❶ 矿产资源/储量估算
9.4.1 方法的选择
岩金矿的资源/储量估算,应根据矿床地质特征、矿体规模和形态、勘查工程布设情况、勘查阶段等因素选择。根据岩金矿勘查实践,比较适宜的估算方法有传统资源/储量计算方法(如断面法、算术平均法、地质块段法等)、地质统计学资源/储量计算方法、最佳结构曲线断面积分资源/储量计算方法(简称SD法)等。对资源/储量估算必须选择有代表性的矿体或块段,采用其他方法估算对比,以检验所选择的矿产资源/储量估算方法的可靠性。
9.4.2 块段划分
利用传统资源/储量计算方法(如断面法、算术平均法、地质块段法等)时,单个块段原则上以两剖面线间上、下两个工程控制的范围划分,避免因块段过大而造成估算结果的随机性大。
9.4.3 提倡和鼓励运用新技术和新方法进行资源/储量估算,对于资源/储量估算所用的新技术、新方法及新研制的软件,应是经过有关部门认定或是工业部门经过应用,实践证实是可行的。
❷ 矿产资源/储量估算参数
9.5.1 面积测定
面积测定可采用几何图形法、求积仪法、坐标计算等多种方法求得。面积测定时,不得少于两次,取满足规定误差中要求的两次测量值的平均值为所估算块段的面积。几何图形法要求图形尽可能简单,采用图件的比例尺视矿体规模而定,一般比例尺为1∶1 000。
9.5.2 平均品位计算
平均品位的计算,当样长或影响品位的其他因素不均匀时,以加权平均法求取,当采样长度基本相等或样品品位均匀时,可用算术平均法进行计算。样品中有特高品位时,则应先处理特高品位,再计算平均品位。
特高品位处理:通常单样品位值高于矿床(体)平均品位六至八倍的样品确定为特高品位样。确定特高品位样时,应参照矿体品位变化系数大小来确定,当矿体品位变化系数大时取上限值,变化系数小时取下限值。处理特高品位样前,首先应对被视为特高品位样品的副样进行第二次内检分析,当两次分析结果在允许误差范围内确定为特高品位时,用第一次的结果作为待处理的特高品位值。处理的方法是,用特高品位样在内的块段或单工程(矿体厚大时)平均品位计算结果来代替该样品品位。如果特高品位样品呈有规律分布,且可以圈出高品位样带时,则可将高品位样带单独圈出,计算品位、估算资源/储量,不作为特高品位样品处理。用SD法估算资源/储量时,用削减值代替特高品位,置于原始数据中参与计算。
9.5.3 厚度计算
一般用算术平均法求得,但厚度的选取要视计算方法而定。用纵投影面积时,应计算平均水平厚度;用水平影面积时,应计算平均垂直厚度;用真面积计算时,应计算平均真厚度。对于厚度变化很大的矿床,遇到特大厚度,应先进行特大厚度处理,然后再求平均厚度。当工程分布很不均匀时,可根据影响长度或面积加权。
9.5.4 体积质量(体重)计算
参与资源/储量估算的矿石体积质量(体重)须以实际测定值为依据。应分矿石类型或品级采集体积质量(体重)样。致密块状矿石采集小体积质量(体重)样。小体积质量(体重)样每种矿石类型不得少于30块;松散矿石则应采集大体积质量(体重)样,且不得少于三至四个;裂隙较发育的块状矿石,除按上述数量采集小体积质量(体重)样外,还应采集二至三个大体积质量(体重)样,对体积质量(体重)值进行校正,再参与矿石资源/储量估算。对于湿度较大的矿石,应测定湿度,当湿度天于3%时,体积质量(体重)值应进行湿度校正。
❸ 想知道专家怎计算出地下矿产资源的总重量分毫不差的整数!没有没有误差莫非是已经全部挖出来了称过地磅
算出来的。矿产储量计算是指确定工业上有用的地下矿产的数量。根据地质勘查工作获得的矿床资料,通过计算,以确定有用矿产的数量。
矿产储量计算步骤是:
①在地质勘探或矿山生产勘探过程中,通过地表露头、探槽、浅井、坑道中和钻孔编录取样,以及地球物理测井结果,求得储量计算中需要的各种地质图件及各种数据资料;
②将勘探工程中各项数据资料,按3维空间坐标位置,投放到相应比例尺的地质图件上,并按地质构造规律和工业指标的要求,圈定矿体;
③根据矿体形态和矿石质量分布的特征,考虑勘探工程分布的格局,或采矿场的布局,将矿体分割成大小不同的几何形矿块,用体积公式计算每一矿块的储量,然后汇总而成全矿体和全矿床的储量。
❹ 矿产资源/储量的合理圈定
9.6.1 矿体的外部边界圈定必须按工程从等于或大于边界品位的样品圈起,大于夹石剔除厚度的应从中予以圈出,当矿体的厚度小于最低可采厚度要求时,可按厚度与品位乘积的米·克/吨值圈定。
