导航:首页 > 研究方法 > 氧化铝生产中赤泥分析方法

氧化铝生产中赤泥分析方法

发布时间:2022-05-02 12:43:47

⑴ 氧化铝原料车间工艺

氧化铝制备及应用专利技术
1、α型晶体结构为主体的氧化铝被膜制造方法、α型晶体结构为主体的氧化铝被膜和含该被膜
2、α型氧化铝粉末的制造方法
3、α-氧化铝粉末的制造方法及其由该方法得到的α-氧化铝粉末
4、α-氧化铝粉末及其生产方法
5、α-氧化铝粉末及其制造方法
6、α-氧化铝及其制造方法
7、α-氧化铝粒料的制备方法
8、α-氧化铝纳米粉的制备方法
9、α-氧化铝细粉及其制造方法
10、α一氧化铝粉末的制造方法
11、β-氧化铝的制备方法
12、γ-氧化铝的制备方法
13、θ-氧化铝就地涂覆的整体式催化剂载体
14、拜尔法联合生产氧化铝和铝酸钙水泥的方法
15、拜尔法生产氧化铝过程中红泥水悬浮液的流体化工艺
16、拜尔法生产氧化铝强化溶出的方法
17、半透明氧化铝烧结体及其生产
18、不同整比性vo_2纳米粉体的合成.caj
19、超纯纳米级氧化铝粉体的制备方法
20、超高纯超细氧化铝粉体制备方法
21、超微细高纯氧化铝的制备方法
22、尺寸可控、形态松散的超细氧化铝粉体材料的制备技术
23、尺寸可控纳米、亚微米级氧化铝粉的制备方法
24、处理富含氧化铝一水合物铝土矿的改进方法
25、处理铝土矿生产氧化铝的方法
26、醇铝气相法制取纳米高纯氧化铝的方法
27、醇铝水解法制备高纯超细氧化铝粉体技术
28、从低品位含铝矿石中提取氧化铝的方法
29、从废钒触媒中提取五氧化二钒.caj
30、从废钒催化剂中回收精制五氧化二钒的试验研究.caj
31、从废钒催化剂中回收五氧化二钒.caj
32、从废旧氧化锌压敏电阻片中提取及制备氧化钴.caj
33、从粉煤灰提氧化铝和生成β-cs胶凝材料法
34、从苛性母液制备含水合氧化铝的晶体的方法
35、从铝基含镍废渣中回收氧化铝的方法
36、从铝土矿生产氧化铝的改进方法
37、从氧化铝生产过程的循环母液中萃取镓的工艺
38、大孔径α--氧化铝及其制法和应用
39、单晶氧化铝瓷高强度气体放电灯管
40、单晶氧化铝瓷高强度气体放电灯管 2
41、单晶氧化铝颗粒的制造方法
42、氮化二铬-氧化铝复合材料及其制备方法
43、低玻粉用α-氧化铝粉
44、低密度大孔容球形氧化铝的制备工艺
45、低纳超细α型氧化铝的制造方法
46、低碳烷氧基铝水解制备氧化铝方法
47、低碳烷氧基铝水解制备氧化铝方法的改进
48、低温烧结的99氧化铝陶瓷及其制造方法和用途
49、电镀氧化铝的新工艺
50、电子陶瓷流延成型专用α-氧化铝粉
51、多孔阳极氧化铝膜的自润滑处理方法
52、二氧化钒薄膜的光学特性及应用前景.caj
53、复合氧化铝的制备方法
54、改良盐析法制备亚微米氧化铝工艺方法
55、改性的α氧化铝颗粒
56、改性溶胶-凝胶氧化铝
57、高纯超细氧化铝粉体的制备方法
58、高纯超细氧化铝生产工艺及装置
59、高纯纳米级氧化铝的制备方法
60、高纯纳米氧化铝纤维粉体制备方法
61、高纯氧化铝的制备方法
62、高纯氧化铝粉体的制备方法
63、高铝硅比烧结法生产氧化铝工艺
64、高挠曲强度烧结氧化铝制品及其制备工艺
65、高强度氧化铝 氧化锆 铝酸镧复相陶瓷及制备方法
66、高热稳定性氧化铝及其制备方法
67、高四方相氧化锆-氧化铝复合粉料及其制备方法
68、高温下保持高比表面氧化铝及其制备方法
69、高压放电灯用发光容器及多晶透明氧化铝烧结体的制造方法
70、隔板式氧化铝风动溜槽卸料装置
71、工业化用层析氧化铝
72、硅改性的氧化铝及制备与在负载茂金属催化剂中的应用
73、硅增强的新型结晶氧化铝
74、含工业氧化铝废渣的提纯方法
75、含锂氧化铝的生产工艺
76、含铝酸钙的物料提取氧化铝工艺
77、含铁铝土矿生产氧化铝工艺
78、回收废钯 氧化铝催化剂中金属钯的方法
79、回收氧化铝和二氧化硅的方法
80、活性氧化铝的制备方法
81、减少拜耳法三水合氧化铝中的杂质
82、将硅渣开发为助洗剂的氧化铝生产工艺
83、胶冻切割成型法生产高性能氧化铝系陶瓷基片的生产工艺
84、净化氧化铝粉末的方法和设备
85、具有拟薄水铝石结构的氧化硅-氧化铝及其制备方法
86、具有氧化铪与氧化铝合成介电层的电容器及其制造方法
87、利用粉煤灰和石灰石联合生产氧化铝和水泥的方法
88、利用高岭岩(土)生产超纯氧化铝的工艺
89、利用铝型材厂工业污泥制备活性氧化铝的方法
90、连续种子搅拌分解生产砂状氧化铝工艺
91、两组份烧结法氧化铝制备工艺
92、磷化铝熏蒸残渣的无害化处理并回收氧化铝的方法
93、铝生产电解槽中氧化铝成份的精确调节方法
94、铝酸钠碳酸化法制备活性氧化铝的方法
95、纳米尺寸的均匀介孔氧化铝球分离剂的合成方法
96、纳米级氧化铝的生产工艺
97、纳米添加氧化铝陶瓷的改性方法
98、纳米氧化铝材料的制造方法
99、纳米氧化铝粉的电弧喷涂反应合成系统及其制备方法
100、纳米氧化铝浆组合物及其制备方法
101、纳米氧化铝胶体功能陶瓷涂料生产方法
102、纳米氧化铝铜基体触头材料
103、拟薄水铝石和γ-氧化铝的制备方法
104、片状氧化铝
105、强发光氧化铝模板及制法
106、强化烧结法氧化铝生产工艺
107、强化脱硅及溶出氧化铝的生产方法
108、热解生产的氧化铝
109、溶胶、凝胶法制备超细氧化铝工艺方法
110、溶胶-凝胶氧化铝磨粒
111、砂状氧化铝分解新工艺
112、烧结α-氧化铝 聚偏氟乙烯共混中空纤维膜的制法及制品
113、烧结法精液制取砂状氧化铝的方法
114、烧结法生产氧化铝提高熟料氧化铝溶出率的方法
115、烧结法氧化铝生产工艺的熟料制备方法
116、烧结法氧化铝生产过程中赤泥分离方法
117、生产低碱氧化铝的方法、由该方法生产的低碱氧化铝以及生产陶瓷的方法
118、生产硅藻土助滤剂及回收硫酸铝和氧化铝的方法
119、石灰一拜耳法处理一水型铝土矿生产氧化铝的工艺
120、水合氧化铝的制备方法
121、塑胶地砖表面涂布氧化铝的方法
122、酸析法氧化铝改进工艺
123、随氧化铝加料量变化即时调整铝电解槽能量平衡的方法
124、隧道窑烧结生产氧化铝的方法及专用隧道窑
125、碳酸化分解生产砂状氧化铝工艺
126、碳酸化分解生产氧化铝工艺
127、提高氧化铝生产中蒸发效率的方法
128、天然铝矾土矿用于制备精细氧化铝陶瓷的方法
129、铁铝复合矿生产生铁及提取氧化铝的铝酸钙渣工艺
130、通过化学气相淀积产生的增强氧化铝层
131、透光多晶氧化铝
132、透光性氧化铝陶瓷及其制造方法、高压放电灯用发光容器、造粒粉末和成形体
133、透明的多晶氧化铝
134、微球状γ-氧化铝的制备方法
135、无搅拌情况下分解铝酸钠溶液制造氧化铝的方法和设备
136、稀土补强氧化铝系陶瓷复合材料及其生产方法
137、细粒状活性氧化铝的制备方法
138、亚球形氧化铝粉末、其制备方法及应用
139、亚微米高纯透明氧化铝陶瓷材料的制备方法
140、烟气干法净化中氧化铝量的均匀分配方法及装置
141、盐酸联碱法生产氧化铝工艺
142、阳极氧化铝模板中一维硅纳米结构的制备方法
143、氧化锆增韧氧化铝陶瓷纺织瓷件的制造方法
144、氧化铬及氧化铝合成介电层及其制造方法
145、氧化铝焙烧工序的余热利用方法
146、氧化铝薄膜的制备方法
147、氧化铝超浓相输送滤沙装置
148、氧化铝赤泥洗涤直接加热及分解板式换热工艺
