㈠ 表面分析技术有哪些
股票投资中,我们总会根据各类股票技术分析指标来进行股票趋势的分析,那么,股票技术分析常用指标有哪些?
1、MACD指标又叫指数平滑异同移动平均线,是由查拉尔?阿佩尔(GeraldApple)所创造的,是一种研判股票买卖时机、跟踪股价运行趋势的技术分析工具;
2、随机指标(Stochastics)KDJ,其综合动量观念,强弱指标及移动平均线的优点,后被广泛用于股市的中短期趋势分析;
3、威廉指标W%R,又叫威廉超买超卖指标,简称威廉指标,是目前股市技术分析中比较常用的短期研判指标;
4、相对强弱指标RSI又叫力度指标,其英文全称为“RelativeStrengthIndex”,是目前股市技术分析中比较常用的中短线指标;
5、CR指标又叫中间意愿指标,是分析股市多空双方力量对比、把握买卖股票时机的一种中长期技术分析工具;
6、SAR指标又叫抛物线指标或停损转向操作点指标,其全称叫“StopandReveres,缩写SAR”,是一种简单易学、比较准确的中短期技术分析工具;
7、CCI指标又叫顺势指标,其英文全称为“CommodityChannelIndex”,是一种重点研判股价偏离度的股票技术分析工具;
8、MTM指标又叫动量指标,其英文全称是“MomentomIndex”,是一种专门研究股价波动的中短期技术分析工具;
9、BOLL指标又叫布林线指标,其英文全称是“BolingerBands”,是研判股价运动趋势的一种中长期技术分析工具;
10、TRIX三重指数平滑移动平均指标,其英文全名为“”,是一种研究股价趋势的中长期技术分析工具;
11、DMI指标又叫动向指标或趋向指标,其全称叫“DirectionalMovementIndex,简称DMI”,也是由美国技术分析大师威尔斯?威尔德(WellsWilder)所创造的,是一种中长期股票技术分析方法;
12、OBV指标又叫能量潮指标,是由美国股市分析家葛兰碧所创造的,是一种重点研判股市成交量的短期技术分析工具;
13、MIKE指标又叫麦克指标,其英文全称是“MikeBase”,是一种专门研究股价各种压力和支撑的中长期技术分析工具;
14;DMA指标又叫平行线差指标,是目前股票技术分析指标中的一种中短期指标,它常用于大盘指数和个股的研判;
㈡ 常用的表面分析技术有哪些
在20世纪60年代超高真空和高分辨高灵敏电子测量技术建立和发展的基础上,已开发了数十种表面分析技术,其中主要有场致发射显微技术、电子能谱、电子衍射、离子质谱、离子和原子散射以及各种脱附谱等类。70年代后期建立的同步辐射装置,能提供能量从红外到硬X 射线区域内连续可调的偏振度高和单色性好的强辐射源,又大大增强了光(致)发射电子能谱用于研究固体表面电子态的能力,开发了光电子衍射和表面X射线吸收边精细结构。此外,电子顺磁共振、红外反射、增强喇曼散射、穆斯堡尔谱学、非弹性电子隧道谱、椭圆偏振等,也用于某些表面分析场合。
㈢ 为什么电子能谱是表面分析方法,它可以用于材料的体相分析吗
X射线电子能谱之所以是表面分析方法,是因为由X射线激发的光电子的穿透能力较弱引起的。1KeV的X射线可以穿透1000nm,但是相同能量的光电子只能穿透大约10个nm的表面层,所以测量出射电子的XPS仅对表面灵敏。
㈣ 简述有哪些适用于材料表面组成确定的分析方法
表面分析方法有四种方法:
俄歇电子能谱
紫外电子能谱
光电子能谱
离子探针显微分析
㈤ X射线光电子能谱适用于哪些的分析对样品有什么特殊要求么
1x射线光电子能谱技术是一种表面分析方法, 使用X射线去辐射样品,使原子或分子的内层电子或价电子受激发射出来,被光子激发出来的电子称为光电子,可以测量光电子的能量和数量,从而获得待测物组成。XPS主要应用是测定电子的结合能来鉴定样品表面的化学性质及组成的分析,其特点在光电子来自表面10nm以内,仅带出表面的化学信息,具有分析区域小、分析深度浅和不破坏样品的特点,广泛应用于金属、无机材料、催化剂、聚合物、涂层材料矿石等各种材料的研究,以及腐蚀、摩擦、润滑、粘接、催化、包覆、氧化等过程的研究。
