Ⅰ 認知科學實驗研究方法的一般步驟
主要由四個步驟組成:步驟一是確定模型,即為了實現行動計劃,需要建立一個綜合而又靈活的分類系統,並把有關現象秩序化。步驟二是確定有意義的行動模式。要研究必須對已經選擇作為有關主題的認知實踐執行進行分析、分類和計算編程等這樣的行動。認知活動是符號的並由規則、慣例和習俗來控制,因而這一階段需要建立產生正確性和適當性的任務的相關標准。步驟三是人工智慧的模擬操作化,對認知任務的知識和運行工具之間的假說建立必需的橋梁。即模擬模擬路徑,既可以作為文化規則系統的抽象表達,又作為關於腦結構和實現過程的假定。製造出具有人工智慧的類似「記憶機」和「意識機」一類的智能產品。步驟四為評價與校正階段。對理論模型關鍵是經驗驗證、檢驗。
Ⅱ 人工智慧需要什麼基礎
當下,人工智慧成了新時代的必修課,其重要性已無需贅述,但作為一個跨學科產物,它包含的內容浩如煙海,各種復雜的模型和演算法更是讓人望而生畏。對於大多數的新手來說,如何入手人工智慧其實都是一頭霧水,比如到底需要哪些數學基礎、是否要有工程經驗、對於深度學習框架應該關注什麼等等。
那麼,學習人工智慧該從哪裡開始呢?人工智慧的學習路徑又是怎樣的?
本文節選自王天一教授在極客時間 App 開設的「人工智慧基礎課」,已獲授權。更多相關文章,請下載極客時間 App,訂閱專欄獲取。
數學基礎知識蘊含著處理智能問題的基本思想與方法,也是理解復雜演算法的必備要素。今天的種種人工智慧技術歸根到底都建立在數學模型之上,要了解人工智慧,首先要掌握必備的數學基礎知識,具體來說包括:
線性代數:如何將研究對象形式化?
概率論:如何描述統計規律?
數理統計:如何以小見大?
最優化理論: 如何找到最優解?
資訊理論:如何定量度量不確定性?
形式邏輯:如何實現抽象推理?
線性代數:如何將研究對象形式化?
事實上,線性代數不僅僅是人工智慧的基礎,更是現代數學和以現代數學作為主要分析方法的眾多學科的基礎。從量子力學到圖像處理都離不開向量和矩陣的使用。而在向量和矩陣背後,線性代數的核心意義在於提供了⼀種看待世界的抽象視角:萬事萬物都可以被抽象成某些特徵的組合,並在由預置規則定義的框架之下以靜態和動態的方式加以觀察。
著重於抽象概念的解釋而非具體的數學公式來看,線性代數要點如下:線性代數的本質在於將具體事物抽象為數學對象,並描述其靜態和動態的特性;向量的實質是 n 維線性空間中的靜止點;線性變換描述了向量或者作為參考系的坐標系的變化,可以用矩陣表示;矩陣的特徵值和特徵向量描述了變化的速度與方向。
總之,線性代數之於人工智慧如同加法之於高等數學,是一個基礎的工具集。
概率論:如何描述統計規律?
除了線性代數之外,概率論也是人工智慧研究中必備的數學基礎。隨著連接主義學派的興起,概率統計已經取代了數理邏輯,成為人工智慧研究的主流工具。在數據爆炸式增長和計算力指數化增強的今天,概率論已經在機器學習中扮演了核心角色。
同線性代數一樣,概率論也代表了一種看待世界的方式,其關注的焦點是無處不在的可能性。頻率學派認為先驗分布是固定的,模型參數要靠最大似然估計計算;貝葉斯學派認為先驗分布是隨機的,模型參數要靠後驗概率最大化計算;正態分布是最重要的一種隨機變數的分布。
數理統計:如何以小見大?
