导航:首页 > 研究方法 > 试验数据处理分析方法

试验数据处理分析方法

发布时间:2022-05-12 03:44:06

① 常用的数据分析方法哪些


常见的数据分析方法有哪些?
1.趋势分析
当有大量数据时,我们希望更快,更方便地从数据中查找数据信息,这时我们需要使用图形功能。所谓的图形功能就是用EXCEl或其他绘图工具来绘制图形。
趋势分析通常用于长期跟踪核心指标,例如点击率,GMV和活跃用户数。通常,只制作一个简单的数据趋势图,但并不是分析数据趋势图。它必须像上面一样。数据具有那些趋势变化,无论是周期性的,是否存在拐点以及分析背后的原因,还是内部的或外部的。趋势分析的最佳输出是比率,有环比,同比和固定基数比。例如,2017年4月的GDP比3月增加了多少,这是环比关系,该环比关系反映了近期趋势的变化,但具有季节性影响。为了消除季节性因素的影响,引入了同比数据,例如:2017年4月的GDP与2016年4月相比增长了多少,这是同比数据。更好地理解固定基准比率,即固定某个基准点,例如,以2017年1月的数据为基准点,固定基准比率是2017年5月数据与该数据2017年1月之间的比较。
2.对比分析
水平对比度:水平对比度是与自己进行比较。最常见的数据指标是需要与目标值进行比较,以了解我们是否已完成目标;与上个月相比,要了解我们环比的增长情况。
纵向对比:简单来说,就是与其他对比。我们必须与竞争对手进行比较以了解我们在市场上的份额和地位。
许多人可能会说比较分析听起来很简单。让我举一个例子。有一个电子商务公司的登录页面。昨天的PV是5000。您如何看待此类数据?您不会有任何感觉。如果此签到页面的平均PV为10,000,则意味着昨天有一个主要问题。如果签到页面的平均PV为2000,则昨天有一个跳跃。数据只能通过比较才有意义。
3.象限分析
根据不同的数据,每个比较对象分为4个象限。如果将IQ和EQ划分,则可以将其划分为两个维度和四个象限,每个人都有自己的象限。一般来说,智商保证一个人的下限,情商提高一个人的上限。
说一个象限分析方法的例子,在实际工作中使用过:通常,p2p产品的注册用户由第三方渠道主导。如果您可以根据流量来源的质量和数量划分四个象限,然后选择一个固定的时间点,比较每个渠道的流量成本效果,则该质量可以用作保留的总金额的维度为标准。对于高质量和高数量的通道,继续增加引入高质量和低数量的通道,低质量和低数量的通过,低质量和高数量的尝试策略和要求,例如象限分析可以让我们比较和分析时间以获得非常直观和快速的结果。
4.交叉分析
比较分析包括水平和垂直比较。如果要同时比较水平和垂直方向,则可以使用交叉分析方法。交叉分析方法是从多个维度交叉显示数据,并从多个角度执行组合分析。
分析应用程序数据时,通常分为iOS和Android。
交叉分析的主要功能是从多个维度细分数据并找到最相关的维度,以探究数据更改的原因。

② 物理实验数据处理的方法有哪些

实验数据的处理方法

实验结果的表示,首先取决于实验的物理模式,通过被测量之间的相互关系,考虑实验结果的表示方法。常见的实验结果的表示方法是有图解法和方程表示法。在处理数据时可根据需要和方便选择任何一种方法表示实验的最后结果。

(1)实验结果的图形表示法。把实验结果用函数图形表示出来,在实验工作中也有普遍的实用价值。它有明显的直观性,能清楚的反映出实验过程中变量之间的变化进程和连续变化的趋势。精确地描制图线,在具体数学关系式为未知的情况下还可进行图解,并可借助图形来选择经验公式的数学模型。因此用图形来表示实验的结果是每个中学生必须掌握的。

图解法主要问题是拟合面线,一般可分五步来进行。

①整理数据,即取合理的有效数字表示测得值,剔除可疑数据,给出相应的测量误差。

②选择坐标纸,坐标纸的选择应为便于作图或更能方使地反映变量之间的相互关系为原则。可根据需要和方便选择不同的坐标纸,原来为曲线关系的两个变量经过坐标变换利用对数坐标就要能变成直线关系。常用的有直角坐标纸、单对数坐标纸和双对数坐标纸。