2.可以为客户分析产品质量
(1)当产品表面存在微小的异物,而常规的成分测试方法无法准确对异物进行定性定量分析,可选择XPS进行分析,XPS能分析≥10μm直径的异物成分以及元素价态,从而确定异物的化学态,对失效机理研究提供准确的数据。
(2)当产品表面膜层太薄,无法使用常规测试进行厚度测量,可选择XPS进行分析,利用XPS的深度溅射功能测试≥20nm膜厚厚度。
(3)当产品表面有多层薄膜,需测量各层膜厚及成分,利用D-SIMS能准确测定各层薄膜厚度及组成成分。
(4)当产品的表面存在同种元素多种价态的物质,常规测试方法不能区分元素各种价态所含的比例,可考虑XPS价态分析,分析出元素各种价态所含的比例。
3.注意事项
(1)样品最大规格尺寸为1×1×0.5cm,当样品尺寸过大需切割取样。
(2)取样的时候避免手和取样工具接触到需要测试的位置,取下样品后使用真空包装或其他能隔离外界环境的包装, 避免外来污染影响分析结果。
(3)XPS测试的样品可喷薄金(不大于1nm),可以测试弱导电性的样品,但绝缘的样品不能测试。
(4)XPS元素分析范围Li-U,只能测试无机物质,不能测试有机物物质,检出限0.1%。
㈥ 什么是俄歇技术
哦 这个嘛!……
俄歇电子能谱基本原理及应用
入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。
如果电子束将某原子K层电子激发为自由电子,L层电子跃迁到K层,释放的能量又将L层的另一个电子激发为俄歇电子,这个俄歇电子就称为KLL俄歇电子。同样,LMM俄歇电子是L层电子被激发,M层电子填充到L层,释放的能量又使另一个M层电子激发所形成的俄歇电子。
对于原子序数为Z的原子,俄歇电子的能量可以用下面经验公式计算:
EWXY(Z)=EW(Z)-EX(Z)-EY(Z+Δ)-Φ (10.6)
式中, EWXY(Z):原子序数为Z的原子,W空穴被X电子填充得到的俄歇电子Y的能量。
EW(Z)-EX(Z):X电子填充W空穴时释放的能量。
EY(Z+Δ):Y电子电离所需的能量。
因为Y电子是在已有一个空穴的情况下电离的,因此,该电离能相当于原子序数为Z和Z+1之间的原子的电离能。其中Δ=1/2-1/3。根据式(10.6)和各元素的电子电离能,可以计算出各俄歇电子的能量,制成谱图手册。因此,只要测定出俄歇电子的能量,对照现有的俄歇电子能量图表,即可确定样品表面的成份。 由于一次电子束能量远高于原子内层轨道的能量,可以激发出多个内层电子,会产生多种俄歇跃迁,因此,在俄歇电子能谱图上会有多组俄歇峰,虽然使定性分析变得复杂,但依靠多个俄歇峰,会使得定性分析准确度很高,可以进行除氢氦之外的多元素一次定性分析。同时,还可以利用俄歇电子的强度和样品中原子浓度的线性关系,进行元素的半定量分析,俄歇电子能谱法是一种灵敏度很高的表面分析方法。其信息深度为1.0-3.0nm,绝对灵敏可达到10-3单原子层。是一种很有用的分析方法。
AES的应用
AES最主要的应用是进行表面元素的定性分析。AES谱的范围可以收集到20-1700eV。因为俄歇电子强度很弱,用记录微分峰的办法可以从大的背景中分辨出俄歇电子峰,得到的微分峰十分明锐,很容易识别。图10.14是银原子的俄歇电子能谱,其中,曲线a为各种电子信息谱,b为曲线a放大10倍,c为微分电子谱,N(E)为能量为E的电子数,利用微分谱上负峰的位置可以进行元素定性分析。图10.15是金刚石表面Ti薄膜的AES谱,分析AES谱中知道,该薄膜表面含有C,Ti和O等元素。当然,在分析AES谱时,要考虑绝缘薄膜的荷电位移效应和相邻峰的干扰影响。与XPS相似,AES也能给出半定量的分析结果。这种半定量结果是深度为1-3nm表面的原子数百分比。
