⑴ 解方程的技巧和方法
去分母,这是解一元一次方程的首要步骤,有分母的一元一次方程首先要去分母,当然如果方程中没有分母,省去此步骤。
2.
去括号,去除分母之后,就该完成括号的去除了,如果有分母,先去分母再去除括号,没有括号的话可以省去此步骤。
移项,每个一元一次方程都会有的一步,就是把同类项的数据移动到同一边,把未知数移动到等号的左边。
合并同类项,把多项式中同类项合成一项叫做合并同类项,同类项的系数相加所得结果作为系数,字母和字母的指数不变,是解一元一次方程中的临门一脚,是很重要的一个步骤,合并同类项的时候要遵循合并同类项法则
⑵ 分式方程的解法和技巧
1.一般法
所谓一般法,就是先去分母,将分式方程转化为一个整式方程。然后解这个整式方程。
解
原方程就是
方程两边同乘以(x+3)(x-3),约去分母,得4(x-3)+x(x+3)=x2-9-2x。
2.换元法
换元法就是恰当地利用换元,将复杂的分式简单化。
分析
本方程若去分母,则原方程会变成高次方程,很难求出方程的
解
设x2+x=y,原方程可变形为
解这个方程,得y1=-2,y2=1。
当y=-2时,x2+x=-2。
∵Δ<0,∴该方程无实根;
当y=1时,x2+x=1,
∴
经检验,
是原方程的根,所以原方程的根是
。
3.分组结合法
就是把分式方程中各项适当结合,再利用因式分解法或换元法来简化解答过程。
4.拆项法
拆项法就是根据分式方程的特点,将组成分式方程的各项或部分项拆项,然后将同分母的项合并使原方程简化。特别值得指出的是,用此法解分式方程很少有增根现象。
例4
解方程
解
将方程两边拆项,得
即x=-3是原方程的根。
5.因式分解法
因式分解法就是将分式方程中的各分式或部分分式的分子、分母分解因式,从而简化解题过程。
解
将各分式的分子、分母分解因式,得
∵x-1≠0,∴两边同乘以x-1,得
检验知,它们都是原方程的根。所以,原方程的根为x1=-1,x2=0。
6.配方法
配方法就是先把分式方程中的常数项移到方程的左边,再把左边配成一个完全平方式,进而可以用直接开平方法求解。
∴x2±6x+5=0,
解这个方程,得x=±5,或x=±1。
检验知,它们都是原方程的根。所以,原方程的根是x1=5,x2=-5,x3=1,x4=-1。
7.应用比例定理
上述例5,除了用因式分解法外,还可以应用合比和等比定理来解。下面以合比定理为例来说明。
∴x(x2-3x+2)-x(2x2-3x+1)=0,
即
x(x2-1)=0,
∴x=0或x=±1。
检验知,x=1是原方程的增根。所以,原方程的根是x1=0,x2=-1。
⑶ 解方程的运算方法及解题技巧
解方程的基本步骤是去括号,移项,合并同类项,两边都除以系数求出方程的解,最后是把解代入方程进行检验。用方程解决问题,关键是抓住问题中的等量关系,列出方程。
⑷ 方程式的解法步骤
方程式的解法步骤有以下:
1、同加同减解不变。
2、方程两边同乘一个数解不变(乘的数不为零)。
3、方程两边同除以一个数解不变(除以的数不为零)。
解方程小技巧:
1、根据除法中各部分之间的关系解方程。解完方程后,需要通过检验,验证求出的解是否成立。这就要先把所求出的未知数的值代入原方程,看方程左边的得数和右边的得数是否相等。若得数相等,所求的值就是原方程的解,若得数不相等,就不是原方程的解。
2、公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解。
⑸ 解方程的技巧。
不少学生一提到解方程就苦恼,其实只要掌握了技巧,解方程并没有那么难。
今天就跟大家分享一下解方程的方法和技巧,希望能给大家带来帮助。
我们可以把课本中出现的方程分为三大类:一般方程、特殊方程和稍复杂的方程。
形如:x+a=b , x-a=b , ax=b , x÷a=b 这几种方程,我们可以称为一般方程;
形如:a-x =b,a÷x =b这两种方程,我们可以称为特殊方程;