9.6.2 矿体的连接坚持先连接地质界线,再根据主要控矿地质特征连接矿体,连接矿体一般采用直线,在充分掌握矿体地质规律的情况下,也可以用自然趋势曲线连接,但无论哪种方法,其工程间矿体的厚度不应大于两工程的平均见矿厚度。
9.6.3 当用地断面法、算术平均法、地质块段法等传统的资源/储量计算方法时,在平面、剖面图和投影图上具体圈矿的要求是:单工程一个见矿,相邻工程无矿,以工程间距的1/2楔形外推;当矿体沿走向或倾斜方向在见矿工程外无工程控制时,按工程间距1/4楔形外推;以米·克/吨值圈定矿体边界,不外推。使用沿脉坑道追索和控制矿体时,应该准确使用“无矿段剔除标准”圈矿。当样线平均品位连续低于边界品位,走向长度达到剔除要求时,亦应按工业指标规定上下对应或不对应要求的不同情况,单独圈出,视为非矿地段。
❺ 矿产资源/储量单位
矿产资源/储量的单位,对于不同矿产往往有所不同,还有重量和体积单位之分。多数矿产以重量为计算单位,通常单位为吨 ( t) ,如黑色金属 ( 铁、锰、铬) 、一般非金属( 磷灰石、钾盐、石棉等) 、稀有分散元素 ( 铌、钽、锗等) 、一般有色金属 ( 铜、铅、锌等) ; 稀少的贵金属 ( 金、银等) 常以千克 ( kg) 为单位; 一般建筑材料、石英砂等非金属矿通常只计算体积,单位为立方米 ( m3) 。
一般黑色金属矿产计算到矿石量; 有色金属一般需计算到金属量; 建筑材料一般计算到体积,具体根据规范要求确定。
❻ 矿产资源/储量估算参数平均值的计算
矿产资源/储量估算时,一般要求分矿体或分块段估算。而勘查过程中测定的参数值数量较多,因而要计算出单个工程中整个矿块或矿体乃至整个矿床该参数的平均值(如平均厚度、平均体重、平均品位等)。参数平均值的计算有算术平均、几何平均和加权平均三种方法。
1.算术平均法
此法适用于矿体参数变化较小、测点分布较均,或该参数与其他参数无任何相关关系时,其实质是把每一个测点观测值所起的作用看做是同等的。也就是将所有观测值求和再除以观测点数得出的平均值。
固体矿产勘查技术
式中: 为平均品位; Ci为各个样品的品位值,% ; n 为样品数。
2.几何平均法
在矿点检查、评价或勘探后期,样品数量较少,而样品品位波动又很大时,可采用几何平均数求矿体的平均品位。公式为:
固体矿产勘查技术
式中: C0为矿体平均品位; C1,C2,…,Cn为样品品位; n 为样品个数。
3.加权平均法
当矿体参数变化较大,且测点分布不均或该参数与某一因素有相关关系,则应以这一因素为权数,以加权平均法来确定参数平均值,即每一个测点所起的作用不等。如取样结果发现品位与厚度间有一定相关关系,且厚度变化较大时,则应以厚度为权,加权平均计算平均品位。其计算公式为:
固体矿产勘查技术
式中: 为矿石平均品位,%;Ci为各个样品的品位值,%;mi为各样品所代表的矿体厚度,m。
同理,也可用样品控制长度加权,甚至以样品控制长度和厚度两参数之乘积联合加权。
断面品位可以根据剖面工程见矿长度 ( 厚度) 求得断面上品位平均值; 根据断面参数平均值,加权平均 ( 如以断面面积为权) 可以进一步求得矿块品位平均值、块断加权求得矿体平均品位值。
矿体平均厚度计算: 视资源/储量计算方法而定。用纵投影计算面积时,应计算平均水平厚度; 用水平投影面积时,应计算平均铅垂厚度; 用真面积计算时,应计算平均真厚度。对于厚度变化很大的矿体,遇到特大厚度,应先进行特大厚度的处理,然后再求平均厚度。当工程分布很不均匀时,可根据影响长度或面积加权或用面积比长度求得剖面矿体平均厚度。
矿体平均体重计算: 根据矿石类型或品级分别计算。一般采用算术平均法计算,当体重大小受品位影响时,应检查是否线性相关,并建立体重与品位的线性方程。
❼ 与矿产资源储量估算和报告编制有关的基本概念
周圣华
作者简介:周圣华,中国有色金属矿产地质调查中心,地质处处长,高级工程师,矿产储量评估师。
1 矿产资源储量估算方法
1.1 基本概念
矿产资源储量估算方法,是指矿产资源埋藏量估算过程中,各种参数及其资源储量的计算方法和相应软件的统称。由于矿产资源赋存方式千差万别,开发利用方式也不尽相同,因此,必须要研究适合不同矿种的矿产资源储量估算方法。根据我国矿产资源勘查开发过程中的应用实践,就矿产资源储量估算方法选择的角度,可以将矿产资源划分为三大类:第一类是固体矿产资源,包括金属矿产、非金属矿产和煤;第二类是石油、天然气、煤层气资源;第三类是地下水资源。
1.2 矿产资源储量估算方法的主要种类