③坐标分度,在坐标纸选定以后,就要合理的确定图纸上每一小格的距离所代表的数值,但起码应注意下面两个原则:

a.格值的大小应当与测量得值所表达的精确度相适应。

b.为便于制图和利用图形查找数据每个格值代表的有效数字尽量采用1、2、4、5避免使用3、6、7、9等数字。

④作散点图,根据确定的坐标分度值将数据作为点的坐标在坐标纸中标出,考虑到数据的分类及测量的数据组先后顺序等,应采用不同符号标出点的坐标。常用的符号有:×○●△■等,规定标记的中心为数据的坐标。

⑤拟合曲线,拟合曲线是用图形表示实验结果的主要目的,也是培养学生作图方法和技巧的关键一环,拟合曲线时应注意以下几点:

a.转折点尽量要少,更不能出现人为折曲。

b.曲线走向应尽量靠近各坐标点,而不是通过所有点。

c.除曲线通过的点以外,处于曲线两侧的点数应当相近。

⑥注解说明,规范的作图法表示实验结果要对得到的图形作必要的说明,其内容包括图形所代表的物理定义、查阅和使用图形的方法,制图时间、地点、条件,制图数据的来源等。

(2)实验结果的方程表示法。方程式是中学生应用较多的一种数学形式,利用方程式表示实验结果。不仅在形式上紧凑,并且也便于作数学上的进一步处理。实验结果的方程表示法一般可分以下四步进行。

①确立数学模型,对于只研究两个变量相互关系的实验,其数学模型可借助于图解法来确定,首先根据实验数据在直角坐标系中作出相应图线,看其图线是否是直线,反比关系曲线,幂函数曲线,指数曲线等,就可确定出经验方程的数学模型分别为:

Y=a+bx,Y=a+b/x,Y=a\b,Y=aexp(bx)

②改直,为方便的求出曲线关系方程的未定系数,在精度要求不太高的情况下,在确定的数学模型的基础上,通过对数学模型求对数方法,变换成为直线方程,并根据实验数据用单对数(或双对数)坐标系作出对应的直线图形。

③求出直线方程未定系数,根据改直后直线图形,通过学生已经掌握的解析几何的原理,就可根据坐标系内的直线找出其斜率和截距,确定出直线方程的两个未定系数。

④求出经验方程,将确定的两个未定系数代入数学模型,即得到中学生比较习惯的直角坐标系的经验方程。

中学物理实验有它一套实验知识、方法、习惯和技能,要学好这套系统的实验知识、方法、习惯和技能,需要教师在教学过程中作科学的安排,由浅入深,由简到繁加以培养和锻炼。逐步掌握探索未知物理规律的基本方法。

③ 实验方法和数据分析方法,看看其中数据情况,怎么处理的

实验数据处理的几种方法
物理实验中测量得到的许多数据需要处理后才能表示测量的最终结果。对实验数据进行记录、整理、计算、分析、拟合等,从中获得实验结果和寻找物理量变化规律或经验公式的过程就是数据处理。它是实验方法的一个重要组成部分,是实验课的基本训练内容。本章主要介绍列表法、作图法、图解法、逐差法和最小二乘法。
1.4.1 列表法
列表法就是将一组实验数据和计算的中间数据依据一定的形式和顺序列成表格。列表法可以简单明确地表示出物理量之间的对应关系,便于分析和发现资料的规律性,也有助于检查和发现实验中的问题,这就是列表法的优点。设计记录表格时要做到:
(1)表格设计要合理,以利于记录、检查、运算和分析。
(2)表格中涉及的各物理量,其符号、单位及量值的数量级均要表示清楚。但不要把单位写在数字后。
(3)表中数据要正确反映测量结果的有效数字和不确定度。列入表中的除原始数据外,计算过程中的一些中间结果和最后结果也可以列入表中。
(4)表格要加上必要的说明。实验室所给的数据或查得的单项数据应列在表格的上部,说明写在表格的下部。
1.4.2 作图法
作图法是在坐标纸上用图线表示物理量之间的关系,揭示物理量之间的联系。作图法既有简明、形象、直观、便于比较研究实验结果等优点,它是一种最常用的数据处理方法。
作图法的基本规则是:
(1)根据函数关系选择适当的坐标纸(如直角坐标纸,单对数坐标纸,双对数坐标纸,极坐标纸等)和比例,画出坐标轴,标明物理量符号、单位和刻度值,并写明测试条件。
(2)坐标的原点不一定是变量的零点,可根据测试范围加以选择。,坐标分格最好使最低数字的一个单位可靠数与坐标最小分度相当。纵横坐标比例要恰当,以使图线居中。
(3)描点和连线。根据测量数据,用直尺和笔尖使其函数对应的实验点准确地落在相应的位置。一张图纸上画上几条实验曲线时,每条图线应用不同的标记如“+”、“×”、“·”、“Δ”等符号标出,以免混淆。连线时,要顾及到数据点,使曲线呈光滑曲线(含直线),并使数据点均匀分布在曲线(直线)的两侧,且尽量贴近曲线。个别偏离过大的点要重新审核,属过失误差的应剔去。

