❶ 電子鍾不懂怎麼調
電子鍾不同,具體的調法也不太一致,大致說下:SET 設置鍵。通常按一下(或是長按),進入電子鍾的設置,比如:日期、時間等等。
將標准秒信號送入「秒計數器」,「秒計數器」採用60進制計數器,每累計60秒發出一個「分脈沖」信號,該信號將作為「分計數器」的時鍾脈沖。「分計數器」也採用60進制計數器,每累計60分鍾,發出一個「時脈沖」信號,該信號將被送到「時計數器」。
「時計數器」採用24進制計時器,可實現對一天24小時的累計。解碼顯示電路將「時」、「分」、「秒」計數器的輸出狀態用七段顯示解碼器解碼,通過七段顯示器顯示出來。
工作原理:
電子鍾是一個將「 時」,「分」,「秒」顯示於人的視覺器官的計時裝置。它的計時周期為24小時,顯示滿刻度為23時59分59秒,具有校時功能和報時功能。因此,一個基本的數字鍾電路主要由解碼顯示器、「時」,「分」,「秒」計數器、校時電路、報時電路和振盪器組成。
主電路系統由秒信號發生器、「時、分、秒」計數器、解碼器及顯示器、校時電路、整點報時電路組成。秒信號產生器是整個系統的時基信號,它直接決定計時系統的精度,一般用石英晶體振盪器加分頻器來實現。
❷ 急求多功能數字鍾的設計,要詳細的製作過程,需要購買的元件以及電路板的詳細電路圖!!!
多功能數字鍾設計一、
緒論 (一) 鍾表的數字化給人們生產生活帶來了極大的方便,而且大大地擴展了鍾表原先的報時功能。諸如定時自動報警、按時自動打鈴、時間程序自動控制、定時廣播、定時啟閉電路、定時開關烘箱、通斷動力設備,甚至各種定時電氣的自動啟用等,所有這些,都是以鍾表數字化為基礎的。因此,研究數字鍾及擴大其應用,有著非常現實的意義。
本系統採用石英晶體振盪器、分頻器、計數器、顯示器和校時電路組成。由LED數碼管來顯示解碼器所輸出的信號。採用了74LS系列中小規模集成晶元。使用了RS觸發器的校時電路。總體方案設計由主體電路和擴展電路兩大部分組成。其中主體電路完成數字鍾的基本功能,擴展電路完成數字鍾的擴展功能。論文安排如下: 1、緒論 闡述研究電子鍾所具有的現實意義。 2、設計內容及設計方案 論述電子鍾的具體設計方案及設計要求。 3、單元電路設計、原理及器件選擇 說明電子鍾的設計原理以及器件的選擇,主要從石英晶體振盪器、分頻器、計數器、顯示器和校時電路五個方面進行說明。 4、繪制整機原理圖 該系統的設計、安裝、調試工作全部完成
二、設計內容及設計方案 (一)設計內容要求 1、設計一個有「時」、「分」、「秒」(23小時59分59秒)顯示且有校時功能的電子鍾。 2、用中小規模集成電路組成電子鍾,並在實驗箱上進行組裝、調試。 3、畫出框圖和邏輯電路圖。 4 、功能擴展: (1)鬧鍾系統 (2)整點報時。在59分51秒、53秒、55秒、57秒輸出750Hz音頻信號,在59分59秒時,輸出1000Hz信號,音像持續1秒,在1000Hz音像結束時刻為整點。 (3)日歷系統。 (二)設計方案及工作原理 數字電子鍾的邏輯框圖如圖1所示。它由石英晶體振盪器、分頻器、計數器、解碼器顯示器和校時電路組成。振盪器產生穩定的高頻脈沖信號,作為數字鍾的時間基準,然後經過分頻器輸出標准秒脈沖。秒計數器滿60後向分計數器進位,分計數器滿60後向小時計數器進位,小時計數器按照「24翻1」規律計數。計數器的輸出分別經解碼器送顯示器顯示。計時出現誤差時,可以用校時電路校時、校分。
三、單元電路設計、原理及器件選擇 (一)石英晶體振盪器 1、重要概念的解釋 (1) 反饋:將放大電路輸出量的一部分或全部,通過一定的方式送回放大電路的輸入端。 (2) 耦合:是指信號由第一級向第二級傳遞的過程。 2、石英晶體振盪器的具體工作原理 石英晶體振盪器的特點是振盪頻率准確、電路結構簡單、頻率易調整。它被廣泛應用於彩電、計算機、遙控器等各類振盪電路中。它還具有壓電效應:在晶體某一方向加一電場,晶體就會產生機械變形;反之,若在晶片的兩側施加機械壓力,則在晶片相應的方向上將產生電場,這種物理現象稱為壓電效應。在這里,我們在晶體某一方向加一電場,從而在與此垂直的方向產生機械振動,有了機械振動,就會在相應的垂直面上產生電場,從而使機械振動和電場互為因果,這種循環過程一直持續到晶體的機械強度限制時,才達到最後穩定,這種壓電諧振的頻率即為晶體振盪器的固有頻率。 用反相器與石英晶體構成的振盪電路如圖2所示。利用兩個非門G1和G2 自我反饋,使它們工作在線性狀態,然後利用石英晶體JU來控制振盪頻率,同時用電容C1來作為兩個非門之間的耦合,兩個非門輸入和輸出之間並接的電阻R1和R2作為負反饋元件用,由於反饋電阻很小,可以近似認為非門的輸出輸入壓降相等。電容C2是為了防止寄生振盪。例如:電路中的石英晶體振盪頻率是4MHz時,則電路的輸出頻率為4MHz。
