導航:首頁 > 計算方法 > 十分之四乘以2的計算方法

十分之四乘以2的計算方法

發布時間:2022-05-27 04:17:31

1. 十五分之二乘四等於多少

十五分之二乘四等於十五分之八。

解題過程:

這是典型的分數與正數相乘。首先分子2與4直接相乘,得出的結果作為運算後的分子,然後得出十五分之八;分子分母不能約分,已化為最簡;所以最後的結果就是十五分之八。

(1)十分之四乘以2的計算方法擴展閱讀

分數乘法是一種數學運算方法。分數的分子與分子相乘,分母與分母相乘,能約分的要先約分,分子不能和分母乘。 做第一步時,就要想一個數的分子和另一個數的分母能不能約分。

分數乘法的運演算法則:

1.分數乘整數時,用分數的分子和整數相乘做積的分子,分母不變。能約分的先約分。

2.分數乘分數,用分子相乘做積的分子,分母相乘做積的分母,能約分的先約分。

2. 小數的知識

1、小數點,數學符號,寫作「.」,用於在十進制中隔開整數部分和小數部分。

2、在英語小數的讀法中,小數點讀作"point",整數部份按基數詞的一般讀法,小數部分則分開來讀。
如:123.123,讀作:one hundred and twenty-three point one two three

3、根據十進制的位值原則,把十進分數仿照整數的寫法寫成不帶分母的形式,這樣的數叫做小數.

4、小數點左邊的部分是整數部分,小數點右邊的部分是小數部分.

5、整數部分是零的小數叫做純小數,整數部分不是零的小數叫做帶小數.
例如0.3是純小數,3.1是帶小數.

6、小數末尾添上0或去掉0,小數的大小不變,但計數單位變了。

7、一位小數表示十分之幾,二位小數表示百分之幾,三位小數表示千分之幾……

8、小數的計數單位也按照一定的順序排列起來,它們所佔的位置叫做小數的數位.

9、小數的讀法有兩種:一種是按照分數的讀法來讀.帶小數的整數部分按整數讀法讀;小數部分按分數讀法讀.
例如:0.38讀作百分之三十八,14.56讀作十四又百分之五十六.

另一種讀法,整數部分仍按整數的讀法來讀,小數點讀作「點」,小數部分順次讀出每個數位上的數字.
例如:0.45讀作零點四五;56.032讀作五十六點零三二.

10、小數點每往左移動一位,數值變為原來的十分之一
小數點每往後移動一位,數值變為原來的十倍

11、中國比歐洲早採用了小數三百多年。第一個將這一概念用文字表達出來的是魏晉時代的劉徽。

12、小數分為有限小數和無限小數

13、所有分數都可以表示成小數,所有的有限小數和無限循環小數均能用分數表示。無限不循環小數不能用分數表示。

14、無理數為無限不循環小數。

15、保留小數:按要求在捨去部分最高位進行四捨五入運算。

16、積的小數位數與被乘數的小數位數有關。
被乘數有幾位小數,積就有幾位小數。
計算小數乘以整數,先按照整數乘法的計算方法算出積,再看被乘數中有幾位小數,就從積的右邊起數出幾位,點上小數點。

17、整數部分是零的小數如0.1,絕對值一定小於1。
整數部分是1或1以上的小數如1.1,絕對值一定大於等於1。

18、一個小數,從小數部分的某一位起,一個數字或幾個數字,依次不斷地重復出現,這個小數叫做循環小數。

19、一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。
寫循環小數時,為了簡便,小數的循環部分只寫出第一個循環節。如果循環節只有一個數字,就在這個數字上加一個圓點, 如果循環節有一個以上的數字,就在這個循環節的首位和末位的數字上各加一個圓點。

20、分母是10,100,1000......的:可以直接化成小數,
如,十分之七化成0.7,一百分之九化成0.09
分母不是10,100,1000......的:分子除以分母。