④ 数据分析的基本方法有哪些

数据分析的三个常用方法
1. 数据趋势分析
趋势分析一般而言,适用于产品核心指标的长期跟踪,比如,点击率,GMV,活跃用户数等。做出简单的数据趋势图,并不算是趋势分析,趋势分析更多的是需要明确数据的变化,以及对变化原因进行分析。
趋势分析,最好的产出是比值。在趋势分析的时候需要明确几个概念:环比,同比,定基比。环比是指,是本期统计数据与上期比较,例如2019年2月份与2019年1月份相比较,环比可以知道最近的变化趋势,但是会有些季节性差异。为了消除季节差异,于是有了同比的概念,例如2019年2月份和2018年2月份进行比较。定基比更好理解,就是和某个基点进行比较,比如2018年1月作为基点,定基比则为2019年2月和2018年1月进行比较。
比如:2019年2月份某APP月活跃用户数我2000万,相比1月份,环比增加2%,相比去年2月份,同比增长20%。趋势分析另一个核心目的则是对趋势做出解释,对于趋势线中明显的拐点,发生了什么事情要给出合理的解释,无论是外部原因还是内部原因。
2. 数据对比分析
数据的趋势变化独立的看,其实很多情况下并不能说明问题,比如如果一个企业盈利增长10%,我们并无法判断这个企业的好坏,如果这个企业所处行业的其他企业普遍为负增长,则5%很多,如果行业其他企业增长平均为50%,则这是一个很差的数据。
对比分析,就是给孤立的数据一个合理的参考系,否则孤立的数据毫无意义。在此我向大家推荐一个大数据技术交流圈: 658558542 突破技术瓶颈,提升思维能力 。
一般而言,对比的数据是数据的基本面,比如行业的情况,全站的情况等。有的时候,在产品迭代测试的时候,为了增加说服力,会人为的设置对比的基准。也就是A/B test。
比较试验最关键的是A/B两组只保持单一变量,其他条件保持一致。比如测试首页改版的效果,就需要保持A/B两组用户质量保持相同,上线时间保持相同,来源渠道相同等。只有这样才能得到比较有说服力的数据。
3. 数据细分分析
在得到一些初步结论的时候,需要进一步地细拆,因为在一些综合指标的使用过程中,会抹杀一些关键的数据细节,而指标本身的变化,也需要分析变化产生的原因。这里的细分一定要进行多维度的细拆。常见的拆分方法包括:
分时 :不同时间短数据是否有变化。
分渠道 :不同来源的流量或者产品是否有变化。
分用户 :新注册用户和老用户相比是否有差异,高等级用户和低等级用户相比是否有差异。
分地区 :不同地区的数据是否有变化。
组成拆分 :比如搜索由搜索词组成,可以拆分不同搜索词;店铺流量由不用店铺产生,可以分拆不同的店铺。
细分分析是一个非常重要的手段,多问一些为什么,才是得到结论的关键,而一步一步拆分,就是在不断问为什么的过程。