149、氧化铝的常压低温溶出生产方法
150、氧化铝的生产方法
151、氧化铝废水处理后得到的再生水回用方法
152、氧化铝废水处理系统的污泥处置新工艺
153、氧化铝高压釜溶出系统的排料及填料装置
154、氧化铝高压釜溶出系统的闪蒸器注水方法
155、氧化铝高压釜溶出系统的稀释槽乏汽排放装置
156、氧化铝颗粒及其生产方法
157、氧化铝矿浆制备的二段磨磨矿--分级工艺
158、氧化铝纳米纤维的制备方法
159、氧化铝生产分解分级新工艺
160、氧化铝生产烧结法赤泥分离方法
161、氧化铝生产烧结法赤泥分离设备
162、氧化铝生产中产生的废物的加工方法
163、氧化铝生产中浮游物处理方法
164、氧化铝生产中卸泥辊的刮泥装置
165、氧化铝输送过程中气流隔断及杂质清除装置
166、氧化铝熟料烧结回转窑智能控制方法
167、氧化铝陶瓷及其制备方法
168、氧化铝涂覆的碳化硅晶须-氧化铝
169、氧化铝系多相复合结构陶瓷材料及其生产方法
170、氧化铝细粒的制备方法
171、氧化铝下料秤下料静态逻辑控制器
172、氧化铝载钌的制备方法和使醇氧化的方法
173、一水型铝土矿石灰拜耳法生产氧化铝工艺
174、一水硬铝石型铝土矿精矿生产氧化铝方法
175、一种fe基氧化铝复合材料铝电解惰性阳极及其制备方法
176、一种mcm-41 氧化铝复合材料的制备方法
177、一种α-氧化铝载体及其制备方法
178、一种拜尔法生产氧化铝的方法
179、一种拜尔法生产氧化铝的原矿浆制备方法
180、一种表面包膜氧化铝的纳米二氧化钛颗粒的制备方法
181、一种掺铒 铒、镱共掺氧化铝光波导放大器的制备方法
182、一种大孔氧化铝载体及其制备方法1
183、一种大孔氧化铝载体及其制备方法 2
184、一种氮氧化铝镁 氮化硼复相耐火材料及其制备工艺
185、一种分离氧化铝蒸发母液中碳酸钠的方法
186、一种高比表面积氧化铝
187、一种高烧结活性氧化铝粉体的制备方法
188、一种高性能低成本氧化铝复合微晶陶瓷的制备方法
189、一种含锂的球形氧化铝
190、一种含氧化硅-氧化铝的加氢裂化催化剂
191、一种含有改性纳米级氧化铝的半合成烃类转化催化剂
192、一种活性氧化铝催化剂及其制备方法和应用
193、一种活性氧化铝的制备方法
194、一种基于多孔氧化铝模板纳米掩膜法制备纳米材料阵列体系的方法
195、一种晶种分解生产砂状氧化铝的方法
196、一种利用粉煤灰制备氧化铝联产水泥熟料的方法
197、一种连续碳分生产砂状氧化铝的方法
198、一种联合法生产氧化铝降低拜耳法精液αk的方法
199、一种铝电解用硼化钛/氧化铝阴极涂层及制备方法
200、一种纳米晶添加氧化铝陶瓷材料及低温液相烧结方法
201、一种纳米孔氧化铝模板的生产工艺
202、一种偏铝酸钠-二氧化碳法制备活性氧化铝的方法
203、一种球形氧化铝颗粒的制备方法
204、一种烧结法生产砂状氧化铝的方法
205、一种生产超微细氧化铝粉的方法
206、一种生产含有少量氧化钠的氧化铝的方法
207、一种生产氧化铝的粗液脱硅方法
208、一种生产氧化铝的方法
209、一种生产氧化铝工艺过程的补碱方法
210、一种生产氧化铝新工艺
211、一种吸附用活性氧化铝球生产方法
212、一种形态松散的纳米、亚微米级高纯氧化铝的制备方法
213、一种盐析法生产氧化铝及氧化铝微粉的工艺方法
214、一种氧化铝的制备方法1
215、一种氧化铝的制备方法 2
216、一种氧化铝镀膜的方法
217、一种氧化铝基陶瓷复合材料的制备方法
218、一种氧化铝及其制备方法
219、一种氧化铝及其制备方法和用途
220、一种氧化铝-金刚石复合材料的制备方法
221、一种氧化铝蜡吸附剂的再生方法
222、一种氧化铝弥散强化铜引线框架材料及制备方法
223、一种氧化铝磨损指数测定仪
224、一种氧化铝纳米纤维的制备方法
225、一种氧化铝溶出料浆分离赤泥的方法
226、一种氧化铝生产过程中补碱的方法
227、一种氧化铝陶瓷的制备方法
228、一种氧化铝吸附剂的制备方法
229、一种氧化铝载体的制备方法1
230、一种氧化铝载体的制备方法 2
231、一种氧化铝载体及其制备方法
232、一种一水型铝土矿生产氧化铝的母液处理方法
233、一种以湿化学法为基础的氧化铝空心球的制备方法
234、一种用铝土矿提纯氧化铝的方法
235、一种制备高纯超细活性氧化铝的方法
236、一种制备高纯氧化铝的方法
237、一种制备耐高温高表面积氧化铝及含铝复合氧化物的方法
238、一种制备轻质高强氧化铝空心球陶瓷的制备方法
239、一种制备小粒径氧化铝粉的方法
240、一种制备氧化铝载体的方法
241、一种制造高纯超细氧化铝粉的方法
242、一种制造氧化铝提炼厂用的助滤剂的改进方法
243、一种作催化剂载体用的纳米级氧化铝及其制备方法
244、一种作催化剂载体用氧化铝的制备方法
245、以磷化铝制备活性氧化铝的方法
246、应用拜尔法从含-水合物的铝土矿连续生产氧化铝的工艺
247、用冰晶石——氧化铝熔盐电解法生产精铝的方法
248、用铒离子注入勃姆石方法制备掺铒氧化铝光波导薄膜
249、用废铝灰生产氧化铝的方法
250、用浮选法生产再生氧化铝的工艺
251、用高硫铝土矿生产氧化铝的除硫方法
252、用铝电解废弃物制取再生氟化盐、氧化铝的装置
253、用凝胶注模法制备用于齿科修复的氧化铝预制块
254、用氧化铝生产中的副产品钠硅渣生产洗涤用4a沸石的方法
255、用于半导体处理设备中的抗卤素的阳极氧化铝
256、用于改进氧化铝工艺特性的进料处理
257、用于合成二甲醚的改性氧化铝催化剂
258、用于微波诱导氧化工艺的改性氧化铝催化剂的制备方法
259、用于氧化铝生产过程中加入石灰的方法
260、用于制备碳纳米管的氧化铝载体金属氧化物催化剂及其制备方法
261、用再生氧化铝电解法生产铝锭的工艺
262、用在半导体处理设备中的抗卤素的阳极氧化铝
263、用蒸汽流化反应器生产α型氧化铝的方法
264、由分解铝酸钠溶液生产氧化铝的工艺和装置
265、由含少量反应性硅石的三水铝土矿生产氧化铝
266、由氢氧化铝制备氧化铝的方法
267、油墨用氧化铝的制造方法
268、有序多孔阳极氧化铝模板的制备方法
269、预防加热管结垢提高氧化铝厂蒸发效率和节能的方法
270、在两种状态引入晶种以生产大颗粒氧化铝的工艺
271、在氧化铝陶瓷上进行金刚石薄膜定向生长的方法
272、直流电弧矿热炉生产氧化铝空心球的方法
273、制备α-氧化铝粉末的方法
274、制备α-氧化铝粒子的方法
275、制备α-氧化铝粒子的方法 2
276、制备无定形、催化活性氧化硅-氧化铝的方法
277、制取氧化铝过程中的赤泥分离技术
278、制造可控制钠含量和颗粒尺寸的三水氧化铝的方法
279、种含氧化硅-氧化铝的加氢裂化催化剂
280、自支撑有序通孔氧化铝膜的制备方法
281、综合利用煤矸石生产氧化铝和电解铝
282、最终冷却无水氧化铝的方法
本光盘详细地阐述了每个项目的技术领域、现有市场产品技术分析、新产品发明的市场背景、新产品制作的主要技术原理、实现该产品的生产工艺过程、原料配方、具体实施例、以及该项目的研制单位名称、通信地址、研制时间等。是不可多得的技术开发,企业生产的技术汇编资料。 全文资料光盘是计算机专用数据光盘,在Windows操作系统运行环境下,可以直接打开、阅读、打印。为您的企业参与市场产品开发提供第一手宝贵资料。