关于矿产资源储量估算方法,可以参照由国土资源部储量司组织编着,2000年4月由地质出版社发行的《矿产资源储量计算方法汇编》。
油气方面,用于资源储量估算的方法主要有容积法、物质平衡法、弹性二相法、概率统计法(亦称蒙特卡洛法,Monte-Carlo)以及产量递减法(计算最终可采储量);地下水方面,目前主要采用数值法。
固体矿产方面,根据国内的应用实践,可以分为三大类:
1.2.1 传统方法
根据计算单元划分方式的不同,又可分为断面法和块段法两种。这两种方法是我国几十年来矿产资源勘查、开发过程中应用最为广泛的两大基本方法。
1.2.1.1 断面法(亦称剖面法)
依据断面之间的相互关系,进一步分为平行断面法、不平行断面法。
平行断面法,依据断面的方向,可分为:水平断面法和垂直断面法。水平断面法适用于利用水平中段计算资源储量,多用于坑道控制的矿体以及露天开采矿床的资源储量计算。垂直断面法,依据断面位置的不同,可分为勘探线剖面法和线储量计算法。勘探线剖面法,要求用于资源储量计算的勘查工程(包括探槽、钻孔、坑道等)均位于勘探线剖面上,或偏离距离在允许范围内。线储量计算法,是以勘探线间的平分线为资源储量计算边界,逐个单元计算并累加,这种方法主要用于砂矿的资源储量计算。
平行断面法中,每个单元的资源储量计算方法主要有:梯形公式法、截锥公式法、楔形公式法、锥体公式法、似柱体公式法等;
不平行断面法:主要有普逻科菲耶夫计算法、佐洛塔列夫计算法。这两种方法,由于计算较为复杂,已经很少应用。
1.2.1.2块段法
依据块段划分原则的不同,可进一步分为:地质块段法、开采块段法、最近地区法、三角形法、等值线法、等高线法等。
地质块段法,是勘探阶段计算资源储量较为常用的一种方法。其基本做法是将矿体投影到某个方向的平面上,按照矿石类型、品级、地质可靠程度的不同,并根据勘查工程分布特点,将其划分为若干个块段,分别计算资源储量并累加。这类方法,通常用于勘查工程分布比较均匀、勘查手段较为单一(以钻探为主)、勘查工程没有严格按照勘探线布置的矿区的资源储量计算。地质块段法按其投影方向的不同,还可分为垂直纵投影法、水平投影法和倾斜投影法。垂直纵投影法,适用于陡倾斜的矿体;水平投影法,适用于产状平缓的矿体;倾斜投影法,通常选择矿体倾斜面为其投影方向,理论上讲,适用中等倾斜矿体,但因其计算过程较为繁琐,一般不常应用,多以垂直纵投影法或水平投影法代替。
开采块段法,适用于以坑道为主要勘探手段的矿区资源储量计算。基本做法是以坑道(包括部分钻孔)为边界划分大小不同的块段,分别计算资源储量并累加。该方法多用于生产矿区、基建矿区“三级”矿量的计算。
最近地区法(亦称多角形法),是根据矿体资源储量计算平面图(水平投影图或垂直纵投影图),以每个勘查工程为中心,取其与各相邻工程间距的1/2(有时根据地质规律采用内插法确定距离)为边界点,将矿体划分为一系列紧密连接的多边形单元,再依据每个单元中心工程的资料,分别计算其资源储量并累加。这种方法,对于工程少、分布不均,各工程揭露的厚度、品位变化大,矿体形态复杂的情况,为了充分考虑各工程参数的影响范围时才使用,一般不采用此方法。
等值线法,是利用矿体等厚线图或厚度 品位等值线图,分别计算各等值线范围内的体积、品位和资源储量。其优点是可以借助上述图件,形象地反映矿体形态、厚度、有用组分分布及变化规律;但缺点是制图复杂,特别是对于含有多种有用组分的矿区,必须按每种组分分别制图,所以,实际工作中也不常用。等高线法与之类似。
1.2.1.3 地质统计学方法
地质统计学方法,亦称克立格法,是由南非地质学家克里格创立的。目前,西方国家在矿业筹资、股票上市、矿业权交易过程中,基本都是采用这种方法评价矿产资源,估算矿产资源储量;国际上一些较大的矿业公司、勘查公司以及矿业咨询公司,都已研制或拥有以地质统计学原理为基础的矿产资源评价软件,并已陆续进入我国矿业领域。
地质统计学方法,是以区域化变量理论为基础,以变异函数为主要工具,对既具有随机性、又具有结构性的变量进行统计学研究的一种方法。这种方法的使用,不仅提高了矿产资源评价的科学性,而且,也大大提高了矿产资源评价的效率;对于实行市场经济体制的国家,为使矿产资源评价及时反映市场因素的变化,实现矿产资源储量的动态管理,具有尤其突出的优越性。
地质统计学方法是一套方法系统。目前,在我国已有认识并获得应用的主要有:二维及三维普通克立格法、二维对数正态泛克立格法、二维指示克立格法、二维及三维协同克立格法以及三维泛克立格法。