⑤ 实验报告的实验数据分析与处理怎么写

根据你的实验数据根据实验相关的一些定理、公式进行计算得出数据结果,然后根据算出的数据结果进行分析,论证实验成功或失败,或者得出实验条件下产生的某种现象或结果

⑥ 数据分析常用的方法有哪些

1、简单趋势


通过实时访问趋势了解供应商及时交货情况。如产品类型,供应商区域(交通因子),采购额,采购额对供应商占比。


2、多维分解


根据分析需要,从多维度对指标进行分解。例如产品采购金额、供应商规模(需量化)、产品复杂程度等等维度。


3、转化漏斗


按照已知的转化路径,借助漏斗模型分析总体和每一步的转化情况。常见的转化情境有不同供应商及时交货率趋势等。


4、用户分群


在精细化分析中,常常需要对有某个特定行为的供应商群组进行分析和比对;数据分析需要将多维度和多指标作为分群条件,有针对性地优化供应链,提升供应链稳定性。


5、细查路径


数据分析可以观察供应商的行为轨迹,探索供应商与本公司的交互过程;进而从中发现问题、激发灵感亦或验证假设。


6、留存分析


留存分析是探索用户行为与回访之间的关联。一般我们讲的留存率,是指“新新供应商”在一段时间内“重复行为”的比例。通过分析不同供应商群组的留存差异、使用过不同功能供应商的留存差异来找到供应链的优化点。


7、A/B 测试


A/B测试就是同时进行多个方案并行测试,但是每个方案仅有一个变量不同;然后以某种规则优胜略汰选择最优的方案。数据分析需要在这个过程中选择合理的分组样本、监测数据指标、事后分析和不同方案评估。

⑦ 实验数据处理包括哪些内容

实验数据的处理方法:
1. 平均值法
取算术平均值是为减小偶然误差而常用的一种数据处理方法。通常在同样的测量条件下,对于某一物理量进行多次测量的结果不会完全一样,用多次测量的算术平均值作为测量结果,是真实值的最好近似。
2. 列表法
实验中将数据列成表格,可以简明地表示出有关物理量之间的关系,便于检查测量结果和运算是否合理,有助于发现和分析问题,而且列表法还是图象法的基础。
列表时应注意:
①表格要直接地反映有关物理量之间的关系,一般把自变量写在前边,因变量紧接着写在后面,便于分析。
②表格要清楚地反映测量的次数,测得的物理量的名称及单位,计算的物理量的名称及单位。物理量的单位可写在标题栏内,一般不在数值栏内重复出现。
③表中所列数据要正确反映测量值的有效数字。
3. 作图法
选取适当的自变量,通过作图可以找到或反映物理量之间的变化关系,并便于找出其中的规律,确定对应量的函数关系。作图法是最常用的实验数据处理方法之一。
描绘图象的要求是:
①根据测量的要求选定坐标轴,一般以横轴为自变量,纵轴为因变量。坐标轴要标明所代表的物理量的名称及单位。
②坐标轴标度的选择应合适,使测量数据能在坐标轴上得到准确的反映。为避免图纸上出现大片空白,坐标原点可以是零,也可以不是零。坐标轴的分度的估读数,应与测量值的估读数(即有效数字的末位)相对应。

⑧ 常用的实验数据分析方法有哪些

1、聚类分析


聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。


2、因子分析


因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。这些方法本质上大都属近似方法,是以相关系数矩阵为基础的,所不同的是相关系数矩阵对角线上的值,采用不同的共同性□2估值。在社会学研究中,因子分析常采用以主成分分析为基础的反复法。


3、相关分析


相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。相关关系是一种非确定性的关系,例如,以X和Y分别记一个人的身高和体重,或分别记每公顷施肥量与每公顷小麦产量,则X与Y显然有关系,而又没有确切到可由其中的一个去精确地决定另一个的程度,这就是相关关系。


4、对应分析


对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。


5、回归分析


研究一个随机变量Y对另一个(X)或一组(X1,X2,„,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。