⑵ 赤泥的资源化

中国金属学会、钢铁研究总院、北京科技大学、哈尔滨工业大学等科研院所的专家学者齐聚济南,对济钢集团 “铝厂废弃物——赤泥资源化开发利用”项目进行技术鉴定。通过查阅资料、技术分析和现场考察,专家认为,这一技术既利用了资源、消除了污染,又节省了土地占用,属国内外首创,达到国际先进水平。
赤泥是氧化铝生产过程中所产生的废弃物,每生产1吨氧化铝约产生赤泥1.5吨以上,由于此前中国国内外尚无有效的工业化处理方法,即使过去发达国家也多是排入海中,成为一道世界性环保难题。中国相关行业过去一般只能堆存,既占用了大量土地,又对土壤、水源、大气等造成污染。

⑶ 我国氧化铝生产主要是用什么

我们知道,炼铝的原料是氧化铝。氧化铝是一种白色粉状物,而铝矿石是坚硬的矿石。铝矿石是怎样变成氧化铝的?说起来,从铝矿石到氧化铝,实际上发生的变化主要是化学变化。因此,从本质上说,氧化铝厂应算是化工厂。

迄今为止,已经提出了很多从铝矿石或其它含铝原料中提取氧化铝的方法。由于技术和经济方面的原因,有些方法已被淘汰,有些还处于试验研究阶段。已提出的氧化铝生产方法可归纳为四类,即碱法、酸法、酸碱联合法与热法。目前用于大规模工业生产的只有碱法。

铝土矿是世界上最重要的铝矿资源,其次是明矾石、霞石、粘土等。目前世界氧化铝工业,除俄罗斯利用霞石生产部分氧化铝外,几乎世界上所有的氧化铝都是用铝土矿为原料生产的。

铝土矿是一种主要由三水铝石、一水软铝石或一水硬铝石组成的矿石。到目前为止,我国可用于氧化铝生产的铝土矿资源全部为一水硬铝石型铝土矿。

铝土矿中氧化铝的含量变化很大,低的仅约30%,高的可达70%以上。铝土矿中所含的化学成分除氧化铝外,主要杂质是氧化硅、氧化铁和氧化钛。此外,还含有少量或微量的钙和镁的碳酸盐、钾、钠、钒、铬、锌、磷、镓、钪、硫等元素的化合物及有机物等。其中镓在铝土矿中含量虽少,但在氧化铝生产过程中会逐渐在循环母液中积累,从而可以有效地回收,成为生产镓的主要来源。

衡量铝土矿优劣的主要指标之一是铝土矿中氧化铝含量和氧化硅含量的比值,俗称铝硅比。

用碱法生产氧化铝时,是用碱(NaOH或Na2CO3)处理铝矿石,使矿石中的氧化铝转变成铝酸钠溶液。矿石中的铁、钛等杂质和绝大部分的硅则成为不溶解的化合物。将不溶解的残渣(赤泥)与溶液分离,经洗涤后弃去或进行综合处理,以回收其中的有用成分。纯净的铝酸钠溶液即可分解析出氢氧化铝,经分离、洗涤后进行焙烧,便获得氧化铝产品。分解母液则循环使用来处理另一批矿石。碱法生产氧化铝有拜耳法、烧结法以及拜耳—烧结联合法等多种工艺流程。

