1. 1常用的点估计方法有几种2.矩估计法的基本思想及一般步骤是什么(概率论与数理统计)
好些公式这里不好打,将就看下:
1常用的点估计有两种:矩估计法和最大似然估计法
2矩估计法:随机变量X的概率函数(即概率密度或概率分布)中含有待估参数β1,β2,…,βk,假设
X的前k阶矩存在,即ui=E(X^i),i=1,2,…,k
。以样本矩Ai代替总体矩:Ai=ui,i=1,2,,…,k,解这k个方程,求得的βi的结果即为它的矩估计量(值)
3连续随机变量的似然函数L=
打起来挺麻烦的,我可以整理成WORD发你邮箱~
2. 点估计的原理
点估计的原理,我们以矩估计方法为例,它是点估计中的一种,其原理就是构造样本和总体的矩,然后用样本的矩去估计总体的矩。
点估计是用样本统计量来估计总体参数,因为样本统计量为数轴上某一点值,估计的结果也以一个点的数值表示,所以称为点估计。点估计和区间估计属于总体参数估计问题。何为总体参数统计,当在研究中从样本获得一组数据后,如何通过这组信息,对总体特征进行估计,也就是如何从局部结果推论总体的情况,称为总体参数估计。
由样本数据估计总体分布所含未知参数的真值,所得到的值,称为估计值。点估计的精确程度用置信区间表示。当母群的性质不清楚时,我们须利用某一量数作为估计数,以帮助了解母数的性质。如:样本平均数乃是母群平均数μ的估计数。当我们只用一个特定的值,亦即数线上的一个点,作为估计值以估计母数时,就叫做点估计。
点估计理论是数理统计学得到较多和较深入发展的一个方面。在小样本方面,1955年C.提出了一个反例,证明当维数大于2时,多维正态分布均值向量的通常估计(样本均值)在平方损失下不可容许。这个简单的但出乎意料的反例启发了关于点估计的容许性的一系列研究。在大样本方面,值得提到的发展还有自适应估计、稳健估计及非参数估计方面许多深入的结果。
3. 参数估计方法包括什么和什么
参数估计
parameter
estimation
根据从总体中抽取的
样本
估计总体分布中包含的未知
参数
的方法。它是统计推断的一种基本形式,是数理统计学的一个重要分支,分为点估计和
区间估计
两部分
。
估计量的评价标准:(1)无偏性,(2)一致性,(3)有效性,(4)充分性。
点估计是
依据
样本估计总体分布中所含的未知参数或未知参数的
函数
。通常它们是总体的某个
特征值
,如数学期望、
方差
和
相关系数
等。点估计问题就是要构造一个只依赖于样本的量,作为未知参数或未知参数的函数的
估计值
。例如,设一批产品的
废品率
为θ。为估计θ,从这批产品中随机地抽出n个作检查,以X记其中的废品个数,用X/n估计θ,这就是一个点估计。
构造
点估计常用的方法是:①矩
估计法
。用
样本矩
估计总体矩,如用
样本均值
估计
总体均值
。②最大
似然
估计法。于1912年由英国统计学家R.A.费希尔提出,利用样本
分布密度
构造
似然函数
来求出参数的最大似然估计。③
最小二乘法
。主要用于
线性统计模型
中的参数估计问题。④
贝叶斯估计
法。基于贝叶斯学派(见贝叶斯统计)的观点而提出的估计法。可以用来估计未知参数的估计量很多,于是产生了怎样选择一个优良估计量的问题。首先必须对优良性定出
准则
,这种准则是不唯一的,可以根据
实际
问题和理论研究的方便进行选择。优良性准则有两大类:一类是小样本准则,即在样本
大小
固定时的优良性准则;另一类是
大样本
准则,即在样本大小趋于无穷时的优良性准则。最重要的小样本优良性准则是无偏性及与此相关的一致
最小方差
无偏估计
,其次有容许性准则,最小化
最大准则
,最优同变准则等。大样本优良性准则有相合性、最优渐近
正态