AES法也可以利用化学位移分析元素的价态。但是由于很难找到化学位移的标准数据,因此,谱图的解释比较困难。要判断价态,必须依靠自制的标样进行。
由于俄歇电子能谱仪的初级电子束直径很细,并且可以在样品上扫描。因此,它可以进行定点分析,线扫描,面扫描和深度分析。在进行定点分析时,电子束可以选定某分析点,或通过移动样品,使电子束对准分析点,可以分析该点的表面成份,化学价态和进行元素的深度分布。电子束也可以沿样品某一方向扫描,得到某一元素的线分布,并且可以在一个小面积内扫描得元素的面分布图。利用氩离子枪剥离表面,俄歇电子能谱仪同样可以进行深度分布。由于它的采样深度比XPS浅,因此,可以有比XPS更好的更深度分辨率。进行深度分析也是俄歇电子能谱仪的最有用功能。图10.16是PZT/Si薄膜界面反应后深度分析谱,图中溅射时间对应于溅射深度,由图可以看出,在PZT薄膜与硅基底间形成了稳定的SiO2界面层,这个界面层是由表面扩散的氧与从基底上扩散出来的硅形成的。
㈦ 表面活性的分析方法有哪些
表面活性的分析方法有哪些
凡能引起可燃物与助燃物发生反应的能量来源(常见的是热能源)称作着火源.根据其能量来源不同,着火源可分为:明火、高热物体、化学热能、电热能、机械热能、生物能、光能和核能等.此外,可燃物质燃烧所需的着火能量是不同的,一般可燃气体比可燃固体和可燃液体所需的着火能量要低.着火源的温度越高,越容易引起可燃物燃烧.
综上所述,只有在可燃物、助燃物和着火源三个条件同时具备,而且数量达到一定比例的前提下,互相结合,互相作用,燃烧才能发生.否则,燃烧不能发生.可见,不论采用什么措施,只要能破坏已经产生的燃烧条件,去掉其中任何一个,火灾即可扑灭.
此外,也可运用现代灭火理论,用灭火剂和阻燃剂加入燃烧的链反应中,消灭自由基,使链增长中断,从而取得比传统的灭火手段更为有效的灭火效应.
㈧ 表面分析的概念
点链接进去能看到公式
定量构效关系
维基网络,自由的网络全书
跳转到: 导航, 搜索
定量构效关系(QSAR)是一种借助分子的理化性质参数或结构参数,以数学和统计学手段定量研究有机小分子与生物大分子相互作用、有机小分子在生物体内吸收、分布、代谢、排泄等生理相关性质的方法。这种方法广泛应用于药物、农药、化学毒剂等生物活性分子的合理设计,在早期的药物设计中,定量构效关系方法占据主导地位,1990年代以来随着计算机计算能力的提高和众多生物大分子三维结构的准确测定,基于结构的药物设计逐渐取代了定量构效关系在药物设计领域的主导地位,但是QSAR在药学研究中仍然发挥着非常重要的作用。
三维定量构效关系方法:CoMFA
放大
三维定量构效关系方法:CoMFA
目录
[隐藏]
* 1 发展历史
* 2 二维定量构效关系
o 2.1 活性参数
o 2.2 结构参数
o 2.3 数学模型
o 2.4 发展
* 3 三维定量构效关系
o 3.1 CoMFA&CoMSIA
o 3.2 其他三维定量构效关系方法
* 4 方法评价
* 5 参见
* 6 外部链接
* 7 参考书目
[编辑]
发展历史
定量构效关系是在传统构效关系的基础上,结合物理化学中常用的经验方程的数学方法出现的,其理论历史可以追溯到1868年提出的Crum-Brown方程,该方程认为化合物的生理活性可以用化学结构的函数来表示,但是并未建立明确的函数模型。最早的可以实施的定量构效关系方法是美国波蒙拿学院的Hansch在1962年提出的Hansch方程。Hansch方程脱胎于1935年英国物理化学家哈密顿提出的哈密顿方程以及改进的塔夫托方程。哈密顿方程是一个计算取代苯甲酸解离常数的经验方程,这个方程将取代苯甲酸解离常数的对数值与取代基团的电性参数建立了线性关系,塔夫托方程是在哈密顿方程的基础上改进形成的计算脂肪族酯类化合物水解反应速率常数的经验方程,它将速率常数的对数与电性参数和立体参数建立了线性关系。