1.2.1.4 SD法(最佳结构曲线断面积分储量计算法)
SD法是在原国家科委和地矿部支持下,我国自行研制的一种矿产资源储量计算方法。该方法以断面构形为核心,以最佳结构地质变量为基础,利用Spline函数和动态分维几何学为工具,进行矿产资源储量的计算。其最具特色的内容是根据SD精度法所确定的SD审定法基础,从定量角度定义矿产资源勘查工程控制程度和资源储量精度。
1.3 矿产资源储量估算方法的管理
目前,我国对矿产资源储量估算方法仍然实行较为严格的管理,除采用传统方法计算资源储量外,采用其他方法或软件,都必须要经过专家鉴定,取得国家资源储量管理部门认可,并予以公告后,方能用于生产实践。
到目前为止,我国经过认可的矿产资源储量计算方法和软件(固体矿产方面)主要有:
(1)KPX2.1版本(固体矿产勘查评价自动化系统)(中国地质大学(武汉)研制);
(2)《中文地勘系统软件》(CGES)(武警黄金指挥部从加拿大引进并汉化);
(3)三维普通克立格法程序系统(北京科技大学研制)
(4)GXPX交互式固体矿产勘查微机评价系统(福建省区调队研制);
(5)地质统计学在薄脉状金矿床品位优化估算系统(武警黄金研究所研制);
(6)SD法矿产资源储量计算软件(2.0版)(北京恩地科技发展有限责任公司);
(7)Minesight软件(2.5版)(美国Minetec公司研制,中国黄金总公司北京金迈泰克科技发展有限公司中国全权代理);
(8)Datemine软件(5.0版)(英国矿物工业计算有限公司研制,北京有色冶金设计总院引进)。
2 矿床工业指标
2.1 基本概念
矿床工业指标,是评价矿产资源储量质量特征的基本准则,是衡量矿床工业价值的重要依据,是圈定矿体、计算资源储量的基本参数。不同矿区、不同矿种,都有其特定的合理的工业指标。某一矿区矿床工业指标的确定,往往要综合考虑多种因素,包括政府方面的经济政策、资源政策、环保政策;市场方面(国内、国外)的供需情况、产品价格情况;宏观方面的资源形势、社会开发利用和加工技术水平;微观方面的资源产出特点、加工技术条件、可能的开发方式以及产品方案,等等。因此,某一具体矿床的工业指标,必须在一定勘查工作程度和相应的矿石选冶试验基础上,经过较为详细的技术经济论证和综合研究,方能合理确定。
2.2 矿床工业指标的主要内容
矿床工业指标,通常包括两个方面的内容,一是矿石质量方面的要求,一是开采技术条件方面的要求。就金属矿产而言,矿石质量方面的要求主要有:边界品位、最低工业品位(单工程最低工业品位、块段最低工业品位、矿床最低工业品位)、有害组分最大允许含量、有益组分最低含量(综合评价指标)。开采技术条件方面的要求主要有:最低可采厚度、夹石剔除厚度;对于薄脉型矿体,还包括最低工业米百分值;对于露采矿床,还有剥采比、边坡角、最低露采境界等方面的要求。
此外,针对某些矿产的特殊情况和要求,还可提出其他方面工业指标的要求;针对克里格方法,可以采用单项品位指标;针对同体共生的贵金属或有色金属矿床,可以下达综合品位指标。
2.3 矿床工业指标的管理
按照现行管理制度,凡依据矿组(种)规范推荐的一般工业指标,无论勘查工作程度高低,只能估算资源量;需要提交基础储量和储量的,必须在完成一定程度选冶试验的基础上,由具有资质的矿山设计单位进行技术经济论证并出具专门材料,经业主认可批复后,方能作为估算基础储量和储量的依据。
3 矿石选冶试验程度
目前,应继续执行1987年全国储委、国家计委、国家经委发布的《矿产勘查各阶段选冶试验程度的暂行规定》(储发[1987]27号文)。
选冶试验程度划分为五种:可选(冶)性试验、实验室流程试验、实验室扩大连续试验、半工业试验、工业试验。
各勘查阶段的选冶试验程度要求:
(1)预查阶段:类比评价即可。
(2)普查阶段:一般矿产类比;组分复杂、难选及尚无成熟经验的矿产,要求做可选(冶)性试验或实验室流程试验。
(3)详查阶段:易选矿产:类比;一般矿产:做可选(冶)性试验或实验室流程试验;难选矿产:要求做实验室扩大连续试验。
(4)勘探阶段:易选矿产:做可选(冶)性试验或实验室流程试验;一般矿产:做实验室流程试验或实验室扩大连续试验;难选矿产:要求做半工业试验;建设大型矿山的,应当做工业试验。
4 矿体的圈定