石英晶體振盪電路 (二)分頻器 1、8421碼制,5421碼制 用四位二進制碼的十六種組合作為代碼,取其中十種組合來表示0-9這十個數字元號。通常,把用四位二進制數碼來表示一位十進制數稱為二-十進制編碼,也叫做BCD碼,見表1。 表1 8421碼 5421碼 0 0000 0000 1 0001 0001 2 0010 0010 3 0011 0011 4 0100 0100 5 0101 1000 6 0110 1001 7 0111 1010 8 1000 1011 9 1001 1100 2、分頻器的具體工作原理 由於石英晶體振盪器產生的頻率很高,要得到秒脈沖,需要用分頻電路。例如,振盪器輸出4MHz信號,通過D觸發器(74LS74)進行4分頻變成1MHz,然後送到10分頻計數器(74LS90,該計數器可以用8421碼制,也可以用5421碼制),經過6次10分頻而獲得1Hz方波信號作為秒脈沖信號。
分頻電路 3、圖中標志的含義 CP——輸入的脈沖信號 C0——進位信號 Q——輸出的脈沖信號 (三)計數器 秒脈沖信號經過6級計數器,分別得到「秒」個位、十位,「分」個位、十位以及「時」個位、十位的計時。「秒」、「分」計數器為60進制,小時為24進制。 1、60進制計數器 (1) 計數器按觸發方式分類 計數器是一種累計時鍾脈沖數的邏輯部件。計數器不僅用於時鍾脈沖計數,還用於定時、分頻、產生節拍脈沖以及數字運算等。計數器是應用最廣泛的邏輯部件之一。按觸發方式,把計數器分成同步計數器和非同步計數器兩種。對於同步計數器,輸入時鍾脈沖時觸發器的翻轉是同時進行的,而非同步計數器中的觸發器的翻轉則不是同時。 (2)60進制計數器的工作原理 「秒」計數器電路與「分」計數器電路都是60進制,它由一級10進制計數器和一級6進制計數器連接構成,如圖4所示,採用兩片中規模集成電路74LS90串接起來構成的「秒」、「分」計數器。
60進制計數電路 IC1是十進制計數器,QD1作為十進制的進位信號,74LS90計數器是十進制非同步計數器,用反饋歸零方法實現十進制計數,IC2和與非門組成六進制計數。74LS90是在CP信號的下降沿翻轉計數,Q A1和 Q C2相與0101的下降沿,作為「分」(「時」)計數器的輸入信號,通過與非門和非門對下一級計數器送出一個高電平一(在此之前輸出的一直是低電平0)。Q B2 和Q C2計數到0110,產生的高電平一分別送到計數器的清零R0(1), R0(2),74LS90內部的R0(1)和R0(2)與非後清零而使計數器歸零,此時傳給下一級計數器的輸入信號又變為低電平0,從而給下一級計數器提供了一個下降沿,使下一級計數器翻轉計數,在這里IC2完成了六進制計數。由此可見IC1和 IC2串聯實現了六十進制計數。 其中:74LS90 可二/五分頻十進制計數器 74LS04 非門 74LS00 二輸入與非門
24進制計數器 小時計數電路是由IC5和IC6組成的24進制計數電路,如圖5所示。 當「時」個位IC5計數輸入端CP5來到第10個觸發信號時,IC5計數器自動清零,進位端QD5向IC6「時」十位計數器輸出進位信號,當第24個「時」(來自「分」計數器輸出的進位信號)脈沖到達時,IC5計數器的狀態為「0100」,IC6計數器的狀態為「0010」,此時「時」個位計數器的QC5和「時」十位計數器的QB6輸出為「1」。把它們分別送到IC5和IC6計數器的清零端R0(1)和R0(2),通過7490內部的R0(1)和R0(2)與非後清零,從而完成24進制計數。
24進制計數電路 (四) 解碼與顯示電路 1、顯示器原理(數碼管) 數碼管是數碼顯示器的俗稱。常用的數碼顯示器有半導體數碼管,熒光數碼管,輝光數碼管和液晶顯示器等。 本設計所選用的是半導體數碼管,是用發光二極體(簡稱LED)組成的字形來顯示數字,七個條形發光二極體排列成七段組合字形,便構成了半導體數碼管。半導體數碼管有共陽極和共陰極兩種類型。共陽極數碼管的七個發光二極體的陽極接在一起,而七個陰極則是獨立的。共陰極數碼管與共陽極數碼管相反,七個發光二極體的陰極接在一起,而陽極是獨立的。 當共陽極數碼管的某一陰極接低電平時,相應的二極體發光,可根據字形使某幾段二極體發光,所以共陽極數碼管需要輸出低電平有效的解碼器去驅動。共陰極數碼管則需輸出高電平有效的解碼器去驅動。 2、解碼器原理(74LS47) 解碼為編碼的逆過程。它將編碼時賦予代碼的含義「翻譯」過來。實現解碼的邏輯電路成為解碼器。解碼器輸出與輸入代碼有唯一的對應關系。74LS47是輸出低電平有效的七段字形解碼器,它在這里與數碼管配合使用,表2列出了74LS47的真值表,表示出了它與數碼管之間的關系