Hansch方程在形式上与哈密顿方程和塔夫托方程非常接近,以生理活性物质的半数有效量作为活性参数,以分子的电性参数、立体参数和疏水参数作为线性回归分析的变量,随后,Hansch和日本访问学者藤田稔夫等人一道改进了Hansch方程的数学模型,引入了指示变量、抛物线模型和双线性模型等修正,使得方程的预测能力有所提高。
几乎在Hansch方法发表的同时,Free等人发表了Free-Wilson方法,这种方法直接以分子结构作为变量对生理活性进行回归分析。其在药物化学中的应用范围远不如Hansch方法广泛。Hansch方法、Free-Wilson方法等方法均是将分子作为一个整体考虑其性质,并不能细致地反应分子的三维结构与生理活性之间的关系,因而又被称作二维定量构效关系
二维定量构效关系出现之后,在药物化学领域产生了很大影响,人们对构效关系的认识从传统的定性水平上升到定量水平。定量的结构活性关系也在一定程度上揭示了药物分子与生物大分子结合的模式。在Hansch方法的指导下,人们成功地设计了诺氟沙星等喹诺酮类抗菌药
由于二维定量不能精确描述分子三维结构与生理活性之间的关系,1980年代前后人们开始探讨基于分子构象的三维定量构效关系的可行性。1979年,crippen提出距离几何学的3D-QSAR;1980年hopfinger等人提出分子形状分析方法;1988年Cramer等人提出了比较分子场方法(CoMFA)。比较分子场方法一经提出便席卷药物设计领域,成为应用最广泛的基于定量构效关系的药物设计方法;1990年代,又出现了在比较分子场方法基础上改进的比较分子相似性方法以及在距离几何学的3DQSAR基础上发展的虚拟受体方法等新的三维定量构效关系方法,但是老牌的CoMFA依然是使用最广泛的定量勾销关系方法。
[编辑]
二维定量构效关系
二维定量构效关系方法是将分子整体的结构性质作为参数,对分子生理活性进行回归分析,建立化学结构与生理活性相关性模型的一种药物设计方法,常见的二维定量构效关系方法有Hansch方法、Free-wilson方法、分子连接性方法等,最为着名和应用最广泛的是Hansch方法
[编辑]
活性参数
活性参数是构成二维定量构效关系的要素之一,人们根据研究的体系选择不同的活性参数,常见的活性参数有:半数有效量、半数有效浓度、半数抑菌浓度、半数致死量、最小抑菌浓度等,所有活性参数均必须采用物质的量作为计量单位,以便消除分子量的影响,从而真实地反应分子水平的生理活性。为了获得较好的数学模型,活性参数在二维定量构效关系中一般取负对数后进行统计分析。
[编辑]
结构参数
结构参数是构成定量构效关系的另一大要素,常见的结构参数有:疏水参数、电性参数、立体参数、几何参数、拓扑参数、理化性质参数以及纯粹的结构参数等
* 疏水参数:药物在体内吸收和分布的过程与其疏水性密切相关,因而疏水性是影响药物生理活性的一个重要性质,在二维定量构效关系中采用的疏水参数最常见的是脂水分配系数,其定义为分子在正辛醇与水中分配的比例,对于分子母环上的取代基,脂水分配系数的对数值具有加和性,可以通过简单的代数计算获得某一取代结构的疏水参数。
* 电性参数:二维定量构效关系中的电性参数直接继承了哈密顿公式和塔夫托公式中的电性参数的定义,用以表征取代基团对分子整体电子分配的影响,其数值对于取代基也具有加和性。
* 立体参数:立体参数可以表征分子内部由于各个基团相互作用对药效构象产生的影响以及对药物和生物大分子结合模式产生的影响,常用的立体参数有塔夫托立体参数、摩尔折射率、范德华半径等。