估计和渐近有效估计等。
区间估计是依据抽取的样本,根据一定的
正确度
与
精确度
的要求,构造出适当的
区间
,作为总体分布的未知参数或参数的函数的真值所在
范围
的估计。例如人们常说的有百分之多少的把握保证某值在某个范围内,即是区间估计的最简单的应用。1934年统计学家J.奈曼创立了一种严格的区间估计
理论
。求
置信区间
常用的三种方法:①利用已知的抽样分布。②利用区间估计与假设检验的联系。③利用
大样本理论
。
4. 请问点估计值的计算公式是什么
样本标准差:(x1-xba)平方+(x2-xba)平方+...(xn-xba)平方,然后除以(n-1),然后开根号。总体标准差:(x1-xba)平方+(x2-xba)平方+...(xn-xba)平方,然后除以(n),然后开根号。
当母群的性质不清楚时,我们须利用某一量数作为估计数,以帮助了解母数的性质。如:样本平均数乃是母群平均数μ的估计数。当我们只用一个特定的值,亦即数线上的一个点,作为估计值以估计母数时,就叫做点估计。
点估计目的是依据样本X=(X1、X2…Xi)估计总体分布所含的未知参数θ或θ的函数g(θ)。一般θ或g(θ)是总体的某个特征值,如数学期望、方差、相关系数等。
点估计的常用方法有矩估计法、顺序统计量法、最大似然法、最小二乘法等。

(4)构造点估计量常用的两种方法扩展阅读:
参数估计的一种形式。目的是依据样本X=(X1、X2…Xn)估计总体分布所含的未知参数θ或θ的函数g(θ)。一般θ或g(θ)是总体的某个特征值,如数学期望、方差、相关系数(见相关分析)等。θ或g(θ)通常取实数或k维实向量为值。
点估计问题就是要构造一个只依赖于样本X的量抭(X),作为g(θ)的估计值。抭(X)称为g(θ)的估计量。因为k维实向量可表为k维欧几里得空间的一个点,故称这样的估计为点估计。
例如,设一批产品的废品率为θ,为估计θ,从这批产品中随机地抽出n个作检查,以X记其中的废品个数,用X/n估计θ,就是一个点估计。又如用样本方差(见统计量)估计总体分布的方差,或用样本相关系数估计总体分布的相关系数,都是常见的点估计。
5. 点估计的构造方法
的方法,旨是用样本矩的函数估计总体矩的同一函数。例如,若总体分布服从正态分布 N(μ,σ^2),其中μ是总体均值,σ^2是总体方差,未知参数可记为θ=(μ,σ)。σ/μ(μ≠0)称为变异系数,它是总体的一阶原点矩(即均值)μ与二阶中心矩(即方差)σ^2的函数。设有样本X=(X1,X2,…,Xn),其一阶样本原点矩为,二阶样本中心矩为,而用估计 σ/μ,就是一个典型的矩估计方法。

6. 什么是点估计和区间估计两者的主要区别是什么
1、含义
点估计(point estimation)是用样本统计量来估计总体参数,因为样本统计量为数轴上某一点值,估计的结果也以一个点的数值表示,所以称为点估计。
区间估计(interval estimate)是在点估计的基础上,给出总体参数估计的一个区间范围,该区间通常由样本统计量加减估计误差得到。

2、两者主要区别
(1)值不同
点估计的精确程度用置信区间表示。由样本数据估计总体分布所含未知参数的真值,所得到的值,称为估计值。
区间估计,是参数估计的一种形式。通过从总体中抽取的样本,根据一定的正确度与精确度的要求,构造出适当的区间,以作为总体的分布参数(或参数的函数)的真值所在范围的估计。
(2)是否考虑抽样误差
点估计是在抽样推断中不考虑抽样误差,直接以抽样指标代替全体指标的一种推断方法。因为个别样本的抽样指标不等于全体指标,所以,用抽样指标直接代替全体指标,不可避免的会有误差。