輸 入 輸 出 顯示數字元號 LT(——) RBI(——-) A3 A2 A1 A0 BI(—)/RBO(———) a(—) b(—) c(—) d(—) e(—) f(—) g(—) 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 X 0 0 0 1 1 1 0 0 1 1 1 1 1 1 X 0 0 1 0 1 0 0 1 0 0 1 0 2 1 X 0 0 1 1 1 0 0 0 0 1 1 0 3 1 X 0 1 0 0 1 1 0 0 1 1 0 0 4 1 X 0 1 0 1 1 0 1 0 0 1 0 0 5 1 X 0 1 1 0 1 1 1 0 0 0 0 0 6 1 X 0 1 1 1 1 0 0 0 1 1 1 1 7 1 X 1 0 0 0 1 0 0 0 0 0 0 0 8 1 X 1 0 0 1 1 0 0 0 1 1 0 0 9 X X X X X X 0 1 1 1 1 1 1 1 熄滅 1 0 0 0 0 0 0 1 1 1 1 1 1 1 熄滅 0 X X X X X 1 0 0 0 0 0 0 0 8 (1)LT(——):試燈輸入,是為了檢查數碼管各段是否能正常發光而設置的。當LT(——)=0時,無論輸入A3 ,A2 ,A1 ,A0為何種狀態,解碼器輸出均為低電平,若驅動的數碼管正常,是顯示8。 (2)BI(—):滅燈輸入,是為控制多位數碼顯示的滅燈所設置的。BI(—)=0時。不論LT(——)和輸入A3 ,A2 ,A1,A0為何種狀態,解碼器輸出均為高電平,使共陽極數碼管熄滅。 (3)RBI(——-):滅零輸入,它是為使不希望顯示的0熄滅而設定的。當對每一位A3= A2 =A1 =A0=0時,本應顯示0,但是在RBI(——-)=0作用下,使解碼器輸出全為高電平。其結果和加入滅燈信號的結果一樣,將0熄滅。 (4)RBO(———):滅零輸出,它和滅燈輸入BI(—)共用一端,兩者配合使用,可以實現多位數碼顯示的滅零控制。 3、解碼器與顯示器的配套使用 解碼是把給定的代碼進行翻譯,本設計即是將時、分、秒計數器輸出的四位二進制數代碼翻譯為相應的十進制數,並通過顯示器顯示,通常顯示器與解碼器是配套使用的。我們選用的七段解碼驅動器(74LS47)和數碼管(LED)是共陽極接法(需要輸出低電平有效的解碼器驅動)。
解碼顯示電路 (五)校時電路 1、RS觸發器基本RS觸發器 R(—) S(—) Q Q(—) 說 明 0 1 1 0 1 1 0 0 0 1 0或1 1 1 0 1或0 1 置0 置1 保持原來狀態 不正常狀態,0信號消失後,觸發器狀態不定 2、無震顫開關電路 無震顫開關電路的原理:當開關K的刀扳向1點時,S(—)=0,R(—)=1,觸發器置1。S(—)端由於開關K的震顫而斷續接地幾次時,也沒有什麼影響,觸發器置1後將保持1狀態不變。因為K震顫只是使S(—)端離開地,而不至於使R(—)端接地,觸發器可靠置1。 當開關K從S(—)端扳向R(—)端時,有同樣的效果,觸發器可靠置0。從Q端或Q(—)端反映開關的動作,輸出電平是穩定的。 3、校時電路的實現原理 當電子鍾接通電源或者計時發現誤差時,均需要校正時間。校時電路分別實現對時、分的校準,由於4個機械開關具有震顫現象,因此用RS觸發器作為去抖動電路。採用RS基本觸發器及單刀雙擲開關,閘刀常閉於2點,每搬動一次產生一個計數脈沖,實現校時功能.
❸ 求助:大三課程設計《數字電子鍾的設計》詳細方案過程!!急!急!急!
設計目的
熟悉集成電路的引腳安排.
掌握各晶元的邏輯功能及使用方法.
了解麵包板結構及其接線方法.
了解數字鍾的組成及工作原理.
熟悉數字鍾的設計與製作.
設計要求
1.設計指標
時間以24小時為一個周期;
顯示時,分,秒;
有校時功能,可以分別對時及分進行單獨校時,使其校正到標准時間;
計時過程具有報時功能,當時間到達整點前5秒進行蜂鳴報時;
為了保證計時的穩定及准確須由晶體振盪器提供表針時間基準信號.
2.設計要求
畫出電路原理圖(或模擬電路圖);
元器件及參數選擇;
電路模擬與調試;
PCB文件生成與列印輸出.
3.製作要求 自行裝配和調試,並能發現問題和解決問題.
4.編寫設計報告 寫出設計與製作的全過程,附上有關資料和圖紙,有心得體會.
設計原理及其框圖
1.數字鍾的構成
數字鍾實際上是一個對標准頻率(1HZ)進行計數的計數電路.由於計數的起始時間不可能與標准時間(如北京時間)一致,故需要在電路上加一個校時電路,同時標準的1HZ時間信號必須做到准確穩定.通常使用石英晶體振盪器電路構成數字鍾.圖 3-1所示為數字鍾的一般構成框圖.