* 几何参数:几何参数是与分子构象相关的立体参数,因为这类参数常常在定量构效关系中占据一定地位,故而将其与立体参数分割考虑,常见的几何参数有分子表面积、溶剂可及化表面积、分子体积、多维立体参数等
* 拓扑参数:在分子连接性方法中使用的结构参数,拓扑参数根据分子的拓扑结构将各个原子编码,用形成的代码来表征分子结构。
* 理化性质参数:偶极矩、分子光谱数据、前线轨道能级、酸碱解离常数等理化性质参数有时也用做结构参数参予定量构效关系研究
* 纯粹的结构参数:在Free-Wilson方法中,使用纯粹的结构参数,这种参数以某一特定结构的分子为参考标准,依照结构母环上功能基团的有无对分子结构进行编码,进行回归分析,为每一个功能基团计算出回归系数,从而获得定量构效关系模型。
[编辑]
数学模型
二维定量构效关系中最常见的数学模型是线性回归分析,Hansch方程和Free-Wilson方法均采用回归分析。
经典的Hansch方程形式为:
lg \left(\frac{1}{C}\right)=a\pi+b\sigma+cE_s+k 其中π为分子的疏水参数,其与分子脂水分配系数PX的关系为:\pi=lg\left(\frac{P_x}{P_H}\right),σ为哈密顿电性参数,Es为塔夫托立体参数,其中a,b,c,k均为回归系数。
日本学者藤田稔夫对经典的Hansch方程作出一定改进,用抛物线模型描述疏水性与活性的关系:
lg \left(\frac{1}{C}\right)=a\pi+b{\pi}^2+c\sigma+dE_s+k这一模型拟合效果更好。
Hansch方程进一步,以双直线模型描述疏水性与活性的关系:
lg \left(\frac{1}{C}\right)=algP-blg(\beta P+1)+D其中的P为分子的脂水分配系数,a,b,β为回归系数,D代表方程的其他部分。双直线模型的预测能力比抛物线模型进一步加强。
Free-Wilson方法的方程形式为:
lg \left(\frac{1}{C}\right)=\sum_i\sum_jG_{ij}X_{ij}+\mu其中Xij为结构参数,若结构母环中第i个位置有第j类取代基则结构参数取值为1否则为0,μ为参照分子的活性参数,Gij为回归系数。
除了回归分析,遗传算法、人工神经网络、偏最小二乘分析、模式识别、单纯形方法等统计分析方法也会应用于二维定量构效关系数学模型的建立
[编辑]
发展
目前,二维定量构效关系的研究集中在俩个方向:结构数据的改良和统计方法的优化。
传统的二维定量构效关系使用的结构数据常仅能反应分子整体的性质,通过改良结构参数,使得二维结构参数能够在一定程度上反应分子在三维空间内的伸展状况,成为二维定量构效关系的一个发展方向。
引入新的统计方法,如遗传算法、人工神经网络、偏最小二乘回归等,扩展二维定量构效关系能够能够模拟的数据结构的范围,提高QSAR模型的预测能力是2D-QSAR的另一个主要发展方向。
[编辑]
三维定量构效关系
三维定量构效关系是引入了药物分子三维结构信息进行定量构效关系研究的方法,这种方法间接地反映了药物分子与大分子相互作用过程中两者之间的非键相互作用特征,相对于二维定量构效关系有更加明确的物理意义和更丰富的信息量,因而1980年代以来,三维定量构效关系逐渐取代了二维定量构效关系的地位,成为基于机理的合理药物设计的主要方法之一。目前应用最广泛的三维定量构效关系方法是CoMFA 和CoMSIA即比较分子场方法和比较分子相似性方法,除了上述两种方法,3D-QSAR还有DG 3D-QSAR、MSA、GERM等众多方法。
[编辑]
CoMFA&CoMSIA
CoMFA和CoMISA是应用最广泛的合理药物设计方法之一,这种方法认为,药物分子与受体间的相互作用取决于化合物周围分子场的差别,以定量化的分子场参数作为变量,对药物活性进行回归分析便可以反应药物与生物大分子之间的相互作用模式进而有选择地设计新药。