⑨ 如何进行临床试验数据统计分析

统计学方法的正确抉择
一。
统计方法抉择的条件
在临床科研工作中,正确地抉择统计分析方法,应充分考虑科研工作者的分析目的、临床科研设计方法、搜集到的数据资料类型、数据资料的分布特征与所涉及的数理统计条件等。
其中任何一个问题没考虑到或考虑有误,都有可能导致统计分析方法的抉择失误。
此外,统计分析方法的抉择应在科研的设计阶段来完成,而不应该在临床试验结束或在数据的收集工作已完成之后。
对临床科研数据进行统计分析和进行统计方法抉择时,应考虑下列因素:
1.分析目的
对于临床医生及临床流行病医生来说,在进行统计分析前,一定要明确利用统计方法达到研究者的什么目的。
一般来说,统计方法可分为描述与推断两类方法。
一是统计描述(descriptivestatistics),二是统计推断(inferentialstatistics)。
统计描述,即利用统计指标、统计或统计表,对数据资料所进行的最基本的统计分析,使其能反映数据资料的基本特征,有利于研究者能准确、全面地了解数据资料所包涵的信息,以便做出科学的推断。
统计表,如频数表、四格表、列联表等;
统计,如直方、饼,散点等;
统计指标,如均数、标准差、率及构成比等。
统计推断,即利用样本所提供的信息对总体进行推断(估计或比较),其中包括参数估计和假设检验,如可信区间、t检验、方差分析、c2检验等,如要分析甲药治疗与乙药治疗两组的疗效是否不相同、不同地区某病的患病率有无差异等。
还有些统计方法,既包含了统计描述也包含了统计推断的内容,如不同变量间的关系分析。
相关分析,可用于研究某些因素间的相互联系,以相关系数来衡量各因素间相关的密切程度和方向,如高血脂与冠心病、慢性宫颈炎与宫颈癌等的相关分析;
回归分析,可用于研究某个因素与另一因素(变量)的依存关系,即以一个变量去推测另一变量,如利用回归分析建立起来的回归方程,可由儿童的年龄推算其体重。
2.资料类型
资料类型的划分现多采用国际通用的分类方法,将其分为两类:数值变量(numericalvariable)资料和分类变量(categoricalvariable)资料。
数值变量是指其值是可以定量或准确测量的变量,其表现为数值大小的不同;
而分类变量是指其值是无法定量或不能测量的变量,其表现没有数值的大小而只有互不相容的类别或属性。
分类变量又可分为无序分类变量和有序分类变量两小类,无序分类变量表现为没有大小之分的属性或类别,如:性别是两类无序分类变量,血型是四类无序分类变量;
有序分类变量表现为各属性或类别间有程度之分,如:临床上某种疾病的“轻、中、重”,治疗结果的“无效、显效、好转、治愈”。
由此可见,数值变量资料、无序分类变量资料和有序分类变量资料又可叫做计量资料、计数资料和等级资料。
资料类型的划分与统计方法的抉择有关,在多数情况下不同的资料类型,选择的统计方法不一样。
如数值变量资料的比较可选用t检验、u检验等统计方法;
而率的比较多用c2检验。
值得注意的是,有些临床科研工作者,常常人为地将数值变量的结果转化为分类变量的临床指标,然后参与统计分析,如患者的血红蛋白含量,研究者常用正常、轻度贫血、中度贫血和重度贫血来表示,这样虽然照顾了临床工作的习惯,却损失了资料所提供的信息量。
换言之,在多数情况下,数值变量资料提供的信息量最为充分,可进行统计分析的手段也较为丰富、经典和可靠,与之相比,分类变量在这些方面都不如数值变量资料。
因此,在临床实验中要尽可能选择量化的指标反映实验效应,若确实无法定量时,才选用分类数据,通常不宜将定量数据转变成分类数据。
3.设计方法
在众多的临床科研设计方法中,每一种设计方法都有与之相适应的统计方法。
在统计方法的抉择时,必须根据不同的临床科研设计方法来选择相应的统计分析方法。
如果统计方法的抉择与设计方法不一致,统计分析得到的任何结论都是错误的。
在常用的科研设计方法中,有成组设计(完全随机设计)的t检验、配对t检验、成组设计(完全随机设计)的方差分析、配伍设计(随机区组设计)的方差分析等,都是统计方法与科研设计方法有关的佐证。
因此,应注意区分成组设计(完全随机设计)与配对和配伍设计(随机区组设计),在成组设计中又要注意区别两组与多组设计。
最常见的错误是将配对或配伍设计(随机区组设计)的资料当做成组设计(完全随机设计)来处理,如配对设计的资料使用成组t检验、配伍设计(随机区组设计)使用成组资料的方差分析;