21、一個最簡分數,如果分母分解質因數只含有2、5的,可以化成有限小數;如果含有2、5以外的質因數,就不能化成有限小數,但絕對能化成循環小數。

22、如果分母分解質因數不含有2、5,只含有2、5以外的質因數,就能化成純循環小數。

23、如果既含有2、5,又含有2、5以外的質因數,就能化成混循環小數。

24、小數化百分數:用小數乘以100 ,然後添上百分號。如,0.756,化成百分數是75.6%。

25、類似於百分數,只不過是乘以1000,再加上千分號。

26、無限不循環小數指小數點後有無限個數位,但沒有周期性的重復,或者說沒有規律的小數。所以數學上又稱無限不循環小數為無理數(如圓周率π,希臘字母,音pài),把其他一切實數都稱為有理數。

27、無理數大致分為三個類型
1)帶根號開方開不盡(如根號2)
2)與π和e有關(如π+2)
3)按一定規律但不循環(如0.1010010001……也被稱為構造性無理數)

28、圓周率π是最著名的無理數,它是由圓周除以該圓直徑所得,以下是小數點後幾位:
3.1415926535 8979323846 2643383279 5028841971 6939937510
但圓周率在實際使用中一般只取近似值3.14

29、小數的使用在單位換算上尤為重要,一定要注意不同單位之間的倍數問題。

30、小學常見單位換算:
◆長度單位換算
1千米(km)=1000米(m)
1米(m)=10分米(dm)
1分米(dm)=10厘米(cm)
1米(m)=100厘米(cm)
1厘米(cm)=10毫米(mm)
◆面積單位換算
1平方千米=100公頃
1公頃=10000

3. 十分之三乘以二為什麼等於0.6

因為十分之三是0.3.
0.3×2=0.6。

也可以這樣算:
十分之三×2=十分之六=0.6

乘法資料拓展:1、乘法交換律:在兩個數的乘法運算中,在從左往右計算的順序,兩個因數相乘,交換因數的位置,積不變。
乘法交換律公式:a×b=b×a。
2、乘法結合律:三個數相乘,先把前兩個數相乘,再和另外一個數相乘,或先把後兩個數相乘,再和另外一個數相乘,積不變。
乘法結合律公式(a×b)×c=a×(b×c)。

乘法:
因數x因數=積
積÷一個因數=另一個因數
除法:
被除數÷除數=商
被除數÷商=除數
商×除數=被除數
乘法的交換律:兩個數相乘,交換兩個因數的位置,積不變,叫做乘法的交換律。a×b = b×a
乘法的結合律:三個數相乘,先把前兩個數相乘,再乘以第三個數,或者,先把後兩個數相乘,再和第一個數相乘,積不變。這叫做乘法結合律。a×b×c = a×(b×c)
乘法分配律:兩個數的和(或差)與一個數相乘,等於把這兩個數分別與這個數相乘,再把兩個積相加(或相減)。這叫做乘法分配律。 (a + b) ×c= a×c + b×c(a - b)×c= a×c - b×c乘法的其他

拓展資料
小學數學是通過教材,教小朋友們關於數的認識,四則運算,圖形和長度的計算公式,單位轉換一系列的知識,為初中和日常生活的計算打下良好的數學基礎。荷蘭教育家弗賴登諾爾認為:「數學來源於現實,也必須紮根於現實,並且應用於現實。」 [1] 的確,現代數學要求我們用數學的眼光來觀察世界,用數學的語言來闡述世界。從小學生數學學習心理來看,學生的學習過程不是被動的吸收過程,而是一個以已有知識和經驗為基礎的重新建構的過程,因此,做中學,玩中學,將抽象的數學關系轉化為學生生活中熟悉的事例,將使兒童學得更主動。從我們的教育目標來看,我們在傳授知識的同時,更應注重培養學生的觀察、分析和應用等綜合能力。
(資料來源:小學數學公式)

4. 42除以2的豎式計算是什麼

42除以2的豎式計算如下:

1、把42除以2按照豎式計算格式寫好。

2、從最高位十位開始除起:十位上:4÷2=2,把得數2寫在豎式除號的十數位上。

3、個位上:2÷2=1,把得數1寫在豎式除號的個位上。

即:42÷2=21。

(4)十分之四乘以2的計算方法擴展閱讀:

列豎式的方法:

除數一位看一位, 一位不夠看兩位。 除到哪位商哪位, 哪位不夠零佔位。 每次除後要比較, 余數要比除數小。

豎式計算是指在計算過程中列一道豎式計算,使計算簡便。除法用豎式計算時,從最高位開始除起,如:43就從最高位十位4開始除起;若除不了,如:4不能除以5,那麼就用最高位和下一位合成一個數來除,直到能除以除數為止;如:43除5中4不能除5,就把4和3合成一個數43來除5,商為8,余數為3。

5. 小數怎麼能一看就會

耐心看完就會了 多看幾遍
小數由整數部分、小數部分和小數點組成。當測量物體時往往會得到的不是整數的數,古人就發明了小數來補充整數 小數是十進制分數的一種特殊表現形式。分母是10、100、1000……的分數可以用小數表示。所有分數都可以表示成小數,小數中除無限不循環小數外都可以表示成分數。無理數為無限不循環小數。
折疊編輯本段簡介
根據十進制的位值原則,把十進分數仿照整數的寫法寫成不帶分母的形式,這樣的數叫做小數.小數中的圓點叫做小數點,它是一個小數的整數部分和小數部分的分界號,小數點左邊的部分是整數部分,小數點右邊的部分是小數部分.整數部分是零的小數叫做純小數,整數部分不是零的小數叫做帶小數.例如0.3是純小數,3.1是帶小數.小數分為無限小數和有限小數。小數數位表
折疊編輯本段基本性質
小數末尾添上0或去掉0,小數的大小不變,但計數單位變了。而且,小數點向左移動一位、兩位、三位,原來的數就縮小10倍、100倍、1000倍,小數點向右移動一位、兩位、三位,原來的數就擴大10倍、100倍、1000倍,.
折疊編輯本段意義
可從分數的意義著手,分數的意義可從子分割及合成活動來解釋,當一個整體(指基準量)被等分後,在集聚其中一部份的量稱為「分量」,而「分數」就是用來表示或記錄這個「分量」。例如:2/5是指一個整數被分成五等分後,集聚其中二分的「分量」。當整體被分成十等分、百等分、千等分……等時,此時的分量,就使用另外一種紀錄的方法-小數。例如1/10記成0.1、2/100記成0.02、5/1000記成0.005……等。其中的「.」稱之為小數點,用以分隔整數部分與無法構成整數的小數部分。整數非0者稱為帶小數,若為0則稱純小數。由此可知,小數的意義是分數意義的一環。
折疊編輯本段寫法
整數部分寫在小數點前,小數部分寫在小數點後,中間用小數點隔開。
折疊編輯本段讀法
有兩種:一種是按照分數的讀法來讀.帶小數的整數部分按整數讀法讀;小數部分按分數讀法讀.例如:0.38讀作百分之三十八,14.56讀作十四又百分之五十六.另一種讀法,整數部分仍按整數的讀法來讀,小數點讀作"點",小數部分順次讀出每個數位上的數字,若幾個零重復,不可只讀一個0.例如:0.45讀作零點四五;56.032讀作五十六點零三二;1.0005讀作一點零零零五.
折疊編輯本段比較
小數大小的比較方法與整數基本相同,即從高位起,依次把相同數位上的數加以比較.
因此,比較兩個小數的大小,先看它們的整數部分,整數部分大的那個數大;如果整數部分相同,十分位上的數大的那個數大;如果十分位上的數也相同,百分位上的數大的那個數大;
因為小數是十進分數,所以有下列性質:①在小數的末尾添上零或去掉零,小數的大小
不變.例如;2.4=2.400,0.060=0.06.②小數點移動會引起小數大小發生變化.把小數點分別向右移動一位、二位、三位… 位,則小數的值分別擴大10倍、 100倍、 1000倍……例如:把7.4擴大10倍是74,擴大100倍是740……
如果把小數點分別向左移動一位、二位、三位… 則小數的值分別縮小到原來的十分之一、 百分之一、 千分之一…... .例如:把7.4縮小到原來的十分之1是0.74,縮小到原來的百分之一是0.074……