拜耳法是由奥地利化学家拜耳(K·J·Bayer)于1889~1892年发明的一种从铝土矿中提取氧化铝的方法。一百多年来在工艺技术方面已经有了许多改进,但基本原理并未发生变化。为纪念拜耳这一伟大贡献,该方法一直沿用拜耳法这一名称。

拜耳法包括两个主要过程。首先是在一定条件下氧化铝自铝土矿中的溶出(氧化铝工业习惯使用的术语,即浸出。以下同)过程,然后是氢氧化铝自过饱和的铝酸钠溶液中水解析出的过程,这就是拜耳提出的两项专利。拜耳法的实质就是以湿法冶金的方法,从铝土矿中提取氧化铝。在拜耳法氧化铝生产过程中,含硅矿物会引起Al2O3和Na2O的损失。

在拜耳法流程中,铝土矿经破碎后,和石灰、循环母液一起进入湿磨,制成合格矿浆。矿浆经预脱硅之后预热至溶出温度进行溶出。溶出后的矿浆再经过自蒸发降温后进入稀释及赤泥(溶出后的固相残渣)沉降分离工序。自蒸发过程产生的二次汽用于矿浆的前期预热。沉降分离后,赤泥经洗涤进入赤泥堆场,而分离出的粗液(含有固体浮游物的铝酸钠溶液,以下同)送往叶滤。粗液通过叶滤除去绝大部分浮游物后称为精液。精液进入分解工序经晶种分解得到氢氧化铝。分解出的氢氧化铝经分级和分离洗涤后,一部分作为晶种返回晶种分解工序,另一部分经焙烧得到氧化铝产品。晶种分解后分离出的分解母液经蒸发返回溶出工序,形成闭路循环。氢氧化铝经焙烧后得到氧化铝。

不同类型的铝土矿所需要的溶出条件差别很大。三水铝石型铝土矿在105℃的条件下就可以较好地溶出,一水软铝石型铝土矿在200℃的溶出温度下就可以有较快的溶出速度,而一水硬铝石型铝土矿必须在高于240℃的温度下进行溶出,其典型的工业溶出温度为260℃。溶出时间不低于60分钟。

拜耳法用于处理高铝硅比的铝土矿,流程简单,产品质量高,其经济效果远比其它方法为好。用于处理易溶出的三水铝石型铝土矿时,优点更是突出。目前,全世界生产的氧化铝和氢氧化铝,90%以上是用拜耳法生产的。由于中国铝土矿资源的特殊性,目前中国大约50%的氧化铝是由拜耳法生产的。

将拜耳法和烧结法二者联合起来的流程称之为联合法生产工艺流程。联合法又可分为并联联合法、串联联合法与混联联合法。采用什么方法生产氧化铝,主要是由铝土矿的品位(即矿石的铝硅比)来决定的。从一般技术和经济的观点看,矿石铝硅比为3左右通常选用烧结法;铝硅比高于10的矿石可以采用拜耳法;当铝土矿的品位处于二者之间时,可采用联合法处理,以充分发挥拜耳法和烧结法各自的优点,达到较好的技术经济指标。

目前全球氧化铝年产量在5600万吨左右,我国的氧化铝产量约为800万吨。。

⑷ 氧化铝生产流程是什么

冰晶石(Na3AlF6)和氧化铝(Al2O3)

主要原理是霍尔-埃鲁铝电解法:以纯净的氧化铝为原料采用电解制铝 ,因纯净的氧化铝熔点高(约2045℃),很难熔化,所以工业上都用熔化的冰晶石(Na3AlF6)作熔剂,使氧化铝在1000℃左右溶解在液态的冰晶石中,成为冰晶石和氧化铝的熔融体,然后在电解槽中,用碳块作阴阳两极,进行电解。

全面介绍如下:
《铝的生产加工》
铝在生产过程中有四个环节构成一个完整的产业链:铝矿石开采-氧化铝制取-电解铝冶炼-铝加工生产。
一般而言,两吨铝矿石生产一吨氧化铝;两吨氧化铝生产一吨电解铝。
(一)氧化铝的生产方法
迄今为止,已经提出了很多从铝矿石或其它含铝原料中提取氧化铝的方法。由于技术和经济方面的原因,有些方法已被淘汰,有些还处于试验研究阶段。已提出的氧化铝生产方法可归纳为四类,即碱法、酸法、酸碱联合法与热法。目前用于大规模工业生产的只有碱法。

铝土矿是世界上最重要的铝矿资源,其次是明矾石、霞石、粘土等。目前世界氧化铝工业,除俄罗斯利用霞石生产部分氧化铝外,几乎世界上所有的氧化铝都是用铝土矿为原料生产的。

铝土矿是一种主要由三水铝石、一水软铝石或一水硬铝石组成的矿石。到目前为止,我国可用于氧化铝生产的铝土矿资源全部为一水硬铝石型铝土矿。

铝土矿中氧化铝的含量变化很大,低的仅约30%,高的可达70%以上。铝土矿中所含的化学成分除氧化铝外,主要杂质是氧化硅、氧化铁和氧化钛。此外,还 含有少量或微量的钙和镁的碳酸盐、钾、钠、钒、铬、锌、磷、镓、钪、硫等元素的化合物及有机物等。其中镓在铝土矿中含量虽少,但在氧化铝生产过程中会逐渐 在循环母液中积累,从而可以有效地回收,成为生产镓的主要来源。

衡量铝土矿优劣的主要指标之一是铝土矿中氧化铝含量和氧化硅含量的比值,俗称铝硅比。

用碱法生产氧化铝时,是用碱(NaOH或Na2CO3)处理铝矿石,使矿石中的氧化铝转变成铝酸钠溶液。矿石中的铁、钛等杂质和绝大部分的硅则成为不溶 解的化合物。将不溶解的残渣(赤泥)与溶液分离,经洗涤后弃去或进行综合处理,以回收其中的有用组分。纯净的铝酸钠溶液即可分解析出氢氧化铝,经分离、洗 涤后进行煅烧,便获得氧化铝产品。分解母液则循环使用来处理另一批矿石。碱法生产氧化铝有拜耳法、烧结法以及拜耳--烧结联合法等多种流程。 拜耳法是由奥地利化学家拜耳(K·J·Bayer)于1889~1892年发明的一种从铝土矿中提取氧化铝的方法。一百多年来在工艺技术方面已经有了 许多改进,但基本原理并未发生变化。为纪念拜耳这一伟大贡献,该方法一直沿用拜耳法这一名称。

拜耳法包括两个主要过程。首 先是在一定条件下氧化铝自铝土矿中的溶出(氧化铝工业习惯使用的术语,即浸出。以下同)过程,然后是氢氧化铝自过饱和的铝酸钠溶中水解析出的过程,这就是 拜耳提出的两项专利。拜耳法的实质就是以湿法冶金的方法,从铝土矿中提取氧化铝。在拜耳法氧化铝生产过程中,含硅矿物会引起Al2O3和Na2O的损失。

