① 分數簡便計算的竅門和技巧
分數計算是小學計算部分的重要部分,也是小升初競賽的常考內容。對於分數的運算,除了掌握常規的運演算法則外,還應該掌握一些特殊的運算技巧,才能提高運算速度,解答較難的問題。今天小升匯總了分數巧算的五大方法,一起來學習吧!
」
分數運算的技巧主要表現在兩方面:一是,所有的整數、小數計算技巧全都可以在分數的巧算上加以應用,例如乘法的運算定律、提取公因式、字母替換等常用方法;二是,分數簡算中獨有的方法,包括分數裂項、整體約分法等。
湊整法
與整數運算中的「湊整法」相同,在分數運算中,充分利用四則運演算法則和運算律(如交換律、結合律、分配律),使部分的和、差、積、商成為整數、整十數...從而使運算得到簡化。
改順序
通過改變分數式中的先後順序,使運算算簡便。常見有以下幾種方法:
01加括弧性質
在一個只有加減法運算的算式中,給算式的一部分添上括弧,如果括弧前面是加號,那麼括弧裡面的運算符號都不改變;如果括弧前面是減號,那麼括弧裡面的運算符號都要改變,即加號變減號,減號變加號。用字母表示:
a+b-c=a+(b-c)
a-b+c=a-(b-c)
a-b-c=a-(b+c)
02去括弧性質
在一個有括弧的加減法運算的算式中,將算式中的括弧去掉,如果括弧前面是加號,那麼去掉括弧後,括弧裡面的運算符號都不改變;如果括弧前面是減號,那麼括弧裡面的運算符號都要改變,即加號變減號,減號變加號。用字母表示:
a+(b-c)=a+b-c
a-(b+c)=a-b-c
a-(b-c)=a-b+c
03分數搬家
在連減或加減混合運算中,如果算式中沒有括弧,那麼計算時,可以帶著符號「搬家」,用「字母」表示:
a-b-c=a-c-b
a-b+c=a+c-b
提取公因式
當幾個乘積相加減,而這些乘積中又有相同的因數時,我們可以採用提取公因數的方法進行巧算。如果乘積中另外幾個因數相加減的結果正好湊成整十、整百、整千、整萬的數,或是是一些比較簡單的數,那麼計算就更為簡便。這種方法叫「提取公因數法」。
01簡單提取法
02創造條件法
對於復雜的分數算式,要根據算式特點,進行一定的轉化,創造條件後再運用提取公因數的方法來簡算。
拆數
一組分數混合運算時,為了能夠「湊整」或湊成比較簡單的數,常常需要先把分數中分子或分母進行拆分,再來進行分組運算。這種巧算方法叫「拆分法」,也叫「分解分組法」。
代數法
在相同數字較多的分數式中,用字母表示式子中的一部分,使運算更加方便。這就是分數式中的代數法。
易錯點糾正
「孩子做分數運算題目,有幾個容易犯的錯誤,家長要注意糾正:
🔼 異分母分數相加減:要先通分,化成相同的分母,再加減,計算結果能約分的要約分。
🔼在計算過程中要注意統一分數單位。
🔼 在比較分數與小數大小時,要先統一他們的表現形式。將分數轉化為小數或者將小數轉化為分數。只有表現形式統一了,才有可能比較大小。分數化成小數的方法:用分子除以分母所得的商即可,除不盡時通常保留三位小數。
② 分數乘法的混合運算和簡便運算
分數乘法的混合運算的運算順序
1. 明確運算順序(分數乘加、乘減混合運算的運算順序同整數乘加、乘減混合運算的運算順序相同)
2. 計算
歸納總結:分數乘法的混合運算,沒有括弧的,先算乘法,再算加減;有括弧的,先算括弧里 面的,再算括弧外面的
③ 六年級上冊一單元分數混合運算簡便方法
運用整數乘法分配律,結合律,交換律能使計算簡便。
④ 分數混合運算求簡便演算法
5/9X(9/5+18)
=5/9×9/5+5/9×18
=1+10
=11
5/9X5/6+4/9÷6/5
= 5/9×5/6+4/9×5/6
=(5/9+4/9)×5/6
=1×5/6
=5/6
13/14-15/28÷5/8
=13/14-6/7
=1/14
4÷4/5-4/5÷4
=5-1/5
=4又4/5
(5/6-3/4)÷3/8
=1/12×8/3
=2/9
7/11÷[2/5-(1-7/10)]
=7/11÷[2/5-3/10)]
=7/11÷1/10
=70/11
⑤ 分數簡便運算技巧
對於分數的運算,除了掌握常規的運演算法則外,還應該掌握一些特殊的運算技巧,才能提高運算速度解答較難的問題。
分數運算的技巧主要表現在兩方面:
1,所有的整數、小數計算技巧全都可以在分數的巧算上加以應用,例如乘法的運算定律、提取公因式、字母替換等常用方法。
2,分數簡算中獨有的方法,包括分數裂項、整體約分法等。
通過改變分數式中的先後順序,使運算算簡便。在比較分數與小數大小時,要先統一他們的表現形式。將分數轉化為小數或者將小數轉化為分數。只有表現形式統一了,才有可能比較大小。分數化成小數的方法:用分子除以分母所得的商即可,除不盡時通常保留三位小數。
與整數運算中的「湊整法」相同,在分數運算中,充分利用四則運演算法則和運算律(如交換律、結合律、分配律),使部分的和、差、積、商成為整數、整十數...從而使運算得到簡化。
在相同數字較多的分數式中,用字母表示式子中的一部分,使運算更加方便。這就是分數式中的代數法。
一組分數混合運算時,為了能夠「湊整」或湊成比較簡單的數,常常需要先把分數中分子或分母進行拆分,再來進行分組運算。這種巧算方法叫「拆分法」,也叫「分解分組法」。
當幾個乘積相加減,而這些乘積中又有相同的因數時,我們可以採用提取公因數的方法進行巧算。如果乘積中另外幾個因數相加減的結果正好湊成整十、整百、整千、整萬的數,或是是一些比較簡單的數,那麼計算就更為簡便。這種方法叫「提取公因數法」。
⑥ 分數混合運算和簡便計算的方法
分數混合運算和簡便計算的方法
解答:
應用乘法交換律、結合律和分配律,可以使一些計算簡便,
在計算時,要認真觀察已知算式有什麼特點,想想應用什麼定律可以使計算簡便
如果沒有簡便演算法,那麼就按照遞等式計算原則來計算
答
⑦ 六年級分數怎麼混合運算
分數混合運算先乘除後加減,括弧裡面的先算,把運算定律都記熟了,掌握起來運用就簡單多了,最後就是,一定要多做題,做多了就容易看出簡便的方法,熟能生巧就是這個道理。
《分數加減運算口訣》:
分數加減假化帶,相同分母先運算。
通分只看真分數,先加後減連號換。
整分兩部同加減,及時約分降風險。
加得分子超分母,向整進1子減母。
若遇分子小減大,向整借1巧變化。
分數計算方法:
1、當幾個乘積相加減,而這些乘積中又有相同的因數時,我們可以採用提取公因數的方法進行巧算,如果乘積中另外幾個因數相加減的結果正好湊成整十、整百、整千、整萬的數,或是是一些比較簡單的數,那麼計算就更為簡便,這種方法叫「提取公因數法」。
2、一組分數混合運算時,為了能夠「湊整」或湊成比較簡單的數,常常需要先把分數中分子或分母進行拆分,再來進行分組運算,這種巧算方法叫「拆分法」,也叫「分解分組法」。
3、在相同數字較多的分數式中,用字母表示式子中的一部分,使運算更加方便,這就是分數式中的代數法。
⑧ 分數混合運算和簡便運算
分數的混合運算方法如下:
一、如果只有加、減法,或只有乘、除法,按從左到右的方法進行計算。
二、如果既有加、減法,又有乘、除法,則先算乘、除法,再算加、減法。
三、在一個算式中,有括弧的,要先算括弧里的算式。
希望我能幫助你解疑釋惑。
⑨ 分數加分數的計算方法
1、異分母分數的加法:要把異分母分數相加,然後通分,接著把分子相加,分母不要變,計算的結果,能約分的要約分,是假分數的要化成帶分數或整數。
異分母分數的減法:要把異分母分數相減,然後通分,接著把分子相減,分母不要變,計算的結果,能約分的要約分,是假分數的要化成帶分數或整數。
2、同分母分數的加法:只要把分子相加,分母不要變,計算的結果,能約分的要約分,是假分數的要化成帶分數或整數。
同分母分數的減法:要把分子相減,分母不要變,計算的結果,能約分的要約分,是假分數的要化成帶分數或整數。
3、分數混合加減法:有異分母的要先化成同分母,然後再按照順序進行加減,計算的結果,能約分的要約分,是假分數的要化成帶分數或整數。
分數乘法運演算法則
1、分數乘整數時,用分數的分子和整數相乘的積做分子,分母不變。能約分的要先約分。
2、分數乘分數時,用分子相乘的積做分子,分母相乘的積做分母,能約分的先約分。
3、分數乘小數時,可以把分數化為小數,也可以把小數化成分數,能約分的先約分。
分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。
⑩ 分數的混合運算的簡便方法
分數混合運算在計算的時候,如果沒有括弧,要先乘除後加減,有括弧要先算括弧里的能用簡便運算的,要用簡便運算