折疊編輯本段小數保留
保留小數:按要求在捨去部分最高位進行四捨五入運算。
無限不循環小數只能用小數表示不能用分數表示,而所有的有限小數和無限循環小數均能用分數表示,小數分為有限小數和無限小數,有限小數如1/5,無限小數包括無限不循環小數(如0.010010001……)和無限循環小數(如1/3 )
(有理數(rational number):能精確地表示為兩個整數之比的數.
如3,-98.11,5.72727272……,7/22都是有理數.
整數和通常所說的分數都是有理數.有理數還可以劃分為正有理數,0和負有理數.
在數的十進制小數表示系統中,有理數就是可表示為有限小數或無限循環小數的數.這一定義在其他進位制下(如二進制)也適用.《中國大網路全書》(數學) )
因此,不矛盾。
小數乘以整數:
把小數乘法轉化成整數乘法計算。
先把小數擴大成整數,按照整數乘法去計算,因數擴大了多少倍,積就要縮小多少倍。
積的小數位數與被乘數的小數位數有關,被乘數有幾位小數,積就有幾位小數。因為要把小數乘法轉化成整數乘法,被乘數擴大了多少倍,乘數不變,積也隨著擴大了多少倍。因此必須再把積縮小多少倍。
計算小數乘以整數,先按照整數乘法的計算方法算出積,再看被乘數中有幾位小數,就從積的右邊起數出幾位,點上小數點。
折疊編輯本段類型定義
折疊純小數
整數部分是零的小數如0.1,絕對值一定小於1。幻燈片如:0.12;0.945;0.403等
折疊帶小數
整數部分是1或1以上的小數如1.1,絕對值一定大於等於1。
如:1.2345;9.45;1.43等
一個小數,從小數部分的某一位起,一個數字或幾個數字,依次不斷地重復出現,這個小數叫做循環小數。
折疊循環節
一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。
例如:0.33 ……循環節是"3"幻燈片例如: 2.14242……循環節是"42"
純循環小數:循環節從小數部分第一位開始的。(例如:0.666……)
混循環小數:循環節不是從小數部分第一位開始的。(例如:0.566……)
寫循環小數時,為了簡便,小數的循環部分只寫出第一個循環節。如果循環節只有一個數字,就在這個數字上加一個圓點, 如果循環節有一個以上的數字,就在這個循環節的首位和末位的數字上各加一個圓點。
折疊編輯本段互化
小數與分數、百分數、千分數可以進行互化。
折疊小數化分數
有限小數化分數:小數表示的就是十分之一、百分之一、千分之一......所以,0.6可以化成十分之六,約分成五分之三。
純循環小數化分數:整數部分照抄,小數部分循環節如果是一位分母為9,兩位為99,三位為999......如0.2525......可以化成九十九分之九十九,能約分的要約分。
混循環小數化分數:整數部分照抄,小數部分循環節部分一位為9,兩位為99,三位為999......不循環的部分有幾位就在9的後面添幾個零,分母整個小數部分,循環部分一位循環就只抄一位,兩位就抄兩位......。如0.13333......可以化成90分之13-1,就是90分之12,約分成十五分之二。
無限不循環小數:不能化成分數,因為無限不循環小數是無理數,分數全是有理數。
折疊分數化小數
分母是10,100,1000......的:可以直接化成小數,如,十分之七化成0.7,一百分之九化成0.09
分母不是10,100,1000......的:分子除以分母。一個最簡分數,如果分母分解質因數只含有2、5的,可以化成有限小數;如果含有2、5以外的質因數,就不能化成有限小數,但絕對能化成循環小數。附加:如果分母分解質因數不含有2、5,只含有2、5以外的質因數,就能化成純循環小數,如果既含有2、5,又含有2、5以外的質因數,就能化成混循環小數。
折疊與百分數互化
小數化百分數:用小數乘以100 ,然後添上百分號。如,0.756,化成百分數是75.6%。
百分數化小數:就是用分母是100的分數化成小數。或去掉百分號,除以100。
折疊與千分數互化
類似於百分數,只不過是乘以1000,再加上千分號。

