① 小学数学应用题讲解的主要技巧有哪些
常用的数学应用题解法
常用应用题解题方法
掌握解题步骤是解答应用题的第一步,要想掌握解答应用题的技能技巧,还需要掌握解答应用题的基本方法。一般可以分为综合法、分析法、图解法、演示法、消元法、假定法、逆推法、列举法等。在这里介绍这些方法,主要是帮助同学掌握在遇到应用题时,如何去思考,怎样打开自己的智慧之门。这些方法都不是孤立的,在实际解题中,往往是两种或三种方法同时用到,而且有许多问题,可以用这种方法分析,也可以用那种方法分析。问题在于掌握了各种方法后,可以随着题目中的数量关系灵活运用,切不可死记硬背,机械地套用解题方法。
1.综合法
从已知条件出发,根据数量关系先选择两个已知数量,提出可以解答的问题,然后把所求出的数量作为新的已知条件,
与其它的已知条件搭配,再提出可以解答的问题,这样逐步推导,直到求出所要求的结果为止。这就是综合法。在运用综合法的过程中,把应用题的已知条件分解成可以依次解答的几个简单应用题。小学数学网
例1.一个养鸡场一月份运出肉鸡13600只,二月份运出的肉鸡是一月份的2倍,三月份运出的比前两个月的总数少800只,三月份运出多少只?
综合法的思路是:
算式:(13600+13600×2)-800
=
(13600+27200)-800
=40800-800
=40000(只)
答:三月份运出40000只。
另解:13600×(2+1)-800
=13600×3-800
=40800-800
=40000(只)
例2.工厂有一堆煤,原计划每天烧3吨,可以烧96天。由于改进烧煤方法,每天可节煤0.6吨,这样可以比原计划多烧几天?
解答这道题,综合法的思路是:
算式:3×96÷(3-0.6)-96
=288÷2.4-96
=120-96
=24(天)
答:可比原计划多烧24天
用心解救行了,不要考虑太多
小学的题都不难..
② 语文答题方法与技巧
常用阅读理解答题方法
一般可以概括为下列六个步骤:
· 看标题信息,揣摩记叙类型;
· 抓记叙要素,了解大致内容;
· 理行文线索,分清段落层次;
· 辨叙述方式,领会布局特点;
· 挖中心思想,理解作品意义;
· 析表现手法,以供习作借鉴。
总结多年的经验,在考场上遇到阅读理解类的考试题,一般按以下程序进行较为快捷有效,当然这个程序不光指记叙文阅读,对其他文体的阅读也适用。具体过程是:阅读理解题目——阅读文章——看清文章后面的试题——按试题要求回头有重点地再看原文——答题。
一通读全文,把握文章内容,理清脉络。答题时切忌文章都没完整的阅读就匆匆忙忙地写答案。最好先把文章从头到尾通读一遍,对文章有一个整体的认识和理解。
二弄清题意,确定解决问题的阅读空间。在通读全文的基础上再去浏览所设试题,经过初步的思考,确定解决问题的阅读空间。
三从文章中直接提取信息。有些试题可以用文中的原话来作答,这时就可以“从文章中直接提取信息”,回答问题。
四挖掘句子的隐含信息和深层含义。有些试题则需要结合全文内容,挖掘句子的隐含信息,经过缜密的思考,寻求完美的答案。
五组织语言规范答题,认真书写。答案基本考虑成熟之后,还需要注意一下表述的语言。语言简洁明了,能达到事半功倍的效果;啰嗦重复,不得要领,往往会出力不讨好。
从长远角度考虑,语文阅读理解能力的提高非一日一时之功。它需要在长期的学习过程中多关注最新信息,多阅读名家名着,开阔视野,增加实践,培养对语言的品评、赏析、感悟的能力,培养学习语文、陶冶性情的兴趣,在多读深思中进入学习语文的崭新境界。
有些同学做阅读题时,全凭自己的感觉答题,其实,答阅读题也是有技巧可寻的。以下是针对《考试说明》,提出的几种答题技巧:
一、看分值答题法:
可以从试题的分值中推测答题的要点。如一道题给的分值是3分,答案可能就有3个要点,一个要点一分,所以从试题所给的分值中,我们就能推测答案的要点和要求的字数。
例如:陕西省中考题:目前一般有哪几种消暖雾的方法?文中提到的咱们陕西的消雾作业属于其中哪一种?(3分)
答案是:3种。“加热法”、“吸湿法”、“人工搅动混合法”。文中提到的属于第二种。
二、用原文答题法:
做题要牢牢地记住:“答案不在你的脑子里,答案只在原文中。”无论在任何情况下作答,既要体现个性和独特见解,又要较好地忠实于作者的主张。
1.尽量利用原文语句。注意摘取原文
离开了原材料恐怕谁也答不准,答不全。因此,准确解答阅读题最重要最有效的方法是在原文中找答案。大多数题目在文章里是能够抠出答案的。当然,找出的语句不一定能够直接使用,还必须根据题目要求进行加工,或摘取词语或压缩主干或抽取要点或重新组织。即使是归纳概括整段整篇文意也必须充分利用原文。这里,提供十六字诀的解题方法供你参考。
(1)、字不离词。汉语中一词多义现象相当普遍。在理解词语中某个字的意思的时候,必须把它放到这个词语中去考察,即字不离词,这样才能准确的理解这个字的意思。如:
道听途说,道,指道路;志同道合,道,指道理
(2)、词不离句。在综合阅读题中,常常要求理解词语在上下文中的含义和作用。这类要求有以下几方面情况:
一词多义。这在文言文中是常见的。如:策之不以其道,策,驱使;执策而临之,策,马鞭
在现代文中则多表现为语境义,这些,都应根据具体的语言环境即句子本身去推断它的意思,也就是词不离句。如:“见教”一词的本意是客套话,指教(我)的意思。它在不同的语言环境中则表现为不同的意义
③ 高中解答数学题的 方法 有哪些
我觉得,高中数学包含的内容多,板块多,又各自交叉,形成一个庞大的知识结构体系。 首先要把一些基本的公式、单独的知识点弄熟练,把一些难点、易错点、一些公式的适用范围,记清楚,能举一反三,就好了。 一些基本的方法: (1)比如均值不等式的运用 (2)比如坐标系的运用, (3)分析法是从所求证的结果出发,逐步推出能使它成立的条件,直至已知的事实为止;分析法是一种“执果索因”的直接证法。 (4)综合法是从已经证明的结论、公式出发,逐步推出所要求证的结论。综合法是一种“由因导果”,叙述流畅的直接证法。 (3)分析法、 综合法是证明数学问题的两大最基本的方法。分析法“执果索因”的分析方法,思路清晰,容易找到解题路子,但书写格式要求较高,不容易叙述清楚,所以分析法、综合法常常交替使用。分析法、 综合法应用很广,几乎所有题都可以用这两个方法来解。 (5)反证法 反证法是数学证明的一种重要方法,因为命题p与它的否定非p的真假相反,所以要证一个命题为真,只要证它的否定为假即可。这种从证明矛盾命题(即命题的否定)为假进而证明命题为真的证明方法叫做反证法。 反证法证明的一般步骤是: 反设:假设命题的结论不成立,即假设结论的反面成立; 归谬:从命题 解答高中数学题的10种方法 方法一、“内紧外松”,集中注意,消除焦虑怯场 集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。 方法二、调理大脑思绪,提前进入数学情境 考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。 方法三、沉着应战,确保旗开得胜,以利振奋精神 良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。 方法四、“六先六后”,因人因卷制宜 在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。 1.先易后难。就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。 2.先熟后生。通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。 3.先同后异。先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力, 4.先小后大。小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗 5.先点后面。近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面 6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。 方法五、一“慢”一“快”,相得益彰 有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。 方法六、讲求规范书写,力争既对又全 考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分” 也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。 方法七、确保运算准确,立足一次成功 数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。 方法八、面对难题,讲究方法,争取得分 会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。 1.缺步解答。对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。 2.跳步解答。解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。 方法九、以退求进,立足特殊 发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。 方法十、执果索因,逆向思考,正难则反 对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。 希望能帮到你,祝学习进步。