在拜耳法流程中,铝土矿经破碎后,和石灰、循环母液一起进入湿磨,制成合格矿浆。矿浆经预脱硅之后预热至溶出温度进行溶出。 溶出后的矿浆再经过自蒸发降温后进入稀释及赤泥(溶出后的固相残渣)的沉降分离工序。自蒸发过程产生的二次汽用于矿浆的前期预热。沉降分离后,赤泥经洗涤 进入赤泥堆场,而分离出的粗液(含有固体浮游物的铝酸钠溶液,以下同)送往叶滤。粗液通过叶滤除去绝大部分浮游物后称为精液。精液进入分解工序经晶种分解 得到氢氧化铝。分解出的氢氧化铝经分级和分离洗涤后,一部分作为晶种返回晶种分解工序,另一部分经焙烧得到氧化铝产品。晶种分解后分离出的分解母液经蒸发 返回溶出工序,形成闭路循环。氢氧化铝经焙烧后得到氧化铝。

不同类型的铝土矿所需要的溶出条件差别很大。三水铝石型铝土矿 在105℃的条件下就可以较好地溶出,一水软铝石型铝土矿在200℃的溶出温度下就可以有较快的溶出速度,而一水硬铝石型铝土矿必须在高于240℃的温度 下进行溶出,其典型的工业溶出温度为260℃。溶出时间不低于60分钟。

拜耳法用于处理高铝硅比的铝土矿,流程简单,产品 质量高,其经济效果远比其它方法为好。用于处理易溶出的三水铝石型铝土矿时,优点更是突出。目前,全世界生产的氧化铝和氢氧化铝,90%以上是用拜耳法生 产的。由于中国铝土矿资源的特殊性,目前中国大约50%的氧化铝是由拜耳法生产的。

将拜耳法和烧结法二者联合起来的流程称 之为联合法生产工艺流程。联合法又可分为并联联合法、串联联合法与混联联合法。采用什么方法生产氧化铝,主要是由铝土矿的品位(即矿石的铝硅比)来决定 的。从一般技术和经济的观点看,矿石铝硅比为3左右通常选用烧结法;铝硅比高于10的矿石可以采用拜耳法;当铝土矿的品位处于二者之间时,可采用联合法处 理,以充分发挥拜耳法和烧结法各自的优点,达到较好的技术经济指标。

目前全球氧化铝年产量在5500万吨左右,我国的氧化铝产量约为680万吨。

(二)原铝、铝合金及铝材的生产方法

目前工业生产原铝的唯一方法是霍尔-埃鲁铝电解法。由美国的霍尔和法国的埃鲁于1886年发明。霍尔-埃鲁铝电解法是以氧化铝为原料、冰晶石 (Na3AlF6)为熔剂组成的电解质,在950-970℃的条件下通过电解的方法使电解质熔体中的氧化铝分解为铝和氧,铝在碳阴极以液相形式析出,氧在 碳阳极上以二氧化碳气体的形式逸出。每生产一吨原铝,可产生1.5吨的二氧化碳,综合耗电在15000kwh左右。

工业铝电解槽大体上可以分为侧插阳极自焙槽、上插阳极自焙槽和预焙阳极槽三类。由于自焙槽技术在电解过程中电耗高、并且不利于对环境的保护,所以自焙槽技术正在被逐渐淘汰。目前全球原铝年产量约为2800万吨,我国的原铝年产量约为700万吨。

必要时可以对电解得到的原铝进行精炼得到高纯铝。目前的铝合金生产方法主要以熔配法为主。由于铝及其合金具有优良的可加工性能,所以通过锻、铸、轧、冲、压等方法生产板、带、箔、管、线等型材