在人工智慧的研究中,數理統計同樣不可或缺。基礎的統計理論有助於對機器學習的演算法和數據挖掘的結果做出解釋,只有做出合理的解讀,數據的價值才能夠體現。數理統計根據觀察或實驗得到的數據來研究隨機現象,並對研究對象的客觀規律做出合理的估計和判斷。
雖然數理統計以概率論為理論基礎,但兩者之間存在方法上的本質區別。概率論作用的前提是隨機變數的分布已知,根據已知的分布來分析隨機變數的特徵與規律;數理統計的研究對象則是未知分布的隨機變數,研究方法是對隨機變數進行獨立重復的觀察,根據得到的觀察結果對原始分布做出推斷。
用一句不嚴謹但直觀的話講:數理統計可以看成是逆向的概率論。 數理統計的任務是根據可觀察的樣本反過來推斷總體的性質;推斷的工具是統計量,統計量是樣本的函數,是個隨機變數;參數估計通過隨機抽取的樣本來估計總體分布的未知參數,包括點估計和區間估計;假設檢驗通過隨機抽取的樣本來接受或拒絕關於總體的某個判斷,常用於估計機器學習模型的泛化錯誤率。
最優化理論: 如何找到最優解?
本質上講,人工智慧的目標就是最優化:在復雜環境與多體交互中做出最優決策。幾乎所有的人工智慧問題最後都會歸結為一個優化問題的求解,因而最優化理論同樣是人工智慧必備的基礎知識。最優化理論研究的問題是判定給定目標函數的最大值(最小值)是否存在,並找到令目標函數取到最大值 (最小值) 的數值。 如果把給定的目標函數看成一座山脈,最優化的過程就是判斷頂峰的位置並找到到達頂峰路徑的過程。
通常情況下,最優化問題是在無約束情況下求解給定目標函數的最小值;在線性搜索中,確定尋找最小值時的搜索方向需要使用目標函數的一階導數和二階導數;置信域演算法的思想是先確定搜索步長,再確定搜索方向;以人工神經網路為代表的啟發式演算法是另外一類重要的優化方法。
資訊理論:如何定量度量不確定性?
近年來的科學研究不斷證實,不確定性就是客觀世界的本質屬性。換句話說,上帝還真就擲骰子。不確定性的世界只能使用概率模型來描述,這促成了資訊理論的誕生。
資訊理論使用「信息熵」的概念,對單個信源的信息量和通信中傳遞信息的數量與效率等問題做出了解釋,並在世界的不確定性和信息的可測量性之間搭建起一座橋梁。
總之,資訊理論處理的是客觀世界中的不確定性;條件熵和信息增益是分類問題中的重要參數;KL 散度用於描述兩個不同概率分布之間的差異;最大熵原理是分類問題匯總的常用准則。
形式邏輯:如何實現抽象推理?
1956 年召開的達特茅斯會議宣告了人工智慧的誕生。在人工智慧的襁褓期,各位奠基者們,包括約翰·麥卡錫、赫伯特·西蒙、馬文·閔斯基等未來的圖靈獎得主,他們的願景是讓「具備抽象思考能力的程序解釋合成的物質如何能夠擁有人類的心智。」通俗地說,理想的人工智慧應該具有抽象意義上的學習、推理與歸納能力,其通用性將遠遠強於解決國際象棋或是圍棋等具體問題的演算法。
如果將認知過程定義為對符號的邏輯運算,人工智慧的基礎就是形式邏輯;謂詞邏輯是知識表示的主要方法;基於謂詞邏輯系統可以實現具有自動推理能力的人工智慧;不完備性定理向「認知的本質是計算」這一人工智慧的基本理念提出挑戰。
《人工智慧基礎課》全年目錄
本專欄將圍繞機器學習與神經網路等核心概念展開,並結合當下火熱的深度學習技術,勾勒出人工智慧發展的基本輪廓與主要路徑。點擊我獲取學習資源
充分了解數據及其特性,有助於我們更有效地選擇機器學習演算法。採用以上步驟在一定程度上可以縮小演算法的選擇范圍,使我們少走些彎路,但在具體選擇哪種演算法方面,一般並不存在最好的演算法或者可以給出最好結果的演算法,在實際做項目的過程中,這個過程往往需要多次嘗試,有時還要嘗試不同演算法。不過先用一種簡單熟悉的方法,然後,在這個基礎上不斷優化,時常能收獲意想不到的效果。
