Ⅰ 現代數值計算方法的作業,求解,急!
用迭代法:
i=1,2,3,4
分別代入
Ⅱ π的計算方法
「兀」(3.1415)是由我國古代數學家祖沖之的割圓術求出來的。
我國古代數學家祖沖之,以圓的內接正多邊形的周長來近似等於圓的周長,從而得出π的精確到小數點第七位的值。
π=圓周長/直徑≈內接正多邊形/直徑。當正多邊形的邊長越多時,其周長就越接近於圓的周長。祖沖之算得的π值在絕大多數的實際應用中已經非常精確。
縱觀π的計算方法,在歷史上大概分為實驗時期、幾何法時期、解析法時期和電子計算機計演算法幾種。
實驗時期:約產於公元前1900年至1600年的一塊古巴比倫石匾上記載了圓周率 = 25/8 = 3.125,而埃及人似乎更早的知道圓周率,英國作家 John Taylor (1781–1864) 在其名著《金字塔》中指出,造於公元前2500年左右的胡夫金字塔和圓周率有關。例如,金字塔的周長和高度之比等於圓周率的兩倍,正好等於圓的周長和半徑之比。
幾何法時期:古希臘大數學家阿基米德(公元前287–212 年)開創了人類歷史上通過理論計算圓周率近似值的先河。他逐步對內接正多邊形和外接正多邊形的邊數加倍,直到內接正96邊形和外接正96邊形為止。最後,他得出3.141851 為圓周率的近似值。
這種方法隨後被2位中國古代數學家發揚光大。公元263年,中國數學家劉徽用「割圓術」,求出3072邊形的面積,得到令自己滿意的圓周率≈3.1416。
而南北朝時期的數學家祖沖之進一步求出圓內接正12288邊形和正24576邊形的面積,得到3.1415926<π<3.1415927的精確值,在之後的800年裡祖沖之計算出的π值都是最准確的。
解析法時期:這是圓周率計算上的一次突破,是以手求π的解析表達式開始的。法國數學家韋達(1540-1603年)開創了一個用無窮級數去計算π值的嶄新方向。無窮乘積式、無窮連分數、無窮級數等各種π值表達式紛紛出現,使得π值計算精度迅速增加。
1706年,英國數學家梅欽率先將π值突破百位。到1948年英國的弗格森(D. F. Ferguson)和美國的倫奇共同發表了π的808位小數值,成為人工計算圓周率值的最高紀錄。
計算機時期:自從第一台電子計算機ENIAC在美國問世之後,立刻取代了繁雜的π值的人工計算,使π的精確度出現了突飛猛進的飛躍。1955年,一台快速計算機竟在33個小時內。把π算到10017位,首次突破萬位。
技不斷進步,電腦的運算速度也越來越快,在60年代至70年代,隨著美、英、法的電腦科學家不斷地進行電腦上的競爭,π的值也越來越精確。在1973年,Jean Guilloud和Martin Bouyer以電腦CDC 7600發現了π的第一百萬個小數位。
2011年10月16日,日本長野縣飯田市公司職員近藤茂利用家中電腦將圓周率計算到小數點後10萬億位,刷新了2010年8月由他自己創下的5萬億位吉尼斯世界紀錄。56歲的近藤茂使用的是自己組裝的計算機,從10月起開始計算,花費約一年時間刷新了紀錄。
和其大寫Π混用,後者是指連乘的意思。
把圓周率的數值算得這么精確,實際意義並不大。現代科技領域使用的圓周率值,有十幾位已經足夠了。如果以39位精度的圓周率值,來計算宇宙的大小,誤差還不到一個原子的體積 。
以前的人計算圓周率,是要探究圓周率是否循環小數。自從1761年蘭伯特證明了圓周率是無理數,1882年林德曼證明了圓周率是超越數後,圓周率的神秘面紗就被揭開了。
π在許多數學領域都有非常重要的作用。
π是個無理數,即不可表達成兩個整數之比,是由瑞士科學家約翰·海因里希·蘭伯特於1761年證明的。 1882年,林德曼(Ferdinand von Lindemann)更證明了π是超越數,即π不可能是任何整系數多項式的根。
圓周率的超越性否定了化圓為方這古老尺規作圖問題的可能性,因所有尺規作圖只能得出代數數,而超越數不是代數數。
Ⅲ 同濟大學的數值計算基礎與現代數值計算 有什麼區別