6. 15分之2乘4等於多少,怎麼算具體

15分之2乘4等於8/15。

15分之2乘4等於多少的計算過程如下:

(1)15分之2可以寫成:2/15。

(2)15分之2乘4可以表示成:(2/15)×4=(2×4)/15=8/15(整數與分數相乘,用整數乘以分子作分子,分母不變,能約分的先約分)

(3)8/15是最簡分數形式,無需化簡。(最簡分數,是分子、分母只有公因數1的分數,或者說分子和分母互質的分數,又稱既約分數。如:二分之一,三分之二,九分之八,八分之三等等。)

(6)十分之四乘以2的計算方法擴展閱讀:

分數乘分數,用分子相乘做積的分子,分母相乘做積的分母,能約分的先約分。

分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。

分數除法的計演算法則:甲數除以乙數(0除外),等於甲數乘乙數的倒數。當除數小於1,商大於被除數;當除數等於1,商等於被除數;當除數大於1,商小於被除數。被除數乘除數的倒數能約分的要約分。

7. 小學數學

深夜來回答你這個問題不容易!!!小學數學3.4.5.6重點知識有下列:行程問題是必考
第一章 數和數的運算
一 概念
(一)整數
1 整數的意義
自然數和0都是整數。
2 自然數
我們在數物體的時候,用來表示物體個數的1,2,3……叫做自然數。
一個物體也沒有,用0表示。0也是自然數。
3計數單位
一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。
每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。
4 數位
計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。
5數的整除
整數a除以整數b(b ≠ 0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a 。
如果數a能被數b(b ≠ 0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。
因為35能被7整除,所以35是7的倍數,7是35的約數。
一個數的約數的個數是有限的,其中最小的約數是1,最大的 約數是它本身。例如:10的約數有1、2、5、10,其中最小的約數是1,最大的約數是10。
一個數的倍數的個數是無限的,其中最小的倍數是它本身。3的倍數有:3、6、9、12……其中最小的倍數是3 ,沒有最大的倍數。
個位上是0、2、4、6、8的數,都能被2整除,例如:202、480、304,都能被2整除。。
個位上是0或5的數,都能被5整除,例如:5、30、405都能被5整除。。
一個數的各位上的數的和能被3整除,這個數就能被3整除,例如:12、108、204都能被3整除。
一個數各位數上的和能被9整除,這個數就能被9整除。
能被3整除的數不一定能被9整除,但是能被9整除的數一定能被3整除。
一個數的末兩位數能被4(或25)整除,這個數就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一個數的末三位數能被8(或125)整除,這個數就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的數叫做偶數。
不能被2整除的數叫做奇數。
0也是偶數。自然數按能否被2 整除的特徵可分為奇數和偶數。
一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數),100以內的質數有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數,例如 4、6、8、9、12都是合數。
1不是質數也不是合數,自然數除了1外,不是質數就是合數。如果把自然數按其約數的個數的不同分類,可分為質數、合數和1。
每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數,例如15=3×5,3和5 叫做15的質因數。
把一個合數用質因數相乘的形式表示出來,叫做分解質因數。
例如把28分解質因數
幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做這幾個數的最大公約數,例如12的約數有1、2、3、4、6、12;18的約數有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公約數,6是它們的最大公約數。
公約數只有1的兩個數,叫做互質數,成互質關系的兩個數,有下列幾種情況:
1和任何自然數互質。
相鄰的兩個自然數互質。
兩個不同的質數互質。
當合數不是質數的倍數時,這個合數和這個質數互質。
兩個合數的公約數只有1時,這兩個合數互質,如果幾個數中任意兩個都互質,就說這幾個數兩兩互質。
如果較小數是較大數的約數,那麼較小數就是這兩個數的最大公約數。
如果兩個數是互質數,它們的最大公約數就是1。
幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數,如2的倍數有2、4、6 、8、10、12、14、16、18 ……