Ⅲ AI怎麼做
人工智慧(Artificial Intelligence),英文縮寫為AI。它是研究、開發用於模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。
人工智慧是計算機科學的一個分支,它企圖了解智能的實質,並生產出一種新的能以人類智能相似的方式做出反應的智能機器,該領域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統等。人工智慧從誕生以來,理論和技術日益成熟,應用領域也不斷擴大,可以設想,未來人工智慧帶來的科技產品,將會是人類智慧的「容器」。人工智慧可以對人的意識、思維的信息過程的模擬。人工智慧不是人的智能,但能像人那樣思考、也可能超過人的智能。
人工智慧是一門極富挑戰性的科學,從事這項工作的人必須懂得計算機知識,心理學和哲學。人工智慧是包括十分廣泛的科學,它由不同的領域組成,如機器學習,計算機視覺等等,總的說來,人工智慧研究的一個主要目標是使機器能夠勝任一些通常需要人類智能才能完成的復雜工作。但不同的時代、不同的人對這種「復雜工作」的理解是不同的。[1]2017年12月,人工智慧入選「2017年度中國媒體十大流行語」。[2]2021年9月25日,為促進人工智慧健康發展,《新一代人工智慧倫理規范》發布。
用來研究人工智慧的主要物質基礎以及能夠實現人工智慧技術平台的機器就是計算機,人工智慧的發展歷史是和計算機科學技術的發展史聯系在一起的。除了計算機科學以外,人工智慧還涉及資訊理論、控制論、自動化、仿生學、生物學、心理學、數理邏輯、語言學、醫學和哲學等多門學科。人工智慧學科研究的主要內容包括:知識表示、自動推理和搜索方法、機器學習和知識獲取、知識處理系統、自然語言理解、計算機視覺、智能機器人、自動程序設計等方面。
研究方法
如今沒有統一的原理或範式指導人工智慧研究。許多問題上研究者都存在爭論。其中幾個長久以來仍沒有結論的問題是:是否應從心理或神經方面模擬人工智慧?或者像鳥類生物學對於航空工程一樣,人類生物學對於人工智慧研究是沒有關系的?智能行為能否用簡單的原則(如邏輯或優化)來描述?還是必須解決大量完全無關的問題?
智能是否可以使用高級符號表達,如詞和想法?還是需要「子符號」的處理?JOHN HAUGELAND提出了GOFAI(出色的老式人工智慧)的概念,也提議人工智慧應歸類為SYNTHETIC INTELLIGENCE,[29]這個概念後來被某些非GOFAI研究者採納。
大腦模擬
主條目:控制論和計算神經科學
20世紀40年代到50年代,許多研究者探索神經病學,信息理論及控制論之間的聯系。其中還造出一些使用電子網路構造的初步智能,如W. GREY WALTER的TURTLES和JOHNS HOPKINS BEAST。 這些研究者還經常在普林斯頓大學和英國的RATIO CLUB舉行技術協會會議.直到1960, 大部分人已經放棄這個方法,盡管在80年代再次提出這些原理。
符號處理
主條目:GOFAI
當20世紀50年代,數字計算機研製成功,研究者開始探索人類智能是否能簡化成符號處理。研究主要集中在卡內基梅隆大學, 斯坦福大學和麻省理工學院,而各自有獨立的研究風格。JOHN HAUGELAND稱這些方法為GOFAI(出色的老式人工智慧)。[33] 60年代,符號方法在小型證明程序上模擬高級思考有很大的成就。基於控制論或神經網路的方法則置於次要。[34] 60~70年代的研究者確信符號方法最終可以成功創造強人工智慧的機器,同時這也是他們的目標。