您好,如果價格是指單位貨量所需的價格,即價格/單位貨量,並且價格付費方式是分檔(例如532貨量,則需付費480*65+70*(530-480)+75*(532-530)),那麼設貨量為x,價格為y: 0≤x≤480 y=65x 481≤x≤530 y=70x-2400 531≤x≤580 y=75x-5050 581≤x≤。
Ⅳ 看了現代數值計算方法有什麼感想
感覺挺實用的,
Ⅳ 《現代數值計算方法》最新txt全集下載
現代數值計算方法 txt全集小說附件已上傳到網路網盤,點擊免費下載:
Ⅵ 現代數值計算方法怎麼樣
直接法利用固定次數的步驟求出問題的解。這些方式包括求解線性方程組的高斯消去法及QR演算法(英語:QRalgorithm),求解線性規劃的單純形法等。若利用無限精度算術的計算方式,有些問題可以得到其精確的解。不過有些問題不存在解析解(如五次方程),也就無法用直接法求解。在電腦中會使用浮點數進行運算,在假設運算方式穩定的前提下,所求得的結果可以視為是精確解的近似值。迭代法是通過從一個初始估計出發尋找一系列近似解來解決問題的數學過程。和直接法不同,用迭代法求解問題時,其步驟沒有固定的次數,而且只能求得問題的近似解,所找到的一系列近似解會收斂到問題的精確解。會利用審斂法來判別所得到的近似解是否會收斂。一般而言,即使使用無限精度算術的計算方式,迭代法也無法在有限次數內得到問題的精確解。在數值分析中用到迭代法的情形會比直接法要多。例如像牛頓法、二分法、雅可比法、廣義最小殘量方法(GMRES)及共軛梯度法等。在計算矩陣代數中,大型的問題一般會需要用迭代法來求解。
Ⅶ 計算方法是什麼
計算方法又稱「數值分析」。是為各種數學問題的數值解答研究提供最有效的演算法。主要內容為函數逼近論,數值微分,數值積分,誤差分析等。常用方法有迭代法、差分法、插值法、有限元素法等。現代的計算方法還要求適應電子計算機的特點。數值分析即「計算方法」
Ⅷ 平方根是怎麼計算的啊
中學就要求用計算器就可以了!
大學就要靠自己算了,參考《現代數值計算方法》,過程很挺麻煩的!
Ⅸ 線性方程求解
你可以參考下這本書 現代數值計算方法 北京大學出版社 主編:肖筱南我幫你簡單敘述下最小二乘法的概念對於你所述的這種矛盾方程組 是工程上的常見問題而用最小二乘法是為了得到一個解,使其在每個方程中的誤差之和達到最小但每個誤差有正有負,因此我們就以「偏差的平方和最小」為原則具體的計算方法為 設矩陣A為矛盾方程組的系數矩陣 b為其等號右邊的數值矩陣則方程組用矩陣可表示為AX=b 兩邊同時左乘A的轉置矩陣即A(AT)X=(AT)b (T為上標,即A的轉置)再解這個方程組得到的解即為最優近似解
Ⅹ π的計算方法有哪些
中國古算書《周髀算經》(約公元前2世紀)的中有「徑一而周三」的記載,意即取
(10)現代數值計算方法擴展閱讀:
圓周率是指平面上圓的周長與直徑之比 (ratio of the circumference of a circle to the diameter) 。用符號π(讀音:pài)表示。中國古代有圓率、周率、周等名稱。(在一般計算時π=3.14)
圓周率的歷史:
古希臘歐幾里得《幾何原本》(約公元前3世紀初)中提到圓周率是常數,中國古算書《周髀算經》( 約公元前2世紀)中有「徑一而周三」的記載,也認為圓周率是常數。
歷史上曾採用過圓周率的多種近似值,早期大都是通過實驗而得到的結果,如古埃及紙草書(約公元前1700)中取π=(4/3)^4≈3.1604 。
第一個用科學方法尋求圓周率數值的人是阿基米德,他在《圓的度量》(公元前3世紀)中用圓內接和外切正多邊形的周長確定圓周長的上下界,從正六邊形開始,逐次加倍計算到正96邊形,得到(3+(10/71))
把圓周率的數值算得這么精確,實際意義並不大。現代科技領域使用的圓周率值,有十幾位已經足夠了。如果以39位精度的圓周率值,來計算宇宙的大小,誤差還不到一個原子的體積。
以前的人計算圓周率,是要探究圓周率是否循環小數。自從1761年蘭伯特證明了圓周率是無理數,1882年林德曼證明了圓周率是超越數後,圓周率的神秘面紗就被揭開了。
π在許多數學領域都有非常重要的作用。