形如:ax+b=c , a(x-b)=c这两种方程,我们可以称为稍复杂的方程。
对于一般方程,如果方程是加上a,在利用等式的性质求解时,可以在方程两边同时减去a;同样地,如果方程是减去a,在利用等式的性质求解时,可以在方程的两边同时加上a。乘和除也是一样,总结为一句话就是一般方程很简单,具体数字帮你办,加减乘除要相反。
对于特殊方程,减去和除以的都是未知数x。求解时,减去未知数那就加上未知数,除以未知数那就乘未知数,这样方程就变换成了一般方程,总结起来就是特殊方程别犯难,减去除以未知数,加上乘上变一般。
对于稍复杂的方程,可以采用“舍远取近”的方法,意思是离未知数x远的先去掉,离未知数x近的先看成整体保留,通过变换,方程就变得简单,一目了然。总结起来就是若遇稍微复杂点,舍远取近便了然。
当然,还有形如ax+bx=c等形式,能够学会上面这几种,对于学生来说,这些方程就显得轻而易举了。
第一种
x+a=b
x-a=b
ax=b
x÷a=b
此类题型可以在方程的左右两边同时加、减、乘、除相应的数。
示例:
x+3=5
解:x+3-3=5-3
x=2
x-3=2
解:x-3+3=2+3
x=5
3x=6
解:3x÷3=6÷3
x=2
x÷3=3
解:x÷3×3=3×3
x=9
第二种
ax+b=c
ax-b=c
关键是先把ax看成一个整体,明白先在方程两边同时加、减b,然后按第一种方法解方程。
示例:
3x+4=40
解:3x+4-4=40
3x=36
3x÷3=36÷3
x=12
3x-6=9
解:3x-6+6=9+6
3x=15
3x÷3=15÷3
x=5
第三种
a(x-b)=c
a(x+b)=c
这种类型题可以仿照第二种思路,把小括号内的式子看作一个整体,也可以根据乘法分配律将原方程转化为第二种形式的方程。
示例:
2(x-18)=16
解:2(x-18)÷2=16÷2
x-18=8
x-18+18=8+18
x=26
2(x-18)=16
解:2x-36=16
2x-36+36=16+36
2x=52
x=26
第四种
a-x=b
a÷x=b
这种题目的思路是引导学生把方程转化成x+b=a或xb=a的形式,让学生明白本题要在方程两边同时加或乘x,然后按第一种方法计算。
示例:
20-x=9
解:20-x+x=9+x
20=9+x
9+x=20
9+x-9=20-9
x=11
2.1÷x=3
解: 2.1÷x×x=3×x
2.1=3×x
3×x=2.1
3×x÷3=2.1÷3
x=0.7
⑹ 列方程解应用题的几点技巧
首先是审题,确定未知数。
审题,理解题意。就是全面分析已知数与已知数、已知数与未知数的关系。特别要把牵涉到的一些概念术语弄清,如同向、相向、增加到、增加了等,并确立未知数。即用x表示所求的数量或有关的未知量。在小学阶段同学们遇到的应用题并不十分复杂,一般只需要直接把要求的数量设为未知数,如:“学校图书馆里科技书的本数比文艺书的2倍多47本,科技书有495本,文艺书有多少本?”在这道题目中只有“文艺书的数量”不知道,所以只要设“文艺书的数量”为未知数x就可以了。
寻找等量关系,列出方程是关键。
“含有未知数的等式称为方程”,因而
“等式”是列方程必不可少的条件。所以寻找等量关系是解题的关键。如上题中“科技书得本数比文艺书的2倍多47本”这是理解本题题目意思的关键。仔细审题发现“文艺书本数的2倍加上47本就是科技书的本数”故本题的等量关系为:文艺书本数的2倍+47=科技书的本数。上题中的方程可以列为:“2x+47=495”
解方程,求出未知数得值。
解方程时应当注意把等号对齐。如:
2x+47=495
2x+47-47=495-47←应将“2x”看做一个整体。
2x=448
2x÷2=448÷2
x=224
检验也是列方程解应用题中必不可少的。
检验并写出答案.检验时,一是要将所求得的未知数的值代入原方程,检验方程的解是否正确;二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解.