認知模擬經濟學家赫伯特·西蒙和艾倫·紐厄爾研究人類問題解決能力和嘗試將其形式化,同時他們為人工智慧的基本原理打下基礎,如認知科學, 運籌學和經營科學。他們的研究團隊使用心理學實驗的結果開發模擬人類解決問題方法的程序。這方法一直在卡內基梅隆大學沿襲下來,並在80年代於SOAR發展到高峰。基於邏輯不像艾倫·紐厄爾和赫伯特·西蒙,JOHN MCCARTHY認為機器不需要模擬人類的思想,而應嘗試找到抽象推理和解決問題的本質,不管人們是否使用同樣的演算法。他在斯坦福大學的實驗室致力於使用形式化邏輯解決多種問題,包括知識表示, 智能規劃和機器學習. 致力於邏輯方法的還有愛丁堡大學,而促成歐洲的其他地方開發編程語言PROLOG和邏輯編程科學.「反邏輯」斯坦福大學的研究者 (如馬文·閔斯基和西摩爾·派普特)發現要解決計算機視覺和自然語言處理的困難問題,需要專門的方案-他們主張不存在簡單和通用原理(如邏輯)能夠達到所有的智能行為。ROGER SCHANK 描述他們的「反邏輯」方法為 "SCRUFFY" .常識知識庫 (如DOUG LENAT的CYC)就是"SCRUFFY"AI的例子,因為他們必須人工一次編寫一個復雜的概念。基於知識大約在1970年出現大容量內存計算機,研究者分別以三個方法開始把知識構造成應用軟體。這場「知識革命」促成專家系統的開發與計劃,這是第一個成功的人工智慧軟體形式。「知識革命」同時讓人們意識到許多簡單的人工智慧軟體可能需要大量的知識。
子符號法
80年代符號人工智慧停滯不前,很多人認為符號系統永遠不可能模仿人類所有的認知過程,特別是感知,機器人,機器學習和模式識別。很多研究者開始關注子符號方法解決特定的人工智慧問題。
自下而上, 介面AGENT,嵌入環境(機器人),行為主義,新式AI機器人領域相關的研究者,如RODNEY BROOKS,否定符號人工智慧而專注於機器人移動和求生等基本的工程問題。他們的工作再次關注早期控制論研究者的觀點,同時提出了在人工智慧中使用控制理論。這與認知科學領域中的表徵感知論點是一致的:更高的智能需要個體的表徵(如移動,感知和形象)。計算智能80年代中DAVID RUMELHART 等再次提出神經網路和聯結主義. 這和其他的子符號方法,如模糊控制和進化計算,都屬於計算智能學科研究范疇。
統計學法
90年代,人工智慧研究發展出復雜的數學工具來解決特定的分支問題。這些工具是真正的科學方法,即這些方法的結果是可測量的和可驗證的,同時也是人工智慧成功的原因。共用的數學語言也允許已有學科的合作(如數學,經濟或運籌學)。STUART J. RUSSELL和PETER NORVIG指出這些進步不亞於「革命」和「NEATS的成功」。有人批評這些技術太專注於特定的問題,而沒有考慮長遠的強人工智慧目標。
集成方法
