
解:原式=1000-(90+80+10+20)
=1000-200
=800
2、先减去那些与被减数有相同尾数的减数。
例题8.计算4622-(622+149)
解:原式=4000-149
=3851
3、利用"补数"先凑整,再运算(注意把多加的数再减去,把多减的数再加上)。
例题9.计算505-397
解:原式=500+5-400+3(把多减的 3再加上)
=108
计算523-289
解:原式=523-300+11(把多减的11再加上)
=223+11
=234
计算358+997
解:原式=358+1000-3(把多加的3再减去)
=1355
加减混合式的运算
1、去括号和添括号的法则
在只有加减运算的算式里,如果括号前面是"+"号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是"-"号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,"+"变"-","-"变"+"。
例题10.计算200-20-10-30
解:原式=200-(10+20+30)
=200-60
=140
计算100-40+30
解:原式=100-(40-30)
=100-10
=90
2、带符号"搬家"
例题11.计算 545+47-145+53
解:原式=545-145+47+53
=(545-145)+(47+53)
=400+100
=500
注意:每个数前面的运算符号是这个数的符号,如+47,-145,+53。而545前面虽然没有符号,应看作是+545。
3、两个数相同而符号相反的数可以直接"抵消"掉
例题12.计算18+2-18+4
解:原式=18-18+2+4
=6
‘玖’ 求加法心算速算口诀或技巧
加法速算技巧
1、 不进位的加法算式:(一定要先看清楚进不进位)
加法速算技巧
A :两位数加一位数:先写上十位数,再接着写上个位数的和。
B 两位数加两位数:先写十位数的和,再写个位数的和
C 多位数加多位数:从高位起,依次写上相同位上的数的和
2、进位加法算式(一定要观察是否进位)
加法速算技巧进位加法的关键是向高一位进1,进1既然已经是一定的事情,可不可以先进1呢?观察好后可以从高位先算起。
A 两位数加一位数:先写上十位数加1的和,再接着写个位数的和的个位数(用二十以内加法口诀)
B 两位数加一位数:先写上两位数凑成整十后的十位数,再写上一位数分出一个数后剩余的数。(即把一位数分开,帮两 位数凑十)
加法速算技巧 15+8= 过程:15+5=20 先写2,8分出5后剩余3,再接着写3。
(9)十位数连加减的快速口算方法扩展阅读:
加法是完全一致的事物也就是同类事物的重复或累计,是数字运算的开始,不同类比如一个苹果+一个橘子其结果只能等于二个水果就存在分类与归类的关系。
减法是加法的逆运算;乘法是加法的特殊形式;除法是乘法的逆运算;乘方是乘法的简便形式;开方是乘方的逆运算;对数是在乘方的各项中寻找规律;由对数而发展出导数;然后是微分和积分。数字运算的发展,是更特殊的情况,更高度重复下的规律。
有许多二进制操作可以被视为对实数的加法运算的概括。 抽象代数领域集中关注这种广义的运算,它们也出现在集合理论和类别理论中。
抽象代数中的加法
矢量加法:
在线性代数中,向量空间是一个代数结构,允许添加任何两个向量和缩放向量。 一个熟悉的向量空间是所有有序的实数对的集合;有序对(a,b)被解释为从欧几里德平面中的原点到平面中的点(a,b)的向量。 通过添加它们各自的坐标来获得两个向量的和:
集合理论和类别理论中的加法
增加自然数的方法是在集合理论中添加序数和基数。这些给出了两个不同的概括,即自然数。与大多数加法操作不同,序数的加法是不可交换的。 然而,增加基数是与不相交联合操作密切相关的交换操作。
在类别理论中,不相交加法被视为特殊情况,一般可能是所有加法概括中最为抽象的。 如直接总和和楔子总和,被命名为添加的联系。