或将三组及三组以上的成组设计(完全随机设计)资料的比较采用多个t检验、三个或多个率的比较采用四格表的卡方检验来进行比较,都是典型的错误。
如下表:
表1常见与设计方法有关的统计方法抉择错误
设计方法错误的统计方法正确统计方法
两个均数的比较(成组设计、完全随机设计)成组设计的t检验、成组设计的秩和检验
多个均数的比较(成组设计、完全随机设计)多个成组设计的t检验完全随机设计的方差分析及q检验、完全随机设计的秩和检验及两两比较
数值变量的配对设计成组设计的t检验配对t检验、配对秩和检验
随机区组设计(配伍设计)多个成组设计的t检验、完全随机设计的方差分析随机区组设计的方差分析及q检验、随机区组设计的秩和检验及两两比较
交叉设计成组设计的t检验、配对t检验、配对秩和检验交叉设计的方差分析、交叉设计的秩和检验
4.分布特征及数理统计条件
数理统计和概率论是统计的理论基础。
每种统计方法都要涉及数理统计公式,而这些数理统计公式都是在一定条件下推导和建立的。
也就是说,只有当某个或某些条件满足时,某个数理统计公式才成立,反之若不满足条件时,就不能使用某个数理统计公式。
在数理统计公式推导和建立的条件中,涉及最多的是数据的分布特征。
数据的分布特征是指数据的数理统计规律,许多数理统计公式都是在特定的分布下推导和建立的。
若实际资料服从(符合)某种分布,即可使用该分布所具有的数理统计规律来分析和处理该实际资料,反之则不能。
在临床资料的统计分析过程中,涉及得最多的分布有正态分布、偏态分布、二项分布等。
许多统计方法对资料的分布有要求,如:均数和标准差、t和u检验;
方差分析都要求资料服从正态分布,而中位数和四分位数间距、秩和检验等,可用于不服从正态分布的资料。
所以,临床资料的统计分析过程中,应考虑资料的分布特征,最起码的要求是熟悉正态分布与偏态分布。
例如:在临床科研中,许多资料的描述不考虑资料的分布特征,而多选择均数与标准差。
如某妇科肿瘤化疗前的血象值,资料如下表:
某妇科肿瘤化疗前的血象值
指标名例数均数标准差偏度系数P值峰度系数P值
血红蛋白(g/L)98111.9918.820.1800.4590.0250.958
血小板(×109/L)98173.5887.111.3530.0001.8430.000
白细胞(×109/L)986.79302.7671.2070.0001.2020.013
从上结果可见,若只看三项指标的均数和标准差,临床医生也许不会怀疑有什么问题。
但是经正态性检验,病人的血红蛋白服从正态分布,而血小板和白细胞两项指标的偏度和峰度系数均不服从正态分布(P<0.05)。
因此,描述病人的血小板和白细胞平均水平正确的指标是中位数,而其变异程度应使用四分位数间距。
除了数据的分布特征外,有些数理统计公式还有其它一些的条件,如t检验和方差分析的方差齐性、卡方检验的理论数(T)大小等。
总之,对于临床科研工作者来说,为正确地进行统计方法的抉择,首先要掌握或熟悉上述影响统计方法抉择因素;
其次,还应熟悉和了解常用统计方法的应用条件。
二。
数据资料的描述
统计描述的内容包括了统计指标、统计和表,其目的是使数据资料的基本特征更加清晰地表达。
本节只讨论统计指标的正确选用,而统计表的正确使用请参阅其他书籍。
1.数值变量资料的描述
描述数值变量资料的基本特征有两类指标,一是描述集中趋势的指标,用以反映一组数据的平均水平;
二是描述离散程度的指标,用以反映一组数据的变异大小。
各指标的名称及适用范围等见表2。
表2描述数值变量资料的常用指标
指标名称用途适用的资料
均数(X——)
描述一组数据的平均水平,集中位置正态分布或近似正态分布
中位数(M)与均数相同偏态分布、分布未知、两端无界
几何均数(G)与均数相同对数正态分布,等比资料
标准差(S)
描述一组数据的变异大小,离散程度
正态分布或近似正态分布
四分位数间距
(QU-QL)与标准差相同偏态分布、分布未知、两端无界
极差(R)与标准差相同观察例数相近的数值变量
变异系数(CV)与标准差相同比较几组资料间的变异大小
从表中可看出,均数与标准差联合使用描述正态分布或近似正态分布资料的基本特征;
中位数与四分位数间距联合使用描述偏态分布或未知分布资料的基本特征。
这些描述指标应用时,最常见的错误是不考虑其应用条件的随意使用,如:用均数和标准差描述偏态分布、分布未知或两端无界的资料,这是目前在临床研究文献中较为普遍和典型的错误。