圖3-1 數字鍾的組成框圖
⑴晶體振盪器電路
晶體振盪器電路給數字鍾提供一個頻率穩定準確的32768Hz的方波信號,可保證數字鍾的走時准確及穩定.不管是指針式的電子鍾還是數字顯示的電子鍾都使用了晶體振盪器電路.
⑵分頻器電路
分頻器電路將32768Hz的高頻方波信號經32768()次分頻後得到1Hz的方波信號供秒計數器進行計數.分頻器實際上也就是計數器.
⑶時間計數器電路
時間計數電路由秒個位和秒十位計數器,分個位和分十位計數器及時個位和時十位計數器電路構成,其中秒個位和秒十位計數器,分個位和分十位計數器為60進制計數器,而根據設計要求,時個位和時十位計數器為12進制計數器.
⑷解碼驅動電路
解碼驅動電路將計數器輸出的8421BCD碼轉換為數碼管需要的邏輯狀態,並且為保證數碼管正常工作提供足夠的工作電流.
⑸數碼管
數碼管通常有發光二極體(LED)數碼管和液晶(LCD)數碼管,本設計提供的為LED數碼管.
2.數字鍾的工作原理
1)晶體振盪器電路
晶體振盪器是構成數字式時鍾的核心,它保證了時鍾的走時准確及穩定.
圖3-2所示電路通過CMOS非門構成的輸出為方波的數字式晶體振盪電路,這個電路中,CMOS非門U1與晶體,電容和電阻構成晶體振盪器電路,U2實現整形功能,將振盪器輸出的近似於正弦波的波形轉換為較理想的方波.輸出反饋電 阻R1為非門提供偏置,使電路工作於放大區域,即非門的功能近似於一個高增益的反相放大器.電容C1,C2與晶體構成一個諧振型網路,完成對振盪頻率的控制功能,同時提供了一個180度相移,從而和非門構成一個正反饋網路,實現了振盪器的功能.由於晶體具有較高的頻率穩定性及准確性,從而保證了輸出頻率的穩定和准確.
晶體XTAL的頻率選為32768HZ.該元件專為數字鍾電路而設計,其頻率較低,有利於減少分頻器級數.
從有關手冊中,可查得C1,C2均為30pF.當要求頻率准確度和穩定度更高時,還可接入校正電容並採取溫度補償措施.
由於CMOS電路的輸入阻抗極高,因此反饋電阻R1可選為10MΩ.較高的反饋電阻有利於提高振盪頻率的穩定性.
非門電路可選74HC00.
圖3-2 COMS晶體振盪器
2)分頻器電路
通常,數字鍾的晶體振盪器輸出頻率較高,為了得到1Hz的秒信號輸入,需要對振盪器的輸出信號進行分頻.
通常實現分頻器的電路是計數器電路,一般採用多級2進制計數器來實現.例如,將32768Hz的振盪信號分頻為1HZ的分頻倍數為32768(215),即實現該分頻功能的計數器相當於15極2進制計數器.常用的2進制計數器有74HC393等.
本實驗中採用CD4060來構成分頻電路.CD4060在數字集成電路中可實現的分頻次數最高,而且CD4060還包含振盪電路所需的非門,使用更為方便.
CD4060計數為14級2進制計數器,可以將32768HZ的信號分頻為2HZ,其內部框圖如圖3-3所示,從圖中可以看出,CD4060的時鍾輸入端兩個串接的非門,因此可以直接實現振盪和分頻的功能.
圖3-3 CD4046內部框圖
3)時間計數單元
時間計數單元有時計數,分計數和秒計數等幾個部分.
時計數單元一般為12進制計數器計數器,其輸出為兩位8421BCD碼形式;分計數和秒計數單元為60進制計數器,其輸出也為8421BCD碼.
一般採用10進制計數器74HC390來實現時間計數單元的計數功能.為減少器件使用數量,可選74HC390,其內部邏輯框圖如圖 2.3所示.該器件為雙2—5-10非同步計數器,並且每一計數器均提供一個非同步清零端(高電平有效).
圖3-4 74HC390(1/2)內部邏輯框圖
秒個位計數單元為10進制計數器,無需進制轉換,只需將QA與CPB(下降沿有效)相連即可.CPA(下降沒效)與1HZ秒輸入信號相連,Q3可作為向上的進位信號與十位計數單元的CPA相連.
秒十位計數單元為6進制計數器,需要進制轉換.將10進制計數器轉換為6進制計數器的電路連接方法如圖3-5所示,其中Q2可作為向上的進位信號與分個位的計數單元的CPA相連.
圖3-5 10進制——6進制計數器轉換電路
分個位和分十位計數單元電路結構分別與秒個位和秒十位計數單元完全相同,只不過分個位計數單元的Q3作為向上的進位信號應與分十位計數單元的CPA相連,分十位計數單元的Q2作為向上的進位信號應與時個位計數單元的CPA相連.
時個位計數單元電路結構仍與秒或個位計數單元相同,但是要求,整個時計數單元應為12進制計數器,不是10的整數倍,因此需將個位和十位計數單元合並為一個整體才能進行12進制轉換.利用1片74HC390實現12進制計數功能的電路如圖3-6所示.
另外,圖3-6所示電路中,尚余-2進制計數單元,正好可作為分頻器2HZ輸出信號轉化為1HZ信號之用.
圖3-6 12進制計數器電路
4)解碼驅動及顯示單元
計數器實現了對時間的累計以8421BCD碼形式輸出,選用顯示解碼電路將計數器的輸出數碼轉換為數碼顯示器件所需要的輸出邏輯和一定的電流,選用CD4511作為顯示解碼電路,選用LED數碼管作為顯示單元電路.
