Ⅰ 四則混合運算簡便技巧
在學習了加、減、乘、除這些基本運算後,四年級下學期,同學們會開始接觸到四則運算。四則混合運算看起來很簡單,可大家往往容易在運算順序上犯錯,因此成了出錯率最高的題型之一。
做四則混合運算題目時,大家可以遵循「一看二定三想四算」的步驟:一看,就是審題,看題目里有幾個數,是什麼數,有幾種運算符號,運算符號和數字有什麼特點,有什麼內在聯系;二定,就是確定運算順序,先算什麼,再算什麼,後算什麼,確定順序很重要;三想,即進一步分析題目中數值特徵和運算間的聯系,看看能否應用運算定律、運算性質進行簡便計算;四算,顧名思義就是計算了。
這其中,「二定」是最關鍵的一步。關於四則混合運算順序,也是有法則可依的:
1.在沒有括弧的算式里,只有加減法或只有乘除法的,都要從左往右按順序運算;
2.在沒有括弧的算式里,有乘除法和加減法的,要先算乘除再算加減;
3.算式里有括弧的要先算括弧裡面的。
為了幫大家更好地記憶,有人專門編了一首歌訣:
運算順序歌
打竹板,響連天,各位同學聽我言。
今天不把別的表,四則運算聊一聊。
混合試題要計算,明確順序是關鍵。
同級運算最好辦,從左到右依次算。
兩級運算都出現,先算乘除後加減。
遇到括弧怎麼辦?小括弧里算在先,
中括弧里後邊算,次序千萬不能亂。
每算一步都檢驗,又對又快喜心間。
怎麼樣?關於四則混合運算的計算方法和注意事項,你都掌握了嗎?
檢驗大家學習成果的時刻到了!出兩道題考考大家:
216÷[12×(57-51)]
812-700÷(9+31×11)
Ⅱ 四則運演算法則
四則是指加法、減法、乘法、除法的計演算法則。
在數學中,當一級運算(加減)和二級運算(乘除)同時出現在一個式子中時,它們的運算順序是先乘除,後加減,如果有括弧就先算括弧內後算括弧外,同一級運算順序是從左到右,這樣的運算叫四則運算。
四則運算的法則:
1、整數加、減計演算法則:
1)要把相同數位對齊,再把相同計數單位上的數相加或相減;
2)哪一位滿十就向前一位進。
2、小數加、減法的計演算法則:
1)計算小數加、減法,先把各數的小數點對齊(也就是把相同數位上的數對齊),
2)再按照整數加、減法的法則進行計算,最後在得數里對齊橫線上的小數點點上小數點。
(得數的小數部分末尾有0,一般要把0去掉。)
3、分數加、減計演算法則:
1)分母相同時,只把分子相加、減,分母不變;
2)分母不相同時,要先通分成同分母分數再相加、減。
4、整數乘法法則:
1)從右起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對個因數的哪一位對齊;
2)然後把幾次乘得的數加起來。
(整數末尾有0的乘法:可以先把0前面的數相乘,然後看各因數的末尾一共有幾個0,就在乘得的數的末尾添寫幾個0。)
5、小數乘法法則:
1)按整數乘法的法則算出積;
2)再看因數中一共有幾位小數,就從得數的右邊起數出幾位,點上小數點。
3)得數的小數部分末尾有0,一般要把0去掉。
6、分數乘法法則:把各個分數的分子乘起來作為分子,各個分數的分母相乘起來作為分母,(即乘上這個分數的倒數),然後再約分。
7、整數的除法法則
1)從被除數的商位起,先看除數有幾位,再用除數試除被除數的前幾位,如果它比除數小,再試除多一位數;
2)除到被除數的哪一位,就在那一位上面寫上商;
3)每次除後餘下的數必須比除數小。
8、除數是整數的小數除法法則:
1)按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;
2)如果除到被除數的末尾仍有餘數,就在余數後面補零,再繼續除。
9、除數是小數的小數除法法則:
1)先看除數中有幾位小數,就把被除數的小數點向右移動幾位,數位不夠的用零補足;
2)然後按照除數是整數的小數除法來除
10、分數的除法法則:
1)用被除數的分子與除數的分母相乘作為分子;
2)用被除數的分母與除數的分子相乘作為分母。
Ⅲ 小數四則運算學生理解程序和步驟
小數的四則運算 教學要求: 使學生理解小數加、減、乘、除的意義和掌握計演算法則。 使學生會用計算器計算小數加減法和乘除法。 使學生會用「四捨五入」法,截取近似數。 使學生理解整數四則運算定律對於小數同樣適用。並會運用這些定律進行簡便計算。 1.小數加法和減法 課題:小數加、減法的意義和計
Ⅳ 計算機是如何進行四則運算的
方法如下:
用Windows計算器可以快速進行四則運算:
工具/原料
Windows計算器
方法/步驟
1、打開記事本,輸入四則運算算式(如42+6*(12-4)=),選中算式後復制(Ctrl+C).