3的倍數有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍數,6是它們的最小公倍數。。
如果較大數是較小數的倍數,那麼較大數就是這兩個數的最小公倍數。
如果兩個數是互質數,那麼這兩個數的積就是它們的最小公倍數。
幾個數的公約數的個數是有限的,而幾個數的公倍數的個數是無限的。
(二)小數
1 小數的意義
把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。
一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。
在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位「十分之一」和整數部分的最低單位「一」之間的進率也是10。
2小數的分類
純小數:整數部分是零的小數,叫做純小數。例如: 0.25 、 0.368 都是純小數。
帶小數:整數部分不是零的小數,叫做帶小數。 例如: 3.25 、 5.26 都是帶小數。
有限小數:小數部分的數位是有限的小數,叫做有限小數。 例如: 41.7 、 25.3 、 0.23 都是有限小數。
無限小數:小數部分的數位是無限的小數,叫做無限小數。 例如: 4.33 …… 3.1415926 ……
無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。 例如:∏
循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。 例如: 3.99 ……的循環節是「 9 」 , 0.5454 ……的循環節是「 54 」 。
純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。 例如: 3.111 …… 0.5656 ……
混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。 3.1222 …… 0.03333 ……
寫循環小數的時候,為了簡便,小數的循環部分只需寫出一個循環節,並在這個循環節的首、末位數字上各點一個圓點。如果循環 節只有 一個數字,就只在它的上面點一個點。例如: 3.777 …… 簡寫作 0.5302302 …… 簡寫作 。
(三)分數
1 分數的意義
把單位「1」平均分成若干份,表示這樣的一份或者幾份的數叫做分數。
在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位「1」平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。
把單位「1」平均分成若干份,表示其中的一份的數,叫做分數單位。
2 分數的分類
真分數:分子比分母小的分數叫做真分數。真分數小於1。
假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大於或等於1。
帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。
3 約分和通分
把一個分數化成同它相等但是分子、分母都比較小的分數 ,叫做約分。
分子分母是互質數的分數,叫做最簡分數。
把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
(四)百分數
1 表示一個數是另一個數的百分之幾的數 叫做百分數,也叫做百分率 或百分比。百分數通常用"%"來表示。百分號是表示百分數的符號。
基本概念:行程問題是研究物體運動的,它研究的是物體速度、時間、行程三者之間的關系。
基本公式:路程=速度×時間;路程÷時間=速度;路程÷速度=時間
關鍵問題:確定行程過程中的位置
相遇問題:速度和×相遇時間=相遇路程(請寫出其他公式)
相遇問題:(直線):甲的路程+乙的路程=總路程
相遇問題:(環形):甲的路程 +乙的路程=環形周長
追及問題:追擊時間=路程差÷速度差(寫出其他公式)
追及問題:(直線):距離差=追者路程-被追者路程=速度差X追擊時間
追及問題:(環形):快的路程-慢的路程=曲線的周長
流水問題:順水行程=(船速+水速)×順水時間 逆水行程=(船速-水速)×逆水時間
順水速度:船速+水速 逆水速度=船速-水速
靜水速度:(順水速度+逆水速度)÷2 水速:(順水速度-逆水速度)÷2
流水問題:關鍵是確定物體所運動的速度,參照以上公式。
列車過橋問題:關鍵是確定物體所運動的路程,參照以上公式。
流水問題:流水速度+流水速度÷2 水 速:流水速度-流水速度÷2
1、一艦艇和一貨輪同時從A港口前往相距100千米的B港口,艦艇和貨輪的速度分別為100千米/時和20千米/時,艦艇不停地往返於A、B兩港口巡邏(巡邏掉頭的時間忽略不記)。求貨輪從A港口出發後與艦艇第二次相遇時用了多長時間?
100*4/(100+20)=10/3小時
2、甲乙兩車同時分別從AB兩站相對開出.第一次在離A站90千米處相遇.相遇後兩車一原速繼續前進,到達對方出發站後立刻返回,第二次相遇在離A站50千米處.求AB兩站之間的距離.