矿体的圈定是资源储量估算较为关键的环节。理论上讲,矿体的圈定必须遵循地质规律,决不允许“见矿连矿”;实际上,矿体圈定是否合理,是否符合客观实际,不仅与对目的矿区地质规律的认识、研究程度有关,而且与地质工作者的经验和水平也有很大关系。根据我国几十年地质勘查工作经验总结和有关规定(原国家矿产储量管理局1991年国储[1991]164号文),结合现行矿种规范的有关规定,传统方法估算矿产资源储量过程中的矿体圈定,大致需要掌握如下原则:
4.1 单工程矿体边界的圈定
(1)依据边界品位和夹石剔除厚度指标初步确定矿体边界与矿体中的夹石;
(2)依据单工程最低工业品位和最低可采厚度指标,调整矿体边界和矿石与夹石的界限;
(3)关于“穿鞋戴帽”问题。所谓“穿鞋戴帽”,是指中部品位较高的矿体,在单工程圈定边界时,将上、下部介于边界品位与最低工业品位的样品带入的现象。通常的做法是允许带入相当于“夹石剔除厚度”以内的样品;当连续出现多个介于边界品位与最低工业品位的样品,并且厚度大成片出现时,应单独圈出;
(4)多组分矿体的圈定,可采用“混圈法”。即单工程中只要有一种组分达到边界品位和最低可采厚度要求,就可圈入矿体;若有两种或两种以上组分达到最低工业品位要求,并在整个矿体或矿床中具有一定规模,即为共生矿;未能达到边界品位要求的,但能够回收利用的,即为伴生矿。
4.2 矿体的连接
4.2.1 相邻见矿工程之间的矿体连接
(1)相邻见矿工程之间的矿体,一般采用直线对应连接;在有充分的地质依据时,也可采用曲线连接;
(2)采用曲线连接时,矿体任意位置的厚度,不得大于相邻工程实际控制的矿体最大厚度;
(3)当相邻见矿工程之间,出现破矿断层或岩脉时,应依据地质规律合理连接。
4.2.2 矿体的有限外推
当位于某一地质可靠程度对应网度范围内的两个相邻工程,一个见矿,一个未见矿时,矿体的圈连称为有限外推。
(1)当矿体长度与厚度存在正相关关系并经过足够的统计资料证实时,可以根据见矿工程控制的实际厚度,按照比例外推;
(2)无规律可循时,一般按工程间距的1/2尖推或1/4平推;当边部工程存在矿化现象(工程品位在边界品位的1/2以上)时,则可按工程间距的2/3尖推或1/3平推;
(3)见矿工程为米百分值或米克吨值工程时,一般不得外推;但对于薄脉型矿体,则可酌情外推。
4.2.3 矿体的无限外推
当见矿工程之外没有工程控制,或未见矿工程距离见矿工程较远(距离大于相应地质可靠程度对应网度)时,矿体的圈连称为无限外推。无限外推时,若矿体长度与厚度之间无规律可循,一般按相应地质可靠程度所对应网度的1/2尖推或1/4平推。
4.3块段的划分
块段是资源储量计算的基本单元,块段划分是否合理直接影响资源储量估算的精度。一般情况下,块段划分应当把握如下几项原则:
(1)不宜过大,也不宜过小。一般沿矿体走向上以两相邻勘探线为限,倾向方向上以两相邻工程连线为界;
(2)同一块段内,矿体要连续,产状要稳定;需要分别计算资源储量时,矿石类型、工业品级要相同;
(3)同一块段的地质可靠程度必须相同。
5 矿产资源储量估算中主要参数的计算
5.1 矿体厚度的计算
矿产资源储量估算过程中,常用到三种厚度:水平厚度、垂直厚度、真厚度。选取那种厚度,视估算方法而定。采用纵投影面积时,应计算平均水平厚度;采用水平投影面积时,应计算平均垂直厚度;采用真面积时,应计算平均真厚度。
平均厚度,一般采用算术平均法计算,当工程分布很不均匀或厚度变化很大时,应当采用影响长度或面积加权计算。
5.2 平均品位的计算
矿产资源储量估算过程中,常需要计算单工程平均品位、块段平均品位和矿体平均品位。当采样长度变化不大,品位变化比较均匀时,可以采用算术平均法计算。当采样长度变化大,或品位很不均匀时,需要采用加权平均法计算;计算单工程平均品位时,应当采用样品长度加权;计算块段平均品位时,应当采用矿体截面面积加权;计算矿体平均品位时,应当采用块段投影面积加权。当矿区勘查工作程度低、样品数量较少、品位变化又较大时,应当采用几何平均数法求取矿体的平均品位。
5.3 特高品位的确定与处理
特高品位的存在,对矿产资源储量的估算结果影响很大。特别是在一些贵金属和有色金属矿床中,特高品位会经常出现,若不予处理,将会使矿产资源储量估算结果产生严重偏差。当有怀疑特高品位存在时,首先应对副样进行第二次分析,如果第二次分析结果在允许误差范围内时,再作特高品位判断(确定特高品位下限值)。