2、打開計算器,選擇「查看」——「科學型」.(注意:選「標准型」會使計算結果不正確!)
3、選擇「編輯」——「粘貼」(或直接按Ctrl+V鍵),計算結果就顯示出來了.
Ⅳ 四則運算的順序
四則運算的運算順序:
1、如果只有加和減或者只有乘和除,從左往右計算。
2、如果一級運算和二級運算,同時有,先算二級運算
3、如果一級,二級,三級運算(即乘方、開方和對數運算)同時有,先算三級運算再算其他兩級。
4、如果有括弧,要先算括弧里的數(不管它是什麼級的,都要先算)。
5、在括弧裡面,也要先算三級,然後到二級、一級。
Ⅵ 四則運算的方法及例題
在數學中,當一級運算(加減)和二級運算(乘除)同時出現在一個式子中時,它們的運算順序是先乘除,後加減,如果有括弧就先算括弧內後算括弧外,同一級運算順序是從左到右,這樣的運算叫四則運算.
四則是指加法、減法、乘法、除法的計演算法則.
一道四則運算的算式並不需要一定有四種運算符號,一般指由兩個或兩個以上運算符號及括弧,把多數合並成一個數的運算.
加減互為逆運算;乘除互為逆運算;乘法是加法的簡便運算.
30.8÷[14-(9.85+1.07)]
[60-(9.5+28.9)]÷0.18
2.881÷0.43-0.24×3.5
20×[(2.44-1.8)÷0.4+0.15]
28-(3.4+1.25×2.4)
2.55×7.1+2.45×7.1
777×9+1111×3
0.8×〔15.5-(3.21+5.79)〕
(31.8+3.2×4)÷5
31.5×4÷(6+3)
0.64×25×7.8+2.2
2÷2.5+2.5÷2
194-64.8÷1.8×0.9
36.72÷4.25×9.9
5180-705×6
24÷2.4-2.5×0.8
(4121+2389)÷7
671×15-974
469×12+1492
405×(3213-3189)
Ⅶ 四則運算的方法是什麼
四則運算就是加減乘除的運算,先算高級運算乘除法,再算加減法,同級運算從左到右。
Ⅷ 四則混合運演算法則
1、加法交換律:在兩個數的加法運算中,交換兩個加數的位置,和不變。字母表示:
a+b=b+a
2、加法結合律:三個數相加,先把前兩個數相加,再加另一個加數;或者先把後兩個數相加,再加另一個加數,和不變。字母表示:
(a+b)+c=a+(b+c)
3、乘法交換律:兩個數相乘的乘法運算中,交換兩個乘數的位置,積不變。字母表示:
a×b=b×a
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,積不變。字母表示:
(a×b)×c=a×(b×c)
5、乘法分配律:兩個數相加(或相減)再乘另一個數,等於把這個數分別同兩個加數(減數)相乘,再把兩個積相加(相減),得數不變。字母表示:
①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;
②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)
6、連減定律:
①一個數連續減兩個數, 等於這個數減後兩個數的和,得數不變;字母表示:
a—b—c=a—(b+c);a—(b+c)=a—b—c;
②在三個數的加減法運算中,交換後兩個數的位置,得數不變。字母表示:
a—b—c=a—c—b;a—b+c=a+c—b
7、連除定律:
①一個數連續除以兩個數, 等於這個數除以後兩個數的積,得數不變。字母表示:
a÷b÷c=a÷(b×c);a÷(b×c)=a÷b÷c;
②在三個數的乘除法運算中,交換後兩個數的位置,得數不變。字母表示:
a÷b÷c=a÷c÷b;a÷b×c=a×c÷b
(8)關於四則運算的研究步驟方法擴展閱讀
分數、小數四則混合運算的計算方法
1、分數、小數加減混合運算,當分數能轉化成有限小數時(分母只含有質因數2和5),一般把分數化成小數後計算比較簡便,當有的分數不能化成有限小數時,就把小數化成分數計算。
2、分數、小數乘法混合運算,如果小數與分數的分母約分時,可直接運算或把小數化成分數後再計算比較方便;如果把分數化成小數後能進行簡算,也可以把分數化成小數計算。
3、有些題目,不一定把全題統一化成分數或化成小數計算,可以根現運算順序,分成幾部分進行處理,選擇合適的演算法。
注意:四則混合運算的結果,是分數的要化成最簡分數,假分數要化成帶分數或整數。遇到除不盡的部分而又沒有規定取近似值時,可用分數表示商,也可以按慣例保留兩位小數。
Ⅸ 小數與整數的四則運算的計算方法
有以下方法
1、整數加、減計演算法則:
1)要把相同數位對齊,再把相同計數單位上的數相加或相減;
2)哪一位滿十就向前一位進。
2、小數加、減法的計演算法則:
1)計算小數加、減法,先把各數的小數點對齊(也就是把相同數位上的數對齊),
2)再按照整數加、減法的法則進行計算,最後在得數里對齊橫線上的小數點點上小數點。
(得數的小數部分末尾有0,一般要把0去掉。)
3、分數加、減計演算法則:
1)分母相同時,只把分子相加、減,分母不變;
2)分母不相同時,要先通分成同分母分數再相加、減。
4、整數乘法法則:
1)從右起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對個因數的哪一位對齊;
2)然後把幾次乘得的數加起來。
(整數末尾有0的乘法:可以先把0前面的數相乘,然後看各因數的末尾一共有幾個0,就在乘得的數的末尾添寫幾個0。)
5、小數乘法法則:
1)按整數乘法的法則算出積;
2)再看因數中一共有幾位小數,就從得數的右邊起數出幾位,點上小數點。
3)得數的小數部分末尾有0,一般要把0去掉。
6、分數乘法法則:把各個分數的分子乘起來作為分子,各個分數的分母相乘起來作為分母,(即乘上這個分數的倒數),然後再約分。
7、整數的除法法則
1)從被除數的商位起,先看除數有幾位,再用除數試除被除數的前幾位,如果它比除數小,再試除多一位數;
2)除到被除數的哪一位,就在那一位上面寫上商;
3)每次除後餘下的數必須比除數小。
8、除數是整數的小數除法法則:
1)按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;
2)如果除到被除數的末尾仍有餘數,就在余數後面補零,再繼續除。
9、除數是小數的小數除法法則:
1)先看除數中有幾位小數,就把被除數的小數點向右移動幾位,數位不夠的用零補足;
2)然後按照除數是整數的小數除法來除
10、分數的除法法則:
1)用被除數的分子與除數的分母相乘作為分子;
2)用被除數的分母與除數的分子相乘作為分母。
Ⅹ 對數四則運演算法則的推理過程
一、四則運演算法則:
loga(AB)=loga A+loga B
loga(A/B)=loga A-loga B
logaN^x=xloga N
二、換底公式
logM N=loga M/loga N
三、換底公式導出:
logM N=-logN M
四、對數恆等式
a^(loga M)=M希望我的回答對你有幫助