⑩ ELISA实验数据处理方法是怎样的

ELISA试剂盒在国内有许多种叫法:例如:ELISA检测试剂盒、ELISA?Kit、酶联免疫试剂盒、酶联免疫吸附测定试剂盒、酶联免疫分析试剂盒、酶免试剂盒等,比较常见的叫法是ELISA检测试剂盒、酶联免疫吸附测定试剂盒等?ELISA试剂盒自从60-70年代问世以来,得到全世界科研工作者的认可及推崇,在欧美及中国获得很大的推广,尤其是国内生化领域的长足发展。Elisa生物试验是一种敏感性高,特异性强,重复性好的实验诊断方法。由于其试剂稳定、易保存,操作简便,结果判断较客观等因素,已广泛应用在免疫学检验的各领域中。本章交流分享:ELISA实验数据处理方法是怎样的?想要了解的同学欢迎来电咨询。
1、拟和曲线:
输入行: 浓度值, 如0 10 50 100
输入第二行:该浓度下的调整后的od值,如0 0.586 1.397 1.997 3.42
选择这些输入的数据,用插入里的图表按钮,进入图表向导,在“标准类型”中选择“xy散点图”;在“子图表类型”中选择“折线散点图”,按“下一步”;选择“系列产生在行”,按“下一步”;数据标志,可以填写:如数据y轴,OD值;数据x轴,浓度;按下一步,点击完成。可得曲线图。
单击曲线,按右键,选择“添加趋势线”,在类型中,选择多项式;在选项中,选择显示公式,选择显示R平方值。
得到公式和R平方值。
也可以用上面说的方法:双击图表,把它输入到图表的数据中,就可以拟和曲线。
2、计算浓度:
次实验:
标准曲线为:
y = -4E-05x2 + 0.026x
R2 = 0.9745
为例,已知OD值,计算浓度。
由于y = -4E-05x2 + 0.026x,所以可以得到:
4E-05x2 -0.026x +y=0
ax2 +bx +y=0
a=4E-05;b=-0.026;
x=(-b-(b*b-4ay)(平方根))/(2*a)
代入a,b,和y值,得
x=(0.026-(0.026*0.026-0.00016*y)(平方根))/(2*0.00004)
在excel里可以用以下公式表示:
x=(0.026-EXP(LN(0.026*0.026-0.00016*y)/2))/(2*0.00004)
通用公式为:
x=(-b-EXP(LN(b*b-4ay)/2))/(2*a)
应用excel的公式拷贝功能,计算所有浓度

阅读全文

与试验数据处理分析方法相关的资料

热点内容
调整金牛座的最佳方法 浏览:381
以实践为基础的研究方法及意义 浏览:545
魅蓝拦截的信息在哪里设置方法 浏览:402
雕刻牛字最简单的方法 浏览:35
武汉恋爱挽回方法操作步骤 浏览:431
戒掉手机的四个方法 浏览:574
快速有效治疗尖锐湿方法 浏览:226
最简单的方法画hellokitty 浏览:844
反渗透膜解决方法 浏览:485
扯面的正确方法和技巧 浏览:494
文彦博树洞取球方法好在哪里 浏览:854
四川泡洋姜的正确泡水方法 浏览:497
黑檀手串的鉴别方法图解 浏览:818
延迟满足实验研究方法 浏览:161
种植业污染解决方法 浏览:894
论文的研究方法有那些 浏览:124
孩子学习方法不对该如何 浏览:838
艾莱依真假鉴别方法 浏览:799
在家怎么制作果冻方法 浏览:50
关于氮和硫的化学计算方法 浏览:627