特高品位下限值的确定方法很多。克立格法和SD法,采用统计学方法,确定过程比较复杂;也可以采用经验法,比较简单。根据国储[1991]164号文的有关规定,对于有色和贵金属矿产,特高品位的下限值,一般可确定为矿体平均品位的6~8倍,矿体品位变化系数大时,取上限值;变化系数小时,取下限制。特高品位处理时,通常不要使其影响范围过大,以用特高品位所影响的块段平均品位代替为宜;当矿体厚大时,也可以用特高品位所在的单工程平均品位代替。
特高品位处理后,单工程平均品位、块段平均品位以及矿体平均品位均须重新计算。
5.4 体重的计算
体重是矿产资源储量估算的一项重要参数,必须认真对待体重样的采集和计算。
小体重样的采集,一方面,要注意样品的代表性,包括空间分布的均匀性和矿石类型、品位区间上的代表性;另一方面,要保证样品的数量,通常主要矿石类型的小体重样品不应少于30个,确因样品有限无法保证数量时,应尽量采集与矿体平均品位接近,并且矿物组成、结构构造等矿石特征代表性好的小体重样品。
在测定小体重的同时,为了评价其代表性,一般应作化学分析;湿度较大的矿石,应同时测定湿度;对于松散、多孔、裂隙发育的矿石,应采集少量大体重样(规格0.5m×0.5m×0.5m),测定大体重。
矿产资源储量估算过程中,一般采用矿区平均体重值统一参与计算。矿区平均体重,通常在经过样品代表性论证和取舍后,采用全区有效小体重的算术平均法求取;对于体重与矿石类型或品级存在相关关系的情况,应根据各矿石类型或相应品级在全矿区所占比例,合理选择参与计算的小体重样品后,才能计算矿区平均体重;对于松散、多孔、裂隙发育的矿石,应采用大体重进行校正;湿度大于3%时,应进行湿度校正。
需要分矿石类型估算资源储量时,平均体重应按不同矿石类型分别计算。当矿区矿石类型较为单一、体重变化也不大时,可以采用全矿区所有样品的算术平均值,参与资源储量的估算。
6 矿产资源储量报告的基本形式
6.1 矿产勘查报告
主要用于矿产勘查工作的阶段性总结或最终总结。报告编写执行《固体矿产勘查/矿山闭坑地质报告编写规范》(DZ/T 0033—2002)中附录A“固体矿产地质勘查报告编写提纲”;采用地质统计学方法估算资源储量的,报告资源储量估算部分的编写执行附录B“运用地质统计学方法估算资源/储量的固体矿产地质勘查报告中储量估算部分的编写提纲”。
6.2 矿山闭坑地质报告或矿山阶段性资源储量注销报告
主要是指在矿山关闭或阶段性关闭环节注销资源储量而编制的专门报告。报告编写执行《固体矿产勘查/矿山闭坑地质报告编写规范》(DZ/T 0033—2002)中附录C“固体矿产矿山闭坑地质报告编写提纲”。
6.3 矿产资源储量核实报告
主要是指矿山企业改制、矿权转让以及矿业企业上市过程中,需要对矿山占用的矿产资源储量进行核实而专门编制的报告;也包括建设项目压覆矿产资源储量而需要编制的报告。报告编写执行2007年2月6日国土资源部发布的《固体矿产资源储量核实报告编写规定》(国土资发[2007]26号)。
6.4 矿产资源储量检测地质报告
主要是为适应资源储量登记统计、资源储量动态监测以及矿权管理的需要,针对小矿、民采矿以及砂石粘土矿等需要专门编制的报告。报告编制目前尚无统一要求,1996年原地矿部资源局发布的《简测计算占用矿产储量的若干说明》中涉及部分要求,大部分省(自治区、直辖市)对简测地质报告的编写已作了相应规定,可参照执行。
7 矿产资源储量报告的完备程度
按照现行规定,完整的矿产资源储量报告应当包括如下主要内容:
7.1 文字报告
7.2 主要附件
(1)矿业权权属证明材料;
(2)勘查资格证书复印件;
(3)出资人与勘查单位签订的勘查合同或勘查协议;
(4)矿床工业指标论证材料以及相应批件;
(5)矿石选冶加工技术试验报告;
(6)矿山建设可行性研究报告或预可行性研究报告以及相应批件;
(7)其他有关专题报告。
7.3 主要附图
(1)矿区或矿床地质地形图(1:1000~1:2000);
(2)取样平面图(包括地表取样平面图、中段取样平面图);
(3)钻孔柱状图以及探槽、坑道素描图;
(4)勘探线剖面图或资源储量计算剖面图;
(5)矿体纵投影图或水平投影图;
(6)其他需要的图件。
7.4 主要附表
(1)基本分析结果表以及化学全分析结果表;
(2)样品分析内检、外检结果表;
(3)钻探工程质量评定表;
(4)小体重测定结果表;
(5)单工程矿体平均品位、体重计算表(槽探、坑探、钻探);
(6)单工程矿体厚度计算表(水平厚度或垂直厚度、真厚度,槽、坑探与钻探分别造册);
(7)块段平均品位、厚度、体重计算表;
(8)块段(或剖面)面积计算表;
(9)块段资源储量计算表;