1)将求得的方程的解代入原方程中检验。如果左右两边相等,说明方程解正确了。如上题的检验过程为:
检验:把x=224代入原方程。
左边=2×224+47右边=495
=495
因为左边=右边,所以x=224是方程2x+47=495的解。
2)文艺书本数的2倍+47=科技书的本数
将224代入以上等式,等式成立。故所求得的未知数的值符合题意。
总之,以上几点技巧都是列方程解应用题的关键环节的技巧,只要大家利用这些技巧加强练习,就一定能闯过列方程解应用题这道关。在千变万化的应用问题中,我们若能抓住以上几点,以不变应万变,则问题就可迎刃而解。
⑺ 解方程式有哪些简单的小技巧
方程的意义是,表示相等关系的式子叫等式,含有未知数的等式叫做方程。由此可见方程必须具备两个条件:一是等式;二是等式中必须含有未知数。
以小学方程为例,有以下几种技巧和方法:
一、利用等式的性质解方程。
因为方程是等式,所以等式具有的性质方程都具有。
1、方程的左右两边同时加上或减去同一个数,方程的解不变。
2、方程的左右两边同时乘同一个不为0的数,方程的解不变。
3、方程的左右两边同时除以同一个不为0的数,方程的解不变 。
二、两步、三步运算的方程的解法
两步、三步运算的方程,可根据等式的性质进行运算,先把原方程转化为一步求解的方程,在求出方程的解。
三、根据加减乘除法各部分之间的关系解方程。
1、根据加法中各部分之间的关系解方程。
2、根据减法中各部分之间的关系解方程
在减法中,被减速=差+减数。
3、根据乘法中各部分之间的关系解方程
在乘法中,一个因数=积/另一个因数
例如:列出方程,并求出方程的解。
4、根据除法中各部分之间的关系解方程。
解完方程后,需要通过检验,验证求出的解是否成立。这就要先把所求出的未知数的值代入原方程,看方程左边的得数和右边的得数是否相等。若得数相等,所求的值就是原方程的解,若得数不相等,就不是原方程的解。
(7)分析方程的技巧和方法扩展阅读
应用范围
1、根据问题变未知数
2、围绕未知数,寻找问题中的等量关系
3、利用等量关系列方程
4、解方程,并作答
方程依靠等式各部分的关系,和加减乘除各部分的关系(加数+加数=和,和-其中一个加数=另一个加数,差+减数=被减数,被减数-减数=差,被减数-差=减数,因数×因数=积,积÷一个因数=另一个因数,被除数÷除数=商,被除数÷商=除数,商×除数=被除数)
⑻ 小学数学解方程的方法与技巧
小学数学解方程的方法,对于一般方程,如果方程是加上a,再利用等式的性质求解时,可以在方程两边同时减去a,同样的,如果方程是减去a,那么,等式两边加上a,这样可以达到消元的方法,这样的解方程是最方便快捷的,准确率非常的高。
⑼ 如何快速掌握解方程,解方程秘诀有哪些
01、有分母就去分母,有括号就去括号。
这是对任何方程式都是适用的。不管你想要解一元一次方程还是二元一次方程,第一步都一定是这个步骤。如果没有搞定这个步骤的话,一定是会出错的,最后一定是解不出这个方程式的。
02、能移项就移项。
移项这个步骤能够简化解题步骤。掌握好这一步的话,能够更快的解题。而且这个方法是有比较高的正确率的,还能加快解题速度。一举两得,所以绝对是一个解方程的秘诀。
如果你还没有掌握解方程的技巧的话,就来试一试这几个方法吧,一定会有你想不到的惊喜的。一般来说,掌握了这些技巧就能够比较简单快速地解题了。这是都是比较基础的方法,要是基础本身就比较好的话,其实解题能够有自己的独家秘诀哈哈哈。希望这个文章能够对你有所帮助。