⑸ 赤泥的有效利用

我正好在做赤泥的论文呢,希望对你有帮助。
1.2.1 国外利用的现状
现阶段,国外对于赤泥的开发已经摆脱了原有的低价值的重复利用,对赤泥
的某种用途有无开发价值,能否产生较好的经济效益投入了更多的关注,进行了
深入研究。因此,目前在国外的研究已经开始探索附加值高的产品,使赤泥的应
用走向深入。
1.2.2.1陶瓷工业
利用拜耳法和烧结法赤泥[35-38},配合一定比例的粉煤灰,选择多种烧结助剂,采用湿法成型,加以定量的水搅拌均匀后压制成形,成型后的坯体在}1}℃下烘干12小时后便可进行烧成。拜耳赤泥系列的烧成温度为1160℃;烧结赤泥系列的烧成温度为1140℃ .氧化性气氛下保温2小时。泥一粉煤灰陶瓷。陶瓷体外观规整,表面连续均匀。自然降温冷却后,
收缩率较为一致,即得到赤无裂纹气孔及鳞片状翘起物,颜色为黄绿色,断面晶体微细、均匀、波动。约为15%,致密度均匀。
1.3.2.2工业催化剂制备
西班牙的Fernando V Diez等人连续多年从事赤泥利用的研究工作,在工业
催化剂的开发方面进行了两方面的研究。
一、赤泥氢化催化剂
在早期的研究中,考虑到拜耳法赤泥含有较大量的氧化铁和氧化钦,将赤泥直接硫化活化后,即可作为氢化催化剂。稍后的研究中[}],他们选择了一种极为特殊的活化方法,将赤泥溶解于盐酸和磷酸的混合溶液中,之后将该混合溶液煮沸,用氨水调节PH值至S,然后将所得沉淀经过滤、洗涤、干燥、锻烧之后,再经过硫化作用即可得到相应的催化剂。在测定该催化剂的试验中,测试了其对于葱油的氢化作用,并且与同类催化剂进行比较,其结果表明该氢化催化剂有明显较高的活化性能和较长的活化周期。
二、赤泥作为四氯乙烯氢化脱氯作用的催化剂
从工业角度考虑,利用赤泥作为氢化脱氯作用的催化剂具有比普通商业催化剂更为明显的经济效益}4}}z10氢化脱氯反应是在连续床固定反应器中进行的,其中温度、压强、氢气流速、催化剂是否硫化和是否存在液相均被考虑在内。硫化赤泥作为一种氢化脱氯作用的催化剂,随着压强和温度的增加,四氯乙烯的转化速率也随之增加,液相存在并未影响反应的进行。动力学反应获取的实验数据也很好的符合了Langmuirr--Hinselwood模型。从另一个角度讲,此项研究对于环境中氟氯烃类物质的去除有一定的作用。
1.2.2国内利用的现状
我国是世界第四大氧化铝生产国,现国内主要有六大氧化铝生产厂,分别位于山东、山西、河南、贵州、广西。目前氧化铝年生产能力已达700多万吨,每年新产生的赤泥量达一千多万吨。和国外相比,我国铝土矿资源类型特殊,高铝、高硅、低铁、一水硬铝石,溶出性能较差,我国拜耳法赤泥的特点是铁及氧化铝含量高(但仍较国外拜耳法赤泥含量低);联合法赤泥特点是铁、碱含量低,氧化钙含量高。针对两种不同特点的赤泥,我国在赤泥利用方面取得了如下结果。
1.2.1.1建材
以烧结法生产氧化铝产出的赤泥,由于碱含量较拜耳法低,且含有大量的硅酸二钙,和水泥物相组成相同,可用来生产高标号水泥和其它建筑材料。
一、水泥
so年代山东铝业公司水泥厂开始投产,但由于赤泥含碱量高,赤泥配比受水泥含碱指标制约,赤泥利用水平仅达到i 5%^-20%。赤泥脱碱后更有利于利用赤泥制造水泥,该厂采用的“常压氧化钙脱碱与低碱赤泥生产高标号水泥的研究”和“低浓度碱液膜法分离回收碱技术”j13-15],降低了氧化铝生产的碱消耗,但是该方法生产工艺复杂,经济价值高,不利于工业化的大规模生产。贵阳铝镁设计研究院的刘子高等人将拜耳法赤泥与适量的石灰混合,经石灰消化、水热处理、缎烧处理和碱液溶出,可从赤泥回收70%以上的}2}3和90%以
上的Na20。但是因脱碱的方法效率不高,迄今未工业化。
二、生产建筑用砖材料
利用赤泥作建筑用砖材料的研究,是多年来许多研究者着眼的目标之一。着
眼于赤泥、煤渣等废料堆积如山,生产建筑用砖又毁坏大量耕地、严重污染环境
的问题,近年来许多研究单位和有关工厂,对用废渣生产建筑用砖,开展了许多
试验研究工作。
三、混凝土
五十年代以来,国内外相继开展了赤泥用于混凝土的综合开发利用。日本和
美国用赤泥制造人工轻骨料混凝土,比天然卵石混凝土强度还高;前东德用赤泥生产混凝土轻型构件;西德掺赤泥于沥青混凝土中,改善了沥青混凝土路面使用性能;前苏联把赤泥用作道路基层材料。颜祖兴对于水泥赤泥混凝土开发应用进行了研究。结果表明,赤泥代替水泥用量少于X13时,水泥赤泥混凝土的强度特别是抗折强度与普通水泥混凝土强度相当。
1.2.1.2金属的回收
一、从赤泥中回收二氧化钛
印度Bharat铝业公司的Maitra利用本公司的拜耳法赤泥,进行成分分析,其赤泥中含有15^-180l0的Tl仇。采取如下措施对TiO2进行了回收试验。其一定量的赤泥于两倍的自来水混合搅拌,借助絮凝剂进行沉降。之后将洗涤过的赤泥与HCl缓慢反应,直至泥浆中和,在90--}}5℃时调整pH值为4。再用絮凝剂沉降,千燥沉降的赤泥,继续在加热的条件下用浓Hcl处理,经反应泥浆变为灰色,洗涤使泥浆与溶液分离,此时泥浆内为以}1仇和,T1仇为主,热的浓硫酸使得二氧化钦转化为它的硫酸盐,之后将所得含有硫酸钦的硫酸溶液进行水解,得到白色的Ti02•H2O沉淀。使用此法可以容易的回收TiO2,并且回收过程中所用的酸可以全部再循环,其后得到的废渣亦可用于海绵铁的生产。
二、从赤泥中回收铁的研究
在金属铁的回收方面前苏联、日本、美国、德国等均做了大量的研究,虽
然国外研究的时间都相对较早,多为so}-8o年代,但现在仍然在大量的实际应
用。下面只简述一下我国在赤泥中铁回收的研究情况。平果铝业公司和广西冶金
研究院联合作了以平果铝土矿拜耳法赤泥为原料,以煤为还原剂,进行直接还原炼铁的试验研究。铁以海绵铁的形态产出,铁的回收率为87,海绵铁含Fe为84,金属化率为91.5,可代替废钢作为炼钢的原料。中南工业大学提出一条合理利用高铁赤泥的新途径。即由高铁赤泥直接生产制备海绵铁。此外,赣州有色冶金研究所的管建红采用脉动高梯度磁选机对于平果铝厂的赤泥中铁进行了回收试验。

⑹ 在制取氧化铝的过程中,分析铝土矿和赤泥所得数据如下

铝土矿中的有效铝矿物大部分与碱反应生成铝酸钠进入溶液用于分解氢氧化铝,铁矿物以及其它固体渣子进入赤泥。铝土矿品位越高,产出1吨氧化铝消耗的矿石量越少,排出的赤泥量也越少;反之,赤泥排出量就大。
铁矿物在溶出过程中视同不反应,全部进入赤泥。铝土矿含量较大的铝矿物被溶出提取出去了,进入赤泥的其它固体渣子总量有限,所以最终结果是赤泥中的氧化铁含量总是相对增加的。