(10)矿体资源储量计算表;
(11)矿区资源储量计算表;
(12)其他需要的表格。
❽ 矿产资源价值计算方法研究回顾
此文原载《华北地质经济管理通讯》1994年第2期
我国关于矿产资源价值问题的讨论已有十几年的时间,逐渐形成两种观点,即有价观和无价观。有价观认为,矿产资源是一种有用的耗竭不可再生的稀缺性资源,其有用性决定它有使用价值,人类为发现它的存在而投入的勘探劳动及由稀缺性引致的供需矛盾决定了矿产资源价值的大小。无价观认为,矿产资源是天然形成的,未经人类劳动的过滤,它的存在及用途大小只有质量上的差异,与价值形成无关,因此它没有价值。在此,我们首先肯定矿产资源是有价值的,而且其价值可以按一定的规则、公式计算。
关于矿产资源价值的测算,从时间上讲始于1982年,1986年、1990年、1991年、1992年又从不同侧面进行过深入研究。1993年8月召开的关于进行矿产探明储量潜在价值计算工作会议,从计算范围、方法、参数选择上作了明确规定,并将此作为一项正常的年度工作;从研究内容上,由潜在价值扩展到潜在产值、潜在净值,甚至与国外的对比;计算范围由原来的45种扩大到近200种。下面我们按时间顺序分别作一简要的回顾介绍。
1 1982年地质工作现代化研究中的矿产储量价值计算
1982年地矿部原地矿司和资料局在作地质工作现代化研究中,按照矿产资源潜在价值=探明储量(A+B+C+D)×矿产品价格的公式测算了世界100多个国家探明的45种主要矿产(与现在所说的45种主要矿产出入不大,其中能源矿产4种,金属矿产21种,非金属矿产20种)的储量价值,得出世界主要国家的45种主要矿产总价值为74.7万亿美元,其中能源矿产占72%,金属矿产占16%,非金属矿产占12%的结论,与矿产总值列前十位的国家相比的结果是:
第一,我国已探明矿产储量价值占第三位,仅次于苏、美(苏、美、中分别为13万亿、12万亿、11万亿美元)。
第二,从国土单位面积矿产储量价值丰度上看,英国、沙特阿拉伯、南非和伊朗居先,我国次于美国居第六位(英、沙、南、伊、美、中分别为1260万、230万、180万、154万、132万、114万美元/平方千米)。
第三,按人口平均,沙特阿拉伯、澳大利亚、加拿大居先,我国居末位。最高的沙特阿拉伯为62.58万美元/人,而我国仅1.19万美元/人,相差50多倍。
2 1986年地矿部提出《我国四十五种主要矿产单位储量的资源潜在价值基本参数表》
1986年,地矿部原计划司为统一计算矿产资源的潜在价值,考核地勘工作经济效益,会同原资料总局、地矿司和政研室编制了《我国四十五种主要矿产单位储量的资源潜在价值基本参数表》。参数表列出了45种主要矿产的回采率、选矿回收率、国内矿产品价格(1985年价格)及利用单位储量潜在价值计算矿产储量潜在价值的公式,即矿产储量潜在价值=探明储量(A+B+C)×单位储量潜在价值;单位储量潜在价值=矿产品价格×矿产储量总回收率(总回收率:回采率×选矿回收率)。
按上述参数及计算公式测算得知,截至1985年,我国探明的45种主要矿产的潜在价值为20万亿元人民币。
3 1990年利用耗用储量矿产价格计算矿产资源潜在价值
这是地矿部综合计划司和直管局委托部经研院和定额队共同开展的《地质工作经济社会效益指标的建立和实用性研究》中的一个专题报告提出的计算方法。研究者认为:矿产资源潜在价值=矿产探明保有储量(A+B+C)×矿产品价格×耗用储量矿产价格系数,其中耗用储量矿产价格系数因矿产品加工深度不同及矿产储量计量单位的差异有4种形式,即精矿产品金属价、精矿产品矿石价、原矿产品金属价和原矿产品矿石价,并用5种方法计算了耗用储量矿产的价格系数。由于公式十分繁琐,这里不作详细介绍。
研究者在广泛收集了1987年、1988年我国矿产品采、选技术参数、矿产品价格基础上,测算出68种矿产1988年保有工业储量的潜在价值为33万亿元人民币。
4 1991年开展的矿产资源潜在净值的计算
这是在“矿产资源核算及纳入国民经济核算体系”研究基础上开展的。研究者认为,矿产资源潜在净值是目前技术经济条件下已证实的经济可采资源扣除勘查、开发全部成本后的净价值。计算公式为:
矿产资源潜在净值=储量规模(A+B+C)×资源净价×资源综合回收率。
这里,资源净价是以国际矿产品市场价格为基础扣除矿山采、选(冶)成本及利润和勘查成本后得出的。
资源综合利用率=采矿回收率×选矿回收率×冶炼回收率
据此公式,研究者计算出我国1988年42种主要矿产储量的潜在净值为3.5万亿美元。