智能AGENT範式智能AGENT是一個會感知環境並作出行動以達致目標的系統。最簡單的智能AGENT是那些可以解決特定問題的程序。更復雜的AGENT包括人類和人類組織(如公司)。這些範式可以讓研究者研究單獨的問題和找出有用且可驗證的方案,而不需考慮單一的方法。一個解決特定問題的AGENT可以使用任何可行的方法-一些AGENT用符號方法和邏輯方法,一些則是子符號神經網路或其他新的方法。範式同時也給研究者提供一個與其他領域溝通的共同語言--如決策論和經濟學(也使用ABSTRACT AGENTS的概念)。90年代智能AGENT範式被廣泛接受。AGENT體系結構和認知體系結構研究者設計出一些系統來處理多ANGENT系統中智能AGENT之間的相互作用。一個系統中包含符號和子符號部分的系統稱為混合智能系統 ,而對這種系統的研究則是人工智慧系統集成。分級控制系統則給反應級別的子符號AI 和最高級別的傳統符號AI提供橋梁,同時放寬了規劃和世界建模的時間。RODNEY BROOKS的SUBSUMPTION ARCHITECTURE就是一個早期的分級系統計劃。
智能模擬
機器視、聽、觸、感覺及思維方式的模擬:指紋識別,人臉識別,視網膜識別,虹膜識別,掌紋識別,專家系統,智能搜索,定理證明,邏輯推理,博弈,信息感應與辨證處理。
學科範疇
人工智慧是一門邊沿學科,屬於自然科學、社會科學、技術科學三向交叉學科。
涉及學科
哲學和認知科學,數學,神經生理學,心理學,計算機科學,資訊理論,控制論,不定性論,仿生學,社會結構學與科學發展觀。
研究范疇
語言的學習與處理,知識表現,智能搜索,推理,規劃,機器學習,知識獲取,組合調度問題,感知問題,模式識別,邏輯程序設計,軟計算,不精確和不確定的管理,人工生命,神經網路,復雜系統,遺傳演算法人類思維方式,最關鍵的難題還是機器的自主創造性思維能力的塑造與提升。
安全問題
人工智慧還在研究中,但有學者認為讓計算機擁有智商是很危險的,它可能會反抗人類。這種隱患也在多部電影中發生過,其主要的關鍵是允不允許機器擁有自主意識的產生與延續,如果使機器擁有自主意識,則意味著機器具有與人同等或類似的創造性,自我保護意識,情感和自發行為。
實現方法
人工智慧在計算機上實現時有2種不同的方式。一種是採用傳統的編程技術,使系統呈現智能的效果,而不考慮所用方法是否與人或動物機體所用的方法相同。這種方法叫工程學方法(ENGINEERING APPROACH),它已在一些領域內作出了成果,如文字識別、電腦下棋等。另一種是模擬法(MODELING APPROACH),它不僅要看效果,還要求實現方法也和人類或生物機體所用的方法相同或相類似。遺傳演算法(GENERIC ALGORITHM,簡稱GA)和人工神經網路(ARTIFICIAL NEURAL NETWORK,簡稱ANN)均屬後一類型。遺傳演算法模擬人類或生物的遺傳-進化機制,人工神經網路則是模擬人類或動物大腦中神經細胞的活動方式。為了得到相同智能效果,兩種方式通常都可使用。採用前一種方法,需要人工詳細規定程序邏輯,如果游戲簡單,還是方便的。如果游戲復雜,角色數量和活動空間增加,相應的邏輯就會很復雜(按指數式增長),人工編程就非常繁瑣,容易出錯。而一旦出錯,就必須修改原程序,重新編譯、調試,最後為用戶提供一個新的版本或提供一個新補丁,非常麻煩。採用後一種方法時,編程者要為每一角色設計一個智能系統(一個模塊)來進行控制,這個智能系統(模塊)開始什麼也不懂,就像初生嬰兒那樣,但它能夠學習,能漸漸地適應環境,應付各種復雜情況。這種系統開始也常犯錯誤,但它能吸取教訓,下一次運行時就可能改正,至少不會永遠錯下去,用不到發布新版本或打補丁。利用這種方法來實現人工智慧,要求編程者具有生物學的思考方法,入門難度大一點。但一旦入了門,就可得到廣泛應用。由於這種方法編程時無須對角色的活動規律做詳細規定,應用於復雜問題,通常會比前一種方法更省力。
Ⅳ 人工智慧如何入門
人工智慧的入門學習需要具備以下知識結構:
第一:編程語言。編程語言是學習人工智慧的基礎內容之一,掌握了編程語言才能完成一系列具體的實驗。推薦學習Python語言,一方面原因是Python語言簡單易學,實驗環境也易於搭建,另一方面原因是Python語言有豐富的庫支持。目前Python語言在人工智慧領域有廣泛的應用,包括機器學習、自然語言處理和計算機視覺等方向。
在完成以上內容的學習之後,最好能參加一個人工智慧的項目組(課題組),在具體的實踐中完成進一步的學習過程。
Ⅳ 求一個關於人工智慧的小實驗
人工智慧第二次實驗報告
1.實驗題目:
遺傳演算法的設計與實現
2.實驗目的:
通過人工智慧課程的學習,熟悉遺傳演算法的簡單應用。
3.實驗內容
用遺傳演算法求解f (x) = x2 的最大值,x∈ [0,31],x取整數。
可以看出該函數比較簡單,只要是為了體現遺傳演算法的思想,在問題選擇上,選了一個比較容易實現的,把主要精力放在遺傳演算法的實現,以及核心思想體會上。
4. 實驗過程:
1. 實現過程
(1)編碼
使用二進制編碼,隨機產生一個初始種群。L 表示編碼長度,通常由對問題的求解精度決定,編碼長度L 越長,可期望的最優解的精度也就越高,過大的L 會增大運算量。針對該問題進行了簡化,因為題設中x∈ [0,31],所以將二進制長度定為5就夠用了;
(2)生成初始群體
種群規模表示每一代種群中所含個體數目。隨機產生N個初始串結構數據,每個串結構數據成為一個個體,N個個體組成一個初始群體,N表示種群規模的大小。當N取值較小時,可提高遺傳演算法的運算速度,但卻降低種群的多樣性,容易引起遺傳演算法早熟,出現假收斂;而N當取值較大時,又會使得遺傳演算法效率降低。一般建議的取值范圍是20—100。
(3)適應度檢測
根據實際標准計算個體的適應度,評判個體的優劣,即該個體所代表的可行解的優劣。本例中適應度即為所求的目標函數;
(4)選擇
從當前群體中選擇優良(適應度高的)個體,使它們有機會被選中進入下一次迭代過程,舍棄適應度低的個體。本例中採用輪盤賭的選擇方法,即個體被選擇的幾率與其適應度值大小成正比;
(5)交叉
遺傳操作,根據設置的交叉概率對交配池中個體進行基因交叉操作,形成新一代的種群,新一代中間個體的信息來自父輩個體,體現了信息交換的原則。交叉概率控制著交叉操作的頻率,由於交叉操作是遺傳演算法中產生新個體的主要方法,所以交叉概率通常應取較大值;但若過大的話,又可能破壞群體的優良模式。一般取0.4到0.99。
(6)變異
隨機選擇中間群體中的某個個體,以變異概率大小改變個體某位基因的值。變異為產生新個體提供了機會。變異概率也是影響新個體產生的一個因素,變異概率小,產生新個體少;變異概率太大,又會使遺傳演算法變成隨機搜索。一般取變異概率為0.0001—0.1。
(7)結束條件
當得到的解大於等於900時,結束。從而觀看遺傳的效率問題
Ⅵ 人工智慧實驗報告
人工智慧實驗報告.docx
文檔名稱:人工智慧實驗報告.docx
格式:docx 大小:0.06MB 總頁數:14 展開↓
更多功能
免費預覽本文檔(全文)
下載敬告:本站不保證該用戶上傳的文檔完整性,不預覽、不比對內容而直接下載產生的反悔... 展開↓