区间估计是抽样推断中根据抽样指标和抽样误差去估计全体指标的可能范围的一种推断方法。在从抽样指标推断全体指标时,用一定概率保证误差不超出某一给定范围。
(3)常用方法不同
点估计的常用方法有矩估计法、顺序统计量法、最大似然法、最小二乘法等。
区间估计求置信区间的方法,最常用的求置信区间及置信上、下限的方法有利用已知的抽样分布(见统计量)、利用区间估计与假设检验的联系、利用大样本理论(见大样本统计)、
(6)构造点估计量常用的两种方法扩展阅读
7. ordimary least squares怎么估计参数
参数估计parameter estimation 根据从总体中抽取的样本估计总体分布中包含的未知参数的方法。它是统计推断的一种基本形式,是数理统计学的一个重要分支,分为点估计和区间估计两部分。估计量的评价标准:(1)无偏性,(2)一致性,(3)有效性,(4)充分性。点估计是依据样本估计总体分布中所含的未知参数或未知参数的函数。通常它们是总体的某个特征值,如数学期望、方差和相关系数等。点估计问题就是要构造一个只依赖于样本的量,作为未知参数或未知参数的函数的估计值。例如,设一批产品的废品率为θ。为估计θ,从这批产品中随机地抽出n个作检查,以X记其中的废品个数,用X/n估计θ,这就是一个点估计。构造点估计常用的方法是:①矩估计法。用样本矩估计总体矩,如用样本均值估计总体均值。②最大似然估计法。于1912年由英国统计学家R.A.费希尔提出,利用样本分布密度构造似然函数来求出参数的最大似然估计。③最小二乘法。主要用于线性统计模型中的参数估计问题。④贝叶斯估计法。基于贝叶斯学派(见贝叶斯统计)的观点而提出的估计法。可以用来估计未知参数的估计量很多,于是产生了怎样选择一个优良估计量的问题。首先必须对优良性定出准则,这种准则是不唯一的,可以根据实际问题和理论研究的方便进行选择。优良性准则有两大类:一类是小样本准则,即在样本大小固定时的优良性准则;另一类是大样本准则,即在样本大小趋于无穷时的优良性准则。最重要的小样本优良性准则是无偏性及与此相关的一致最小方差无偏估计,其次有容许性准则,最小化最大准则,最优同变准则等。大样本优良性准则有相合性、最优渐近正态估计和渐近有效估计等。区间估计是依据抽取的样本,根据一定的正确度与精确度的要求,构造出适当的区间,作为总体分布的未知参数或参数的函数的真值所在范围的估计。例如人们常说的有百分之多少的把握保证某值在某个范围内,即是区间估计的最简单的应用。1934年统计学家J.奈曼创立了一种严格的区间估计理论。求置信区间常用的三种方法:①利用已知的抽样分布。②利用区间估计与假设检验的联系。③利用大样本理论。
8. 点估计的步骤
最流行的两种:
1常用的点估计有两种:矩估计法和最大似然估计法
2矩估计法:随机变量X的概率函数(即概率密度或概率分布)中含有待估参数β1,β2,…,βk,假设 X的前k阶矩存在,即ui=E(X^i),i=1,2,…,k 。以样本矩Ai代替总体矩:Ai=ui,i=1,2,,…,k,解这k个方程,求得的βi的结果即为它的矩估计量(值)
K Pearson的 矩估计
矩估计法, 也称“矩法估计”,就是利用样本矩来估计总体中相应的参数. 最简单的矩估计法是用一阶样本原点矩来估计总体的期望而用二阶样本中心矩来估计总体的方差.
RA Fisher的 最大似然估计
最大似然法(Maximum Likelihood,ML)也称为最大概似估计,也叫极大似然估计,是一种具有理论性的点估计法,此方法的基本思想是:当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大,而不是像最小二乘估计法旨在得到使得模型能最好地拟合样本数据的参数估计量。