第一次相遇甲乙兩車共行了1個全程,甲車行了90千米
第二次相遇甲乙兩車共行了3個全程,甲車行了90×3=270千米
同時,甲車行的還是2個全程少50千米
AB兩站之間的距離是
(90×3+50)÷2=160千米

回答這么多很不容易啊,樓主,還有什麼不知道的問我,希望你能採納我啊,真的不容易

8. 分數四則運算的計算方法

加法:分母相同:分子加分子,分母不變
分母不同:先找出分母的最小公倍數,通分,然後再加
減法:分母相同:同上
分母不同:同上
乘法:分子乘分子,分母乘分母
除法:第一個分數除以第二個分數,等於第一個分數乘第二個分數的倒數,然後按照乘法的計算方法算就ok了
感謝我吧!

9. 多位數乘法的快速計算方法有哪些

多位數乘法的快速計算方法如下:

1、 十幾乘十幾:口訣:頭乘頭,尾加尾,尾乘尾。例:12×14=?解: 1×1=12+4=62×4=812×14=168註:個位相乘,不夠兩位數要用0佔位。

2、 頭相同,尾互補(尾相加等於10):口訣:一個頭加1後,頭乘頭,尾乘尾。例:23×27=?解:2+1=32×3=63×7=2123×27=621註:個位相乘,不夠兩位數要用0佔位。

3、 第一個乘數互補,另一個乘數數字相同:口訣:一個頭加1後,頭乘頭,尾乘尾。例:37×44=?解:3+1=44×4=167×4=2837×44=1628註:個位相乘,不夠兩位數要用0佔位。

4、 幾十一乘幾十一:口訣:頭乘頭,頭加頭,尾乘尾。例:21×41=?解:2×4=82+4=61×1=121×41=861

5、 11乘任意數:口訣:首尾不動下落,中間之和下拉。例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分別在首尾11×23125=254375註:和滿十要進一。

(9)十分之四乘以2的計算方法擴展閱讀

乘法原理:

如果因變數f與自變數x1,x2,x3,….xn之間存在直接正比關系並且每個自變數存在質的不同,缺少任何一個自變數因變數f就失去其意義,則為乘法。

在概率論中,一個事件,出現結果需要分n個步驟,第1個步驟包括M1個不同的結果,第2個步驟包括M2個不同的結果,……,第n個步驟包括Mn個不同的結果。那麼這個事件可能出現N=M1×M2×M3×……×Mn個不同的結果。

設 A是 m×n 的矩陣。

可以通過證明 Ax=0 和A'Ax=0 兩個n元齊次方程同解證得 r(A'A)=r(A)

1、Ax=0 肯定是 A'Ax=0 的解,好理解。

2、A'Ax=0 → x'A'Ax=0 → (Ax)' Ax=0 →Ax=0

故兩個方程是同解的。

同理可得 r(AA')=r(A')

另外 有 r(A)=r(A')

所以綜上 r(A)=r(A')=r(AA')=r(A'A)

10. 小學數學必背公式大全你知道多少

小學數學知識概念公式匯總
小學一年級 九九乘法口訣表.學會基礎加減乘.
小學二年級 完善乘法口訣表,學會除混合運算,基礎幾何圖形.
小學三年級 學會乘法交換律,幾何面積周長等,時間量及單位.路程計算,分配律,分數小數.
小學四年級 線角自然數整數,素因數梯形對稱,分數小數計算.
小學五年級 分數小數乘除法,代數方程及平均,比較大小變換,圖形面積體積.
小學六年級 比例百分比概率,圓扇圓柱及圓錐.
必背定義、定理公式
三角形的面積=底×高÷2. 公式 S= a×h÷2