5)校時電源電路
當重新接通電源或走時出現誤差時都需要對時間進行校正.通常,校正時間的方法是:首先截斷正常的計數通路,然後再進行人工出觸發計數或將頻率較高的方波信號加到需要校正的計數單元的輸入端,校正好後,再轉入正常計時狀態即可.
根據要求,數字鍾應具有分校正和時校正功能,因此,應截斷分個位和時個位的直接計數通路,並採用正常計時信號與校正信號可以隨時切換的電路接入其中.圖3-7所示即為帶有基本RS觸發器的校時電路,
圖3-7 帶有消抖動電路的校正電路
6)整點報時電路
一般時鍾都應具備整點報時電路功能,即在時間出現整點前數秒內,數字鍾會自動報時,以示提醒.其作用方式是發出連續的或有節奏的音頻聲波,較復雜的也可以是實時語音提示.
根據要求,電路應在整點前10秒鍾內開始整點報時,即當時間在59分50秒到59分59秒期間時,報時電路報時控制信號.報時電路選74HC30,選蜂鳴器為電聲器件.
元器件
1.實驗中所需的器材
5V電源.
麵包板1塊.
示波器.
萬用表.
鑷子1把.
剪刀1把.
網路線2米/人.
共陰八段數碼管6個.
CD4511集成塊6塊.
CD4060集成塊1塊.
74HC390集成塊3塊.
74HC51集成塊1塊.
74HC00集成塊5塊.
74HC30集成塊1塊.
10MΩ電阻5個.
500Ω電阻14個.
30p電容2個.
32.768k時鍾晶體1個.
蜂鳴器.
2.晶元內部結構圖及引腳圖
圖4-1 7400 四2輸入與非門 圖4-2 CD4511BCD七段解碼/驅動器
圖4-3 CD4060BD 圖4-4 74HC390D
圖4-5 74HC51D 圖4-6 74HC30
3.麵包板內部結構圖
麵包板右邊一列上五組豎的相通,下五組豎的相通,麵包板的左邊上下分四組,每組中X,Y列(0-15相通,16-40相通,41-55相通,ABCDE相通,FGHIJ相通,E和F之間不相通.
個功能塊電路圖
一個CD4511和一個LED數碼管連接成一個CD4511驅動電路,數碼管可從0---9顯示,以次來檢查數碼管的好壞,見附圖5-1.
圖5-1 4511驅動電路
利用一個LED數碼管,一塊CD4511,一塊74HC390,一塊74HC00連接成一個十進制計數器,電路在晶振的作用下數碼管從0—9顯示,見附圖5-2.
圖5-2 74390十進制計數器
利用一個LED數碼管,一塊CD4511,一塊74HC390,一塊74HC00和一個晶振連接成一個六進制計數器,數碼管從0—6顯示,見附圖5-3.
圖5-3 74390六進制計數器
利用一個六進制電路和一個十進制連接成一個六十進制電路,電路可從0—59顯示,見附圖5-4.
圖5-4 六十進制電路
利用兩個六十進制的電路合成一個雙六十進制電路,兩個六十進制之間有進位,見附圖5-5.
圖5-5 雙六十進制電路
利用CD4060,電阻及晶振連接成一個分頻——晶振電路,見附圖5-6.
圖5-6 分頻—晶振電路
利用74HC51D和74HC00及電阻連接成一個校時電路,見附圖5-7.
圖5-7 校時電路
利用74HC30和蜂鳴器連接成整點報時電路.見附圖5-8.
圖5-8 整點報時電路
利用兩個六十進制和一個十二進制連接成一個時,分,秒都會進位的電路總圖,見附圖5-9.
圖5-9 時,分,秒的進位連接圖
總接線元件布局簡圖,見附圖6-1
晶元連接圖見附圖7-1
八,總結
設計過程中遇到的問題及其解決方法.
在檢測麵包板狀況的過程中,出現本該相通的地方卻未通的狀況,後經檢驗發現是由於萬用表筆尖未與麵包板內部垂直接觸所至.
在檢測CD4511驅動電路的過程中發現數碼管不能正常顯示的狀況,經檢驗發現主要是由於接觸不良的問題,其中包括線的接觸不良和晶元的接觸不良,在實驗過程中,數碼管有幾段二極體時隱時現,有時會消失.用5V電源對數碼管進行檢測,一端接地,另一端接觸每一段二極體,發現二極體能正常顯示的,再用萬用表歐姆檔檢測每一根線是否接觸良好,在檢測過程中發現有幾根線有時能接通,有時不能接通,把接觸不好的線重新接過後發現能正常顯示了.其次是由於晶元接觸不良的問題,用萬用表歐姆檔檢測有幾個引腳本該相通的地方卻未通,而檢測的導線狀況良好,其解決方法為把CD4511的晶元拔出,根據麵包板孔的的狀況重新調整其引腳,使其正對於孔,再用力均勻地將晶元插入麵包板中,此後發現能正常顯示,本次實驗中還發現一塊壞的LED數碼管和兩塊壞的CD4511,經更換後均能正常顯示.
在連接晶振的過程中,晶振無法起振.在排除線與晶元的接觸不良問題後重新對照電路圖,發現是由於12腳未接地所至.