⑺ 氧化铝生产工艺资料下载

我还推荐一本书:
《氧化铝生产工艺》
http://ishare.iask.sina.com.cn/f/8157893.html?from=dl 这里有下载

希望对你有帮住。。

下面罗列所有氧化铝的工艺,仅供参考

1、半透明氧化铝烧结体与其生产
2、醇铝水解法制备高纯超细氧化铝粉体技术
3、一水硬铝石型铝土矿精矿生产氧化铝方法
4、利用高岭岩(土)生产超纯氧化铝/工艺
5、一种球形氧化铝颗粒/制备方法
6、热解生产/氧化铝
7、一种形态松散/纳米、亚微米级高纯氧化铝/制备方法
8、烧结法生产氧化铝提高熟料氧化铝溶出率/方法
9、半透明氧化铝烧结体与其制备方法
10、水合氧化铝/制备方法
11、氧化铝中空纤维膜制备方法
12、一种氧化铝吸附剂/制备方法
13、溶胶-凝胶氧化铝磨粒
14、一种高比表面积氧化铝
15、一种氧化铝-氧化锆纤维/制备方法
16、氧化铝/生产方法
17、一种氧化铝载体/制备方法
18、一种γ-氧化铝载体与其制备方法
19、高纯纳米级氧化铝/制备方法
20、一种作催化剂载体用/纳米级氧化铝与其制备方法
21、高温下保持高比表面氧化铝与其制备方法
22、烧结法氧化铝生产过程中赤泥分离方法
23、一种氧化铝载体与其制备方法
24、多孔高氧化铝熔融铸造耐火物与其制造方法
25、复合氧化铝/制备方法
26、综合利用煤矸石生产氧化铝和电解铝
27、高纯氧化铝/制备方法
28、一种氧化铝与其制备方法
29、一种高烧结活性氧化铝粉体/制备方法
30、一种制造高纯超细氧化铝粉/方法
31、氧化铝生产烧结法赤泥分离方法
32、工业化用层析氧化铝
33、超纯纳米级氧化铝粉体/制备方法
34、一水型铝土矿石灰拜耳法生产氧化铝工艺
35、α-氧化铝细粉与其制造方法
36、γ-氧化铝/制备方法
37、一种高纯氧化铝填料/制作方法与在转化炉中/应用
38、一种生产含有少量氧化钠/氧化铝/方法
39、一种氧化铝生产过程中补碱/方法
40、一种一水型铝土矿生产氧化铝/母液处理方法
41、用于氧化铝生产过程中加入石灰/方法
42、用铝电解废弃物制取再生氟化盐、氧化铝/装置
43、醇铝气相法制取纳米高纯氧化铝/方法
44、一种生产氧化铝工艺过程/补碱方法
45、一种拜尔法生产氧化铝/方法
46、拜尔法联合生产氧化铝和铝酸钙水泥/方法
47、含铁铝土矿生产氧化铝工艺
48、一种活性氧化铝/制备方法
49、球形氧化铝颗粒与其生产方法
50、氧化铝颗粒与其生产方法
51、氧化铝粉末
52、一种Fe基氧化铝复合材料铝电解惰性阳极与其制备方法
53、高热稳定性氧化铝与其制备方法
54、用浮选法生产再生氧化铝/工艺
55、一种生产超微细氧化铝粉/方法
56、一种生产氧化铝/粗液脱硅方法
57、α-氧化铝粉末与其制造方法
58、纳米氧化铝材料/制造方法
59、一种利用粉煤灰制备氧化铝联产水泥熟料/方法
60、纳米氧化铝浆组合物与其制备方法
61、利用生物发酵废气CO2生产氢氧化铝/工艺
62、溶胶、凝胶法制备超细氧化铝工艺方法
63、一种烧结法生产砂状氧化铝/方法
64、一种连续碳分生产砂状氧化铝/方法
65、α-氧化铝纳米粉/制备方法
66、细粒状活性氧化铝/制备方法
67、利用富铝废渣制备氢氧化铝与氧化铝/方法
68、砂状氧化铝分解新工艺
69、氧化铝生产分解分级新工艺
70、电镀氧化铝/新工艺
71、含铝酸钙/物料提取氧化铝工艺
72、利用铝型材厂工业污泥制备活性氧化铝/方法
73、烧结法氧化铝生产工艺/熟料制备方法
74、一种耐高温高比表面氧化铝/制备方法
75、以磷化铝制备活性氧化铝/方法
76、用工业氢氧化铝生产高纯超细氧化铝/方法
77、两组份烧结法氧化铝制备工艺
78、消除种分周期性细化/砂状氧化铝生产方法
79、α-氧化铝粉末/制备方法
80、利用铝型材厂工业污泥制备氧化铝/方法
81、一种氧化硅-氧化铝与其制备方法
82、一种拜耳法种分生产砂状氧化铝/方法
83、用废铝灰生产氧化铝/方法
84、一种生产氧化铝新工艺
85、一种联合法生产氧化铝降低拜耳法精液αk/方法
86、一种球形高纯氧化铝/制备方法
87、一种晶种分解生产砂状氧化铝/方法
88、一种制备高纯超细活性氧化铝/方法
89、γ-氧化铝微球/生产方法
90、火成法制备/表面改性氧化铝
91、一种氧化铝生产烧结法赤泥分离方法
92、一种混联法氧化铝生产拜耳法溶出矿浆稀释方法
93、一种中孔氧化铝/制备方法
94、一种涂层用活性纳米氧化铝/制备方法
95、由工业废料制备纳米氧化铝粉体/方法
96、高纯氧化铝粉体/制备方法
97、一种从高硅铝土矿中提取氧化铝/方法
98、超细活性氧化铝/制备方法
99、一种制备小粒径氧化铝粉/方法
100、从铝基含镍废渣中回收氧化铝/方法
101、烧结法氧化铝生产中高浓度溶出液/生产方法
102、一种有序中孔氧化铝/制备方法
103、一种纳米氧化铝与其制备方法
104、一种用煤矸石生产氧化铝/方法
105、一种从粉煤灰中提取氧化铝/方法
106、一种制备高纯氧化铝过程中/屏蔽除铁方法
107、制备α-氧化铝粉末/方法
108、改性氧化铝组合物与其制备方法
109、反浮选铝土矿精矿生产氧化铝/方法
110、一种氧化铝生产/补碱方法
111、一种氧化铝/生产方法
112、用于生产α-氧化铝粉末/方法
113、一种氧化铝纳米粉体/制备方法
114、耐高温/高比表面积复合氧化铝粉体与其制造方法
115、一种含添加剂/氧化铝
116、制备α-氧化铝粉末/方法
117、超细氢氧化铝/制备方法
118、与合成氨厂生产相结合/纳米氧化铝粉体/制备方法
119、一种处理氧化铝粉体/方法
120、一种生产氧化铝/方法
121、一种红色氧化铝粉体/制备方法
122、一水硬铝石型铝土矿溶出后加矿增浓生产氧化铝/方法
123、拜尓法生产氧化铝中预脱硅/方法
124、提高氧化铝生产中溶出液Rp/方法
125、氧化铝生产中赤泥除砂与排粗/方法
126、氧化铝生产中碳酸盐/排除方法
127、氧化铝生产溶出后加矿工艺
128、用高铝炉渣生产氧化铝/工艺过程方法
129、低浓度溶液种分生产粉状氧化铝方法
130、低浓度种子分解生产砂状氧化铝/方法
131、生产低苏打氧化铝/方法、其装置和氧化铝
132、对生产三水氧化铝/拜耳法/改进,该改进涉与铝酸盐溶液与不溶残渣/分离
133、一种提高拜耳法生产氧化铝循环效率/方法
134、低温制备α-氧化铝细粉/方法
135、一种制备氧化铝/方法
136、稀硝酸浸渍和煅烧法再生废活性氧化铝/方法
137、板状氧化铝颗粒/制备方法
138、一种氧化铝纳米纤维/制备方法
139、一种高纯纳米氧化铝/连续化制备工艺
140、拜耳法氧化铝生产赤泥分离方法
141、一种拜耳法生产氧化铝中/苛化工艺
142、两段分解生产砂状氧化铝/热交换工艺与其设备
143、一种高比表面积高热稳定性氧化铝/制备方法
144、一种由粉煤灰制取氧化铝/方法
145、一种氧化铝生产溶出系统/清洗卸料方法
146、一种氧化铝/生产方法
147、载银活性氧化铝抗菌剂与其制备方法
148、制备α-氧化铝细粒/方法
149、一种氧化铝生产中/化灰方法
150、一种提高联合法氧化铝生产回收率方法
151、一种烧结法碳分母液浸取钙硅渣回收氧化铝方法
152、烧结法种分生产砂状氧化铝/方法
153、氧化铝生产中石灰/消化方法
154、微粒α氧化铝
155、一种液-液萃取降低氧化铝生产精液αk/方法
156、制备纳米级氧化铝弥散铁粉/方法
157、阶层多孔γ-氧化铝与其制备方法和用途
158、一种球形含硅氧化铝与其制备方法
159、一种纤维状纳米氧化铝粉体/制备方法
160、一种具有粒子内介孔结构/γ-氧化铝纳米粉体/制备方法
161、两种浓度精液生产高强度氧化铝/方法
162、一种拜尔法生产氧化铝/方法
163、一种拜耳法种分生产氧化铝/方法
164、铝废渣废灰用于改善一水硬铝石拜耳法生产氧化铝工艺
165、两段分解生产砂状氧化铝/成品与种子分级工艺
166、氧化铝自粉化熟料与其制备方法
167、一种混和型铝土矿生产氧化铝/方法
168、片状α-氧化铝晶体和其制备方法
169、氧化铝回收
170、一种由低铝硅比/含铝矿物制备氧化铝/方法
171、一种提取氧化铝/方法
172、煤矸石中提取氢氧化铝或氧化铝与其废渣生产水泥/方法
173、一种从高铝粉煤灰提取氧化铝与其废渣生产水泥/方法
174、从粉煤灰中提取氧化铝与利用废渣生产水泥/方法
175、一种氧化铝晶须/制备方法
176、一种直接利用煤粉煅烧氧化铝熟料/装置与其方法
177、一种气相法纳米氧化铝颗粒/制备方法
178、一种新型γ-氧化铝催化剂与其制作工艺
179、一种改性氧化铝/生产方法
180、一种利用粉煤灰生产二氧化硅和氧化铝/方法
181、一种制取多孔氧化铝膜/强烈阳极氧化法
182、一种用含铝污泥制备氧化铝/方法
183、一种制备有序介孔氧化铝/方法
184、利用高铝粉煤灰制取氧化铝和白炭黑清洁生产工艺
185、氧化铝烧结体
186、一种改进/串联法生产氧化铝/方法
187、一种柠檬酸浸出粘土矿生产氧化铝/方法
188、一种核壳结构磁性微球形氧化铝与其制备方法
189、透明/多晶氧化铝
190、新型粉煤灰提取氧化铝工艺
191、一种拜耳法生产氧化铝/配钙方法
192、一种中低品位铝土矿生产氧化铝/方法
193、一种氧化铝生产过程中赤泥/分离方法
194、一种从粘土矿中提取氧化铝/方法
195、一种从粉煤灰中提取氧化铝/方法
196、一种从低品位铝土矿中提取氧化铝/方法
197、一种从红柱石矿中提取氧化铝/方法
198、一种纳米氧化铝空心球/制备方法
199、一种并联法生产氧化铝/工艺方法
200、一种混联法生产氧化铝/方法
201、混联法生产氧化铝过程中排盐过滤机滤饼/处理方法
202、混联法氧化铝生产中过滤机硅渣/处理方法
203、一种氧化铝熟料窑进料烧结方法
204、提高氧化铝工艺性能/进料处理方法
205、用于改进氧化铝工艺特性/进料处理
206、氧化铝粒子