文檔介紹:「人工智慧」實驗報告專業智能科學與技術班級學號姓名日期:2015.實驗一搜索策略一實驗內容熟悉和掌握啟發式搜索的定義、估價函數和演算法過程;比較不同演算法的性能。2. 修改八數碼問題或路徑規劃問題的源程序,改變其啟發函數定義,觀察結果的變化,分析原因。3. 熟悉和掌握各種搜索策略的思想,掌握A*演算法的定義、估價函數和演算法過程,理解求解流程和搜索順序。二實驗思路1.分別以各種搜索演算法為例演示搜索過程,分析各種演算法中的OPEN表CLOSE表的生成過程,分析估價函數對搜索演算法的影響,分析某種啟發式搜索演算法的特點。進入演示系統後,選擇搜索策略演示程序,可從多種不同搜索演算法選擇裝載相
Ⅶ 人工智慧研究內容有哪些(簡答題)
人工智慧學科研究的主要內容包括:知識表示、自動推理和搜索方法、機器學習和知識獲取、知識處理系統、自然語言理解、計算機視覺、智能機器人、自動程序設計等方面。
用來研究人工智慧的主要物質基礎以及能夠實現人工智慧技術平台的機器就是計算機,人工智慧的發展歷史是和計算機科學技術的發展史聯系在一起的。除了計算機科學以外,人工智慧還涉及資訊理論、控制論、自動化、仿生學、生物學、心理學、數理邏輯、語言學、醫學和哲學等多門學科。
(7)人工智慧實驗方法與步驟擴展閱讀
智能模擬:機器視、聽、觸、感覺及思維方式的模擬:指紋識別,人臉識別,視網膜識別,虹膜識別,掌紋識別,專家系統,智能搜索,定理證明,邏輯推理,博弈,信息感應與辨證處理。
學科範疇:人工智慧是一門邊沿學科,屬於自然科學、社會科學、技術科學三向交叉學科。
涉及學科:哲學和認知科學,數學,神經生理學,心理學,計算機科學,資訊理論,控制論,不定性論,仿生學,社會結構學與科學發展觀。
Ⅷ 人工智慧的科學研究方向
利用計算機模擬大腦的方向,計算神經科學注重神經元層面的模擬,但智能並不產生於神經元層面。多數生物的神經元都類似,但智能卻天差地別,原因可能在於神經網路的差異,如智力較高的靈長類生物的細胞要比嚙齒類動物的神經網路更加復雜。
研究大腦有不同的學科,心理學,認知科學,認知神經科學,神經生物學,甚至分子生物學等,不同的學科在不同的尺度下研究大腦,就像我們在不同的倍數的顯微鏡下觀察一個物體,更大的尺度意味著我們能看到更宏觀的東西,但可能忽略了某些細節,相反,更小的尺度意味著我們能夠觀察到更多的細節,但忽略了宏觀的整體性。利用計算機模擬大腦需要一個合適的尺度,現有的計算神經科學尺度略小。
利用計算機模擬大腦涉及兩個方面的學科,第一是計算機科學,第二是腦科學,目前二者結合的發展顯然不能讓人滿意,問題出在哪裡?原因不在計算機科學,而在神經科學或者是腦科學。現在多數的神經科學文獻研究發現的都是相關而非因果關系,例如楊揚、蒲慕明等人發現恐懼經典條件反射的學習可以引發聽覺至杏仁核神經通路中突觸的形成和增長[7],這是一種相關關系,但為什麼突觸的形成會導致經典條件反射是不清楚的。神經科學或者腦科學需要一個像牛頓那樣的仁波切,能夠整合現有零散的腦科學的實驗證據,形成理論框架,提出合適的模型。就像傑夫·霍金斯[8]認為的那樣,神經科學需要一個自上而下的理論框架,哪怕是錯的。一旦模型提出來之後,相信計算機人員可以很快的在計算機上模擬出來。
所以合理的人工智慧實驗者應由神經科學和計算機人員組成,其中神經科學尤為重要,因為他們需要綜合現有神經科學的實驗證據來提出模型,同時,在計算機模擬的過程中發現問題後,還需要修改自己的模型。這個模型不應該拘泥於其形式是否與大腦內的神經元相同,而更應該關注夠其是否能說明生物學習行為的產生和其原理。因此這是一種自上而下的模擬,從學習行為出發,至原理至模型。錯誤的做法是自下而上的模擬——從單個神經元出發的模擬,這會讓這個方向產生極大的困難和挫敗感,畢竟人類大腦的神經元有近千億個,突觸的數量更要高上2-3個數量級,可惜的是,這便是目前計算神經科學做的。