分子定位在一个方格中,作为探针的粒子在盒子中游走
比较分子场方法将具有相同结构母环的分子在空间中叠合,使其空间取向尽量一致,然后用一个探针粒子在分子周围的空间中游走,计算探针粒子与分子之间的相互作用,并记录下空间不同坐标中相互作用的能量值,从而获得分子场数据。不同的探针粒子可以探测分子周围不同性质的分子场,甲烷分子作为探针可以探测立体场,水分子作为探针可以探测疏水场,氢离子作为探针可以探测静电场等等,一些成熟的比较分子场程序可以提供数十种探针粒子供用户选择。
探针粒子探测得到的大量分子场信息作为自变量参与对分子生理活性数据的回归分析,由于分子场信息数据量很大,属于高维化学数据,因而在回归分析过程中必须采取数据降维措施,最常用的方式是偏最小二乘回归,此外主成分分析也用于数据的分析。
CoMFA结果输出
统计分析的结果可以图形化地输出在分子表面,用以提示研究者如何有选择地对先导化合物进行结构改造。右图为一CoMFIA计算的结果输出,图中蓝色区域若以负电性基团取代则会提高药物的活性,红色区域则提示正电性基团更有利于活性。除了直观的图形化结果,CoMFA还能获得回归方程,以定量描述分子场与活性的关系。
CoMSIA是对CoMFA方法的改进,他改变了探针粒子与药物分子相互作用能量的计算公式,从而获得更好的分子场参数。
[编辑]
其他三维定量构效关系方法
除了比较分子场方法,三维定量构效关系还有距离几何学三位定量构效关系(DG 3D-QSAR)、分子形状分析(MSA)、虚拟受体等方法(FR)等
距离几何学三维定量构效关系严格来讲是一种介于二维和三维之间的QSAR方法。这种方法将药物分子划分为若干功能区块定义药物分子活性位点,计算低能构象时各个活性位点之间的距离,形成距离矩阵;同时定义受体分子的结合位点,获得结合位点的距离矩阵,通过活性位点和结合位点的匹配为每个分子生成结构参数,对生理活性数据进行统计分析。
分子形状分析认为药物分子的药效构象是决定药物活性的关键,比较作用机理相同的药物分子的形状,以各分子间重叠体积等数据作为结构参数进行统计分析获得构效关系模型。
虚拟受体方法是DG 3D-QSAR和CoMFA方法的延伸与发展,其基本思路是采用多种探针粒子在药物分子周围建立一个虚拟的受体环境,以此研究不同药物分子之间活性与结构的相关性。其原理较之CoMFA方法更加合理,是目前定量构效关系研究的热点之一。
[编辑]
方法评价
定量构效关系研究是人类最早的合理药物设计方法之一,具有计算量小,预测能力好等优点。在受体结构未知的情况下,定量构效关系方法是最准确和有效地进行药物设计的方法,根据QSAR计算结果的指导药物化学家可以更有目的性地对生理活性物质进行结构改造。在1980年代计算机技术爆炸式发展之前,QSAR是应用最广泛也几乎是唯一的合理药物设计手段。
但是QSAR方法不能明确给出回归方程的物理意义以及药物-受体间的作用模式,物理意义模糊是对QSAR方法最主要的置疑之一。另外在定量构效关系研究中大量使用了实验数据和统计分析方法,因而QSAR方法的预测能力很大程度上受到试验数据精度的限制,同时时常要面对“统计方法欺诈”的置疑。
[编辑]
参见
构效关系 分子对接 药物设计
[编辑]
外部链接
* History of QSAR
* QSAR与药物设计
* 第十一届定量构效关系国际研讨会
* QSAR
[编辑]
参考书目
* 李仁利 1998年 药物的构效关系 北京大学药学院讲义
* 陈凯先等 2000年 计算机辅助药物设计——原理、方法及应用 上海科学技术出版社 ISBN 7-5323-5551-9
* 徐筱杰等 2004年 计算机辅助药物分子设计 化学工业出版社 ISBN7-5025-5520-X