⑻ 氧化铝生产工艺流程

氧化铝的生产工艺流程

从矿石提取氧化铝有多种方法:拜耳法、碱石灰烧结法、拜耳-烧结联合法等。拜耳法一直是生产氧化铝的主要方法,其产量约占全世界氧化铝总产量的95%左右。

1.拜耳法

原理是用苛性钠(NaOH)溶液加温溶出铝土矿中的氧化铝,得到铝酸钠溶液,溶液与残渣(赤泥)分离后,降低温度,加入氢氧化铝作晶种,经长时间搅拌,铝酸钠分解析出氢氧化铝,洗净,并在950~1200℃温度下煅烧,便得氧化铝成品。析出氢氧化铝后的溶液称为母液,蒸发浓缩后可循环使用。

拜耳法的简要化学反应如下:

⑼ 氧化铝中的赤泥产出率是什么

是指每生产一吨的氧化铝产生赤泥的量。

由于生产方法和铝土矿品位的不同,每生产一吨的氧化铝大约要产生 0.5~2.5 吨的赤泥,每吨赤泥还附带有 3~4m3的含碱废液。

赤泥,因其为赤红色泥浆状而得名。赤泥是氧化铝生产过程中产生的非常大废弃物,也是氧化铝生产的非常大污染源。

赤泥依氧化铝生产方法的不同,可分为烧结法、拜耳法和联合法赤泥三种。由于铝土矿的含量丰度不同,国内外氧化铝生产所采取的方法也不同。

影响赤泥沉降分离的因素:

1、矿物的形态:铝土矿的组成和化学成分是影响赤泥浆液沉降、压缩性能的主要因素。铝土矿中夹杂黄铁矿、胶黄铁矿、针铁矿、高岭石等矿物能降低赤泥沉降速度,有利于沉降。高岭石在溶出时生产亲水性很强的水合铝硅酸钠沉淀,因此,它的存在将使赤泥矿的沉降、压缩性能变差。

2、溶出浆液的稀释浓度:在一定的温度下苛性比值相同的铝酸钠溶液,氧化铝浓度低于25g/L或高于250g/L时,都有很高的稳定性,而中等浓度的(70~200g/L)的氧化铝溶液的稳定性较差。由于他们的稳定性的原因,无法直接分解。

3、一般用前一周期的赤泥洗涤液来进行稀释,稀释后溶液稳定性降低使分解速度加快,并且可以使赤泥洗涤液中的碱和氧化铝得以回收,达到较高的分解率,使拜耳法生产的循环效率提高。但如果过度稀释溶液会使其稳定性急剧下降,造成铝酸钠溶液水解,而使赤泥中的氧化铝损失增大。

4、稀释浆液的温度:稀释浆液温度升高,其黏度和密度下降,因而赤泥沉降速率加快。浆料稀释时的温度在很大程度上影响铝酸钠溶液的稳定性,从而引起赤泥中氧化铝损失量的变化。

5、絮凝剂的使用:赤泥沉降分离时,一般都需要添加絮凝剂来改善沉降槽溢流质量和底流的浓稠度,提高沉降速度增加沉降槽的产能和降低生产成本。添加絮凝剂是目前氧化铝生产上普遍采用且行之有效的加速赤泥沉降的方法。

6、良好的赤泥絮凝剂应具备的条件是:絮凝性能良好,用量少、水溶性好;经处理后的母液澄清度高,残留于母液中的有机物不影响后续氢氧化铝的分解;所生成的絮团能受剪切力;经沉降分离后,底流泥渣的过滤脱水性性能好,滤饼疏松;原料来源广,价格低廉等。

阅读全文

与氧化铝生产中赤泥分析方法相关的资料

热点内容
有没有什么好的祛疤方法 浏览:136
奔小康的技巧和方法 浏览:931
小龟王摩托车漏汽油解决方法 浏览:924
加工尺寸检测器具使用方法 浏览:825
小米运动天气在哪里设置方法 浏览:594
食品帽佩戴方法图片 浏览:578
浦公英种植方法 浏览:275
枇杷膏食用方法 浏览:408
眼睛电烧伤用什么方法能治好 浏览:969
简单调漂方法 浏览:68
这8个方法来教你如何进行胎教 浏览:25
高二暑假锻炼方法 浏览:684
网球基本技术动作及训练方法 浏览:792
炎症高怎么治疗方法 浏览:804
自制木制手机支架的制作方法 浏览:778
手机有什么方法开机 浏览:843
电缆绝缘体积电阻率的计算方法 浏览:694
有什么方法减肥快速减肚子 浏览:694
搏击格斗呼吸的正确方法 浏览:879
腰部经络锻炼方法 浏览:501