正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度.
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高.公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積.公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高.公式:V=Sh
圓錐的體積=1/3底面×積高.公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變.異分母的分數相加減,先通分,然後再加減.
分數的乘法則:用分子的積做分子,用分母的積做分母.
分數的除法則:除以一個數等於乘以這個數的倒數.
讀懂理解會應用以下定義定理性質公式

一、算術方面
1、加法交換律:兩數相加交換加數的位置,和不變.
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變.
3、乘法交換律:兩數相乘,交換因數的位置,積不變.
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變.
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變.如:(2+4)×5=2×5+4×5
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變. O除以任何不是O的數都得O.
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾.
7、么叫等式?等號左邊的數值與等號右邊的數值相等的式子叫做等式.
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立.
8、什麼叫方程式?答:含有未知數的等式叫方程式.
9、 什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式.
學會一元一次方程式的例法及計算.即例出代有χ的算式並計算.
10、分數:把單位"1"平均分成若干份,表示這樣的一份或幾分的數,叫做分數.
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變.異分母的分數相加減,先通分,然後再加減.
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小.異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小.
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變.
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母.
15、分數除以整數(0除外),等於分數乘以這個整數的倒數.
16、真分數:分子比分母小的分數叫做真分數.
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數.假分數大於或等於1.
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數.
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變.
20、一個數除以分數,等於這個數乘以分數的倒數.
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數.
數量關系計算公式方面
1、單價×數量=總價
2、單產量×數量=總產量
3、速度×時間=路程
4、工效×時間=工作總量
5、加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
有餘數的除法: 被除數=商×除數+余數

一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變.例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤
1公頃=10000平方米. 1畝=666.666平方米.
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什麼叫比:兩個數相除就叫做兩個數的比.如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變.
8、什麼叫比例:表示兩個比相等的式子叫做比例.如3:6=9:18
9、比例的基本性質:在比例里,兩外項之積等於兩內項之積.
10、解比例:求比例中的未知項,叫做解比例.如3:χ=9:18
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系.如:y/x=k( k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系.如:x×y = k( k一定)或k / x = y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數.百分數也叫做百分率或百分比.
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號.其實,把小數化成百分數,只要把這個小數乘以100%就行了.
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位.
14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數.其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了.
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數.
15、要學會把小數化成分數和把分數化成小數的化發.
16、最大公約數:幾個數都能被同一個數一次性整除,這個數

閱讀全文

與十分之四乘以2的計算方法相關的資料

熱點內容
校本研究的常用方法 瀏覽:693
幼兒測呼吸的方法圖片 瀏覽:797
腳脖子粗有什麼改善方法 瀏覽:1000
二等水準測量計算方法觀測高差 瀏覽:167
鏡子的製作方法怎麼折 瀏覽:299
護士溝通能力的培養方法和技巧 瀏覽:628
統計的數學方法有哪些 瀏覽:998
研究方法和研究計劃怎麼寫 瀏覽:467
懶人快速背書訓練方法 瀏覽:551
面部肌肉痙攣最佳治療方法 瀏覽:290
shimovpn使用方法 瀏覽:886
鋼筋籠用什麼方法檢測 瀏覽:52
烤全羊方法與配方視頻 瀏覽:505
剛生出來的鴿子吃什麼最簡單方法 瀏覽:245
怎麼洗墨水的衣服最簡單的方法 瀏覽:897
啟發性教學是教學方法 瀏覽:764
公務員濃度問題解決方法 瀏覽:396
吉他調音扳手使用方法 瀏覽:666
如何快速計算房貸方法 瀏覽:775
腦血管堵塞最簡單方法 瀏覽:709