取自"http://wikipedia.cnblog.org/wiki/%E5%AE%9A%E9%87%8F%E6%9E%84%E6%95%88%E5%85%B3%E7%B3%BB"
Category: 药物化学
㈨ 表面分析的分析方法
表面分析方法有数十种,常用的有离子探针、俄歇电子能谱分析和X射线光电子能谱分析,其次还有离子中和谱、离子散射谱、低能电子衍射、电子能量损失谱、紫外线电子能谱等技术,以及场离子显微镜分析等。
离子探针分析
离子探针分析,又称离子探针显微分析。它是利用电子光学方法将某些惰性气体或氧的离子加速并聚焦成细小的高能离子束来轰击试样表面,使之激发和溅射出二次离子,用质谱仪对具有不同质荷比(质量/电荷)的离子进行分离,以检测在几个原子深度、数微米范围内的微区的全部元素,并可确定同位素。它的检测灵敏度高于电子探针(见电子探针分析),对超轻元素特别灵敏,可检测10(克的痕量元素,其相对灵敏度达 10(~10(。分析速度快,可方便地获得元素的平面分布图像。还可利用离子溅射效应分析表面下数微米深度内的元素分布。但离子探针定量分析方法尚不成熟。
1938年就有人进行过离子与固体相互作用方面的研究,但直到60年代才开始生产实用的离子探针分析仪。离子探针分析仪的基本部件包括真空系统、离子源、一次离子聚焦光学系统、质谱仪、探测和图像显示系统、样品室等。离子探针适用于超轻元素、微量和痕量元素的分析以及同位素的鉴定。广泛应用于金属材料的氧化、腐蚀、扩散、析出等问题的研究,特别是材料氢脆现象的研究,以及表面镀层和渗层等的分析。
俄歇电子能谱分析
俄歇电子能谱分析, 用电子束 (或X射线)轰击试样表面,使其表面原子内层能级上的电子被击出而形成空穴,较高能级上的电子填补空穴并释放出能量,这一能量再传递给另一电子,使之逸出,最后这个电子称为俄歇电子。1925年法国的P.V.俄歇首先发现并解释了这种二次电子,后来被人们称为俄歇电子,但直到1967年俄歇电子能谱技术才用于研究金属问题。通过能量分析器和检测系统来检测俄歇电子能量和强度,可获得有关表面层化学成分的定性和定量信息,以及化学状态、电子态等情况。在适当的实验条件下,该方法对试样无破坏作用,可分析试样表面内几个原子层深度、数微米区域内除氢和氦以外的所有元素,对轻元素和超轻元素很灵敏。检测的相对灵敏度因元素而异,一般为万分之一到千分之一。绝对灵敏度达10(单层(1个单层相当于每平方厘米约有10(个原子)。可方便而快速地进行点、线、面元素分析以及部分元素的化学状态分析。结合离子溅射技术,可得到元素沿深度方向的分布。
俄歇电子能谱仪器的结构主要包括真空系统、激发源和电子光学系统、能量分析器和检测记录系统、试验室和样品台、离子枪等。
俄歇电子能谱分析在机械工业中主要用于金属材料的氧化、腐蚀、摩擦、磨损和润滑特性等的研究和合金元素及杂质元素的扩散或偏析、表面处理工艺及复合材料的粘结性等问题的研究。
X射线光电子能谱分析
X射线光电子能谱分析,以一定能量的X射线辐照气体分子或固体表面,发射出的光电子的动能与该电子原来所在的能级有关,记录并分析这些光电子能量可得到元素种类、化学状态和电荷分布等方面的信息。这种非破坏性分析方法,不仅可以分析导体、半导体,还可分析绝缘体。除氢以外所有元素都能检测。虽然检测灵敏度不高,仅达千分之一左右,但绝对灵敏度可达2×10(单层。
这种分析技术是由瑞典的K.瑟巴教授及其合作者建立起来的。1954年便开始了研究,起初称为化学分析用电子能谱(简称ESCA),后普遍称为X射线光电子能谱(简称XPS)。主要包括:真空系统、X射线源、能量分析器和检测记录系统、试验室和样品台等。这种分析方法已广泛用于鉴定材料表面吸附元素种类,腐蚀初期和腐蚀进行状态时的腐蚀产物、表面沉积等;研究摩擦副之间的物质转移、粘着、磨损和润滑特性;探讨复合材料表面和界面特征;鉴定工程塑料制品等。