在連接六進制的過程中,發現電路只能4,5的跳動,後經發現是由於接到與非門的引腳接錯一根所至,經糾正後能正常顯示.
在連接校正電路的過程中,出現時和分都能正常校正時,但秒卻受到影響,特別時一較分鍾的時候秒亂跳,而不校時的時候,秒從40跳到59,然後又跳回40,分和秒之間無進位,電路在時,分,秒進位過程中能正常顯示,故可排除晶元和連線的接觸不良的問題.經檢查,校正電路的連線沒有錯誤,後用萬用表的直流電壓檔帶電檢測秒十位的QA,QB,QC和QD腳,發現QA腳時有電壓時而無電壓,再檢測秒到分和分到時的進位端,發現是由於秒到分的進位未拔掉所至.
在製作報時電路的過程中,發現蜂鳴器在57分59秒的時候就開始報時,後經檢測電路發現是由於把74HC30晶元當16引腳的晶元來接,以至接線都錯位,重新接線後能正常報時.
連接分頻電路時,把時個位的QD和時十位的1腳斷開,然後時十位的1腳接到晶振的3腳,時十位的3腳接到秒個位的1腳,所連接的電路圖無法正常工作,時十位從0-9的跳,時個位只能顯示一個0,在這個電路中3腳的分頻用到兩次,故無法正常顯示,因此要把12進制接到74HC390的一個邏輯電路空出來用於分頻即可,因此把時十位的CD4511的12,6腳接地,7腳改為接74HC390的5腳,74HC390的3,4腳斷開,然後4腳接9腳即可,其中空出的74HC390的3腳就可用於2Hz的分頻,分頻後變為1Hz,整個電路也到此為正常的數字鍾計數.
2.設計體會
在此次的數字鍾設計過程中,更進一步地熟悉了晶元的結構及掌握了各晶元的工作原理和其具體的使用方法.
在連接六進制,十進制,六十進制的進位及十二進制的接法中,要求熟悉邏輯電路及其晶元各引腳的功能,那麼在電路出錯時便能准確地找出錯誤所在並及時糾正了.
在設計電路中,往往是先模擬後連接實物圖,但有時候模擬和電路連接並不是完全一致的,例如模擬的連接示意圖中,往往沒有接高電平的16腳或14腳以及接低電平的7腳或8腳,因此在實際的電路連接中往往容易遺漏.又例如74HC390晶元,其本身就是一個十進制計數器,在模擬電路中必須連接反饋線才能正常顯示,而在實際電路中無需再連接,因此模擬圖和電路連接圖還是有一定區別的.
在設計電路的連接圖中出錯的主要原因都是接線和晶元的接觸不良以及接線的錯誤所引起的.
3.對該設計的建議
此次的數字鍾設計重在於模擬和接線,雖然能把電路圖接出來,並能正常顯示,但對於電路本身的原理並不是十分熟悉.總的來說,通過這次的設計實驗更進一步地增強了實驗的動手能力.
❹ 數字鍾課程設計的安裝調試該怎麼寫
1)說明系統實現的功能,應達到技術指標,進行方案論證,確定設計方案。
⑵畫出電路圖,說明各部分電路的工作原理,初步選定所使用的各種器件的主要參數及型號,列出元器件明細表。
⑶系統中包含的中、小規模集成電路的種類至少在六種以上。
2.模擬模擬
⑴根據理論設計用multisim 7在計算機上進行模擬。驗證所設計方案的正確性。
⑵分析電路的工作原理,寫出模擬報告。
3.安裝調試部分
⑴實現所設計的小型數字系統,並進行單元測試和系統調試。完成系統功能。
⑵若系統出現故障,排除系統故障,分析並記錄系統產生故障的原因,並將此部分內容寫在報告中。
4.寫出課程設計總結報告(要求報告為A4紙20頁以上,並列印)。
報告應包括以下內容:
摘要(300~400字)
目錄
1.概述
2.課程設計任務及要求
2.1 設計任務
2.2 設計要求
3.理論設計
3.1方案論證
3.2 系統設計
3.2.1 結構框圖及說明
3.2.2 系統原理圖及工作原理
3.3 單元電路設計
3.3.1單元電路工作原理
3.3.2元件參數選擇
4.軟體模擬
4.1 模擬電路圖
4.2 模擬過程
4.2 模擬結果
5.安裝調試
5.2 安裝調試過程
5.3 故障分析
6.結論
7.使用儀器設備清單
8.參考文獻。
9.收獲、體會和建議。
❺ 設計數字時鍾電路原理圖
設計數字時鍾計數器電路大概有以下幾種方法:
①用標準的數字集成電路家族來搭建十進制計數器。常用的TTL數字電路家族為7400系列。常用的CMOS數字電路家族為CD4000系列。
②用基本的組合邏輯電路和觸發器來實現。利用數字設計中的狀態圖/卡諾圖等綜合工具從底層門電路來搭建。
③用硬體設計語言來實現。常見的數字設計語言為VHDL和Verilog
本文就以JK觸發器和附加門電路來演示如何設計一個七進制加法計數器時鍾電路。
總體步驟為:
①畫出計數器的狀態轉換圖。
②根據狀態圖得出JK各個狀態變數的邏輯值。
③將JK的邏輯狀態代入卡諾圖進行化簡,得出JK表達式。
④根據JK表達式,畫出計數器的原理圖。
⑤模擬驗證計數器的輸出。
以下為詳細分解:
①②步驟比較直觀狀態圖如下。計數器需要3個JK觸發器,標記為JK1/JK2/JK3.