5 1992~1993年开展的全矿种探明储量潜在价值的计算
这次活动是按照朱训部长的指示开展的。首先总结了前几次方法的优缺点,而后参考有关文献确定了矿产储量潜在价值的涵义及计算方法。认为某种矿产探明储量的潜在价值,是指该种矿产探明储量按其初级矿产品价格折算的价值。这一指标不扣除矿产资源的采、选回收率及其勘查和开发的成本,是假定探明储量可利用部分完全采取时的总产值。这种潜在价值仅是国家物质财富的源泉,是未来矿业开发总产值的基础。在讨论中一致认为,潜在价值包含三个层次:潜在总值、潜在产值和潜在净值。潜在总值即矿产资源的潜在价值,计算公式为:
V1=R1×P×g×k
式中:
V1——矿产储量潜在总值;
R1——矿产探明储量(A+B+C+D);
P——矿产品价格;
g——品位系数(矿产储量平均品位/矿产品品位);
k——统一折算系数。
潜在产值的计算公式为:
V2=R2×P
式中:
V2——潜在产值;
R2——可采储量(探明储量扣除设计损失的储量);
P——矿产品价格。
潜在净值的计算公式为:
V3=V2-C1-C2-C3-V0
式中:
V3——潜在净值;
V2——潜在产值;
C1——矿山投资;
C2——生产成本;
C3——各项税费;
V0——投资收益。
在确认了矿产资源潜在价值的三个层次之后,计算出我国1991年探明的203种矿产资源中的198种矿产储量的潜在总值为180万亿元人民币,其中探明保有工业储量(A+B+C)的潜在总值为60万亿元人民币。
作为这次活动的延续,1993年9月由地矿部资源司组织召开了“矿产资源潜在价值研讨会”,会议期间肯定了这一计算方法的全面、适用性的同时,与会代表按统一的品位系数、矿产品价格(1990年不变价)及调整系数,计算了各省的探明矿产储量潜在价值。地矿部要求从1993年起,每年对全国和各省(区、市)的45种主要矿产新增探明储量和保有储量的潜在价值进行一次计算;每5年对全部矿产新增探明储量和保有储量的潜在价值进行一次计算;同时根据矿产资源保证程度论证的结果,对45种主要矿产的可供规划利用的储量潜在价值进行一次计算。计算结果连同该年度矿产储量表一起报部。
经过前述5次的修改、完善、深化,我国关于矿产资源潜在价值的计算方法日臻完善,使之能够更好地综合反映我国或某一地区的矿产资源国力,比较矿产勘查的工作业绩。但我们也不能就此满足,现在计算方法还有待实践检验并完善,计算参数还有很多不尽人意的地方,操作上还有待改进。矿产资源潜在价值的研究、测算与应用,对促进我国矿产资源的管理由实物型向价值型转变具有重大意义,是矿产资源核算并纳入国民经济核算体系的重要技术基础。因此,我们应在开展这方面工作时总结经验,不断完善矿产资源潜在价值的计算方法体系。
❾ 如何估算矿产资源储量
矿产资源储量估算方法
估算方法,是指矿产资源埋藏量估算过程中,各种参数及其资源储量的计算方法和相应软件的统称。由于矿产资源赋存方式千差万别,开发利用方式也不尽相同,因此,必须要研究适合不同矿种的矿产资源储量估算方法。矿产资源划分为三大类:第一类是固体矿产资源,包括金属矿产、非金属矿产和煤;第二类是石油、天然气、煤层气资源;第三类是地下水资源。
据计算单元划分方式的不同,又可分为断面法(亦称剖面法)和块段法两种。
断面法进一步分为平行断面法、不平行断面法。
平行断面法又分为:水平断面法和垂直断面法。
垂直断面法,又分为勘探线剖面法和线储量计算法。
❿ 矿产资源/储量估算的一般原则
9.2.1 矿产资源/储量估算应按矿体(层)、矿产资源/储量类别、地质可靠程度、工业类型(高岭土)、矿石属性(膨润土)、品级分块段分别计算。对砂质高岭土,尚需分别计算其淘洗精矿量。
9.2.2 估算的矿产资源/储量是勘查的实有矿产资源/储量,应扣除采空区的矿产资源/储量。对禁采区应严格按有关规定单独计算。
9.2.3 对具有工业价值的共生矿产,伴生组分(包括具工业指标的尾矿)应分别进行矿产资源/储量估算。
9.2.4 参加矿产资源/储量估算的各项参数应根据实测数据,且具代表性。工程质量和其他基础资料的质量,应符合有关规范、规程和规定的要求。
9.2.5 矿石体积质量(体重),对硬质矿石一般应为自然状态下的小体积质量(体重);对于软质、松散状的矿石应用于小体积质量(体重);当小体积质量(体重)样难采或缺乏代表性时,可采用大体积质量(体重)代替。
9.2.6 矿石和淘洗精矿矿产资源/储量估算以万吨为计算单位。