❻ 如何設計一個帶數字電子鍾的定時器控制邏輯電路
一、設計目的
1. 熟悉集成電路的引腳安排。
2. 掌握各晶元的邏輯功能及使用方法。
3. 了解麵包板結構及其接線方法。
4. 了解數字鍾的組成及工作原理。
5. 熟悉數字鍾的設計與製作。
二、設計要求
1.設計指標時間以24小時為一個周期;顯示時、分、秒;有校時功能,可以分別對時及分進行單獨校時,使其校正到標准時間;計時過程具有報時功能,當時間到達整點前5秒進行蜂鳴報時;為了保證計時的穩定及准確須由晶體振盪器提供表針時間基準信號。
2.設計要求畫出電路原理圖(或模擬電路圖);元器件及參數選擇;電路模擬與調試;PCB文件生成與列印輸出。
3.製作要求 自行裝配和調試,並能發現問題和解決問題。
4.編寫設計報告 寫出設計與製作的全過程,附上有關資料和圖紙,有心得體會。三、設計原理及其框圖1.數字鍾的構成數字鍾實際上是一個對標准頻率(1HZ)進行計數的計數電路。由於計數的起始時間不可能與標准時間(如北京時間)一致,故需要在電路上加一個校時電路,同時標準的1HZ時間信號必須做到准確穩定。通常使用石英晶體振盪器電路構成數字鍾。
圖 3-1所示為數字鍾的一般構成框圖。
圖3-1 數字鍾的組成框圖⑴晶體振盪器電路
晶體振盪器電路給數字鍾提供一個頻率穩定準確的32768Hz的方波信號,可保證數字鍾的走時准確及穩定。不管是指針式的電子鍾還是數字顯示的電子鍾都使用了晶體振盪器電路。
⑵分頻器電路 分頻器電路將32768Hz的高頻方波信號經32768()次分頻後得到1Hz的方波信號供秒計數器進行計數。分頻器實際上也就是計數器。
⑶時間計數器電路 時間計數電路由秒個位和秒十位計數器、分個位和分十位計數器及時個位和時十位計數器電路構成,其中秒個位和秒十位計數器、分個位和分十位計數器為60進制計數器,而根據設計要求,時個位和時十位計數器為12進制計數器。
⑷解碼驅動電路
解碼驅動電路將計數器輸出的8421BCD碼轉換為數碼管需要的邏輯狀態,並且為保證數碼管正常工作提供足夠的工作電流。
⑸數碼管 數碼管通常有發光二極體(LED)數碼管和液晶(LCD)數碼管,本設計提供的為LED數碼管。
2.數字鍾的工作原理1)晶體振盪器電路晶體振盪器是構成數字式時鍾的核心,它保證了時鍾的走時准確及穩定。圖3-2所示電路通過CMOS非門構成的輸出為方波的數字式晶體振盪電路,這個電路中,CMOS非門U1與晶體、電容和電阻構成晶體振盪器電路,U2實現整形功能,將振盪器輸出的近似於正弦波的波形轉換為較理想的方波。輸出反饋電 阻R1為非門提供偏置,使電路工作於放大區域,即非門的功能近似於一個高增益的反相放大器。電容C1、C2與晶體構成一個諧振型網路,完成對振盪頻率的控制功能,同時提供了一個180度相移,從而和非門構成一個正反饋網路,實現了振盪器的功能。由於晶體具有較高的頻率穩定性及准確性,從而保證了輸出頻率的穩定和准確。晶體XTAL的頻率選為32768HZ。該元件專為數字鍾電路而設計,其頻率較低,有利於減少分頻器級數。從有關手冊中,可查得C1、C2均為30pF。當要求頻率准確度和穩定度更高時,還可接入校正電容並採取溫度補償措施。由於CMOS電路的輸入阻抗極高,因此反饋電阻R1可選為10MΩ。較高的反饋電阻有利於提高振盪頻率的穩定性。非門電路可選74HC00。
圖3-2 COMS晶體振盪器2)分頻器電路通常,數字鍾的晶體振盪器輸出頻率較高,為了得到1Hz的秒信號輸入,需要對振盪器的輸出信號進行分頻。通常實現分頻器的電路是計數器電路,一般採用多級2進制計數器來實現。例如,將32768Hz的振盪信號分頻為1HZ的分頻倍數為32768(215),即實現該分頻功能的計數器相當於15極2進制計數器。常用的2進制計數器有74HC393等。本實驗中採用CD4060來構成分頻電路。CD4060在數字集成電路中可實現的分頻次數最高,而且CD4060還包含振盪電路所需的非門,使用更為方便。CD4060計數為14級2進制計數器,可以將32768HZ的信號分頻為2HZ,其內部框圖如圖3-3所示,從圖中可以看出,CD4060的時鍾輸入端兩個串接的非門,因此可以直接實現振盪和分頻的功能。圖3-3 CD4046內部框圖3)時間計數單元時間計數單元有時計數、分計數和秒計數等幾個部分。時計數單元一般為12進制計數器計數器,其輸出為兩位8421BCD碼形式;分計數和秒計數單元為60進制計數器,其輸出也為8421BCD碼。一般採用10進制計數器74HC390來實現時間計數單元的計數功能。為減少器件使用數量,可選74HC390,其內部邏輯框圖如圖 2.3所示。該器件為雙2—5-10非同步計數器,並且每一計數器均提供一個非同步清零端(高電平有效)。圖3-4 74HC390(1/2)內部邏輯框圖秒個位計數單元為10進制計數器,無需進制轉換,只需將QA與CPB(下降沿有效)相連即可。CPA(下降沒效)與1HZ秒輸入信號相連,Q3可作為向上的進位信號與十位計數單元的CPA相連。秒十位計數單元為6進制計數器,需要進制轉換。將10進制計數器轉換為6進制計數器的電路連接方法如圖3-5所示,其中Q2可作為向上的進位信號與分個位的計數單元的CPA相連。
圖3-5 10進制——6進制計數器轉換電路分個位和分十位計數單元電路結構分別與秒個位和秒十位計數單元完全相同,只不過分個位計數單元的Q3作為向上的進位信號應與分十位計數單元的CPA相連,分十位計數單元的Q2作為向上的進位信號應與時個位計數單元的CPA相連。時個位計數單元電路結構仍與秒或個位計數單元相同,但是要求,整個時計數單元應為12進制計數器,不是10的整數倍,因此需將個位和十位計數單元合並為一個整體才能進行12進制轉換。利用1片74HC390實現12進制計數功能的電路如圖3-6所示。另外,圖3-6所示電路中,尚余-2進制計數單元,正好可作為分頻器2HZ輸出信號轉化為1HZ信號之用。圖3-6 12進制計數器電路4)解碼驅動及顯示單元計數器實現了對時間的累計以8421BCD碼形式輸出,選用顯示解碼電路將計數器的輸出數碼轉換為數碼顯示器件所需要的輸出邏輯和一定的電流,選用CD4511作為顯示解碼電路,選用LED數碼管作為顯示單元電路。5)校時電源電路當重新接通電源或走時出現誤差時都需要對時間進行校正。通常,校正時間的方法是:首先截斷正常的計數通路,然後再進行人工出觸發計數或將頻率較高的方波信號加到需要校正的計數單元的輸入端,校正好後,再轉入正常計時狀態即可。根據要求,數字鍾應具有分校正和時校正功能,因此,應截斷分個位和時個位的直接計數通路,並採用正常計時信號與校正信號可以隨時切換的電路接入其中。圖3-7所示即為帶有基本RS觸發器的校時電路,圖3-7 帶有消抖動電路的校正電路6)整點報時電路一般時鍾都應具備整點報時電路功能,即在時間出現整點前數秒內,數字鍾會自動報時,以示提醒。其作用方式是發出連續的或有節奏的音頻聲波,較復雜的也可以是實時語音提示。根據要求,電路應在整點前10秒鍾內開始整點報時,即當時間在59分50秒到59分59秒期間時,報時電路報時控制信號。報時電路選74HC30,選蜂鳴器為電聲器件。四、元器件1.實驗中所需的器材5V電源。麵包板1塊。示波器。萬用表。鑷子1把。剪刀1把。網路線2米/人。共陰八段數碼管6個。CD4511集成塊6塊。CD4060集成塊1塊。74HC390集成塊3塊。74HC51集成塊1塊。74HC00集成塊5塊。74HC30集成塊1塊。10MΩ電阻5個。500Ω電阻14個。30p電容2個。32.768k時鍾晶體1個。蜂鳴器。2.晶元內部結構圖及引腳圖
圖4-1 7400 四2輸入與非門 圖4-2 CD4511BCD七段解碼/驅動器圖4-3 CD4060BD 圖4-4 74HC390D圖4-5 74HC51D 圖4-6 74HC303.麵包板內部結構圖
麵包板右邊一列上五組豎的相通,下五組豎的相通,麵包板的左邊上下分四組,每組中X、Y列(0-15相通,16-40相通,41-55相通,ABCDE相通,FGHIJ相通,E和F之間不相通。
五、個功能塊電路圖1. 一個CD4511和一個LED數碼管連接成一個CD4511驅動電路,數碼管可從0---9顯示,以次來檢查數碼管的好壞,見附圖5-1。圖5-1 4511驅動電路2. 利用一個LED數碼管,一塊CD4511,一塊74HC390,一塊74HC00連接成一個十進制計數器,電路在晶振的作用下數碼管從0—9顯示,見附圖5-2。圖5-2 74390十進制計數器3. 利用一個LED數碼管,一塊CD4511,一塊74HC390,一塊74HC00和一個晶振連接成一個六進制計數器,數碼管從0—6顯示,見附圖5-3。圖5-3 74390六進制計數器4. 用一個六進制電路和一個十進制連接成一個六十進制電路,電路可從0—59顯示,見附圖5-4圖5-4 六十進制電路5. 利用兩個六十進制的電路合成一個雙六十進制電路,兩個六十進制之間有進位,見附圖5-5。
圖5-5 雙六十進制電路6. 利用CD4060、電阻及晶振連接成一個分頻——晶振電路,見附圖5-6。圖5-6 分頻—晶振電路7. 利用74HC51D和74HC00及電阻連接成一個校時電路,見附圖5-7。圖5-7 校時電路8. 利用74HC30和蜂鳴器連接成整點報時電路。見附圖5-圖5-8 整點報時電路9. 利用兩個六十進制和一個十二進制連接成一個時、分、秒都會進位的電路總圖,見附圖5-9。