㈠ 关于有限元分析的材料参数的问题
查手册,或者做实验
㈡ 有限元分析需要材料的那些力学指标数据
常用的力学分析需要:弹性模量、泊松比,岩土分析时有粘聚力、内摩擦角等;考虑重力场时需要材料的重度及重力加速度等。
㈢ ANSYS12.0有限元分析完全手册的目 录
第1章 有限单元法和ANSYS简介 15
本章主要介绍有限单元法的基本思想、有限单元法的基本模型,以及使用有限单元法进行产品分析的基本步骤。ANSYS作为应用最广泛的有限元分析软件之一,已经发展到12.0版本。本章介绍了ANSYS 12.0新功能和特点、ANSYS 12.0的安装和配置、ANSYS 12.0主菜单、ANSYS 12.0帮助系统等内容。
1.1 有限单元法简介 15
1.1.1 有限单元法的基本思想 15
1.1.2 有限单元法的基本模型 17
1.1.3 有限单元法的分析步骤 18
1.2 ANSYS功能和特点 19
1.2.1 ANSYS的发展历程 19
1.2.2 ANSYS的主要功能 20
1.2.3 ANSYS 12.0版本的新特点 22
1.3 ANSYS 12.0的安装和配置 25
1.3.1 ANSYS 12.0的安装 26
1.3.2 ANSYS 12.0的启动 32
1.3.3 ANSYS 12.0的运行环境配置 33
1.4 ANSYS程序结构 33
1.4.1 ANSYS文件格式 33
1.4.2 处理器 34
1.4.3 图形输入 34
1.4.4 分析文件类型 34
1.5 ANSYS 12.0用户界面基本组成 34
1.5.1 启动ANSYS 12.0用户界面 34
1.5.2 对话框及其控件 35
1.6 ANSYS 12.0通用菜单 37
1.7 输入窗口 38
1.8 ANSYS 12.0主菜单简介 38
1.9 工具条 39
1.10 输出窗口(OUTPUT WINDOW) 40
1.11 图形窗口(GRAPHICS WINDOW) 40
1.12 个性化界面 42
1.13 ANSYS 12.0帮助系统 43
1.14 小结 44
第2章 ANSYS分析基本过程 45
本章主要介绍包括分析问题、创建有限元模型、施加载荷进行求解和查看结果的典型ANSYS分析过程,以及在分析过程中经常会使用到的一些命令。最后通过一个工字钢悬臂梁的分析实例演示了ANSYS的分析流程。
2.1 分析问题 45
2.2 建立有限元模型 46
2.2.1 建立和修改工作文件名或标题 47
2.2.2 定义单元类型 47
2.2.3 定义材料特性数据 49
2.2.4 创建实体模型 49
2.2.5 对实体模型进行网格划分 49
2.3 施加载荷 50
2.3.1 定义分析类型和设置分析选项 50
2.3.2 施加载荷 51
2.4 进行求解 52
2.4.1 求解器的类别 52
2.4.2 求解检查 53
2.4.3 求解的实施 53
2.4.4 求解会碰到的问题 54
2.5 后处理 54
2.6 分析过程中常用到的命令 55
2.6.1 起始层命令 55
2.6.2 前处理命令 55
2.6.3 求解命令 56
2.6.4 一般后处理命令 57
2.7 工字钢悬臂梁分析实例 58
2.7.1 分析问题 58
2.7.2 建立有限元模型 59
2.7.3 施加载荷 62
2.7.4 进行求解 63
2.7.5 后处理 64
2.8 小结 66
第3章 建立实体模型 67
本章主要介绍如何通过IGES、SAT、STEP和PARASOLID等中间文件格式或者图形转换界面,将CAD模型直接导入至ANSYS中。
3.1 实体建模概述 67
3.2 导入CAD软件创建的实体模型 68
3.2.1 图形交换数据格式 68
3.2.2 IGES格式实体的导入 68
3.2.3 SAT格式实体的导入 70
3.2.4 Parasolid格式实体的导入 71
3.2.5 STEP格式的导入 71
3.2.6 导入SolidWorks中创建的叶片模型 72
3.2.7 导入UG绘制的轴承模型 73
3.2.8 导入SolidEdge中绘制的联轴器模型 74
3.3 对输入模型的修改 75
3.4 ANSYS环境内直接建模方法 75
3.4.1 自上而下创建几何模型 75
3.4.2 自下而上建模几何模型 76
3.5 坐标系简介 76
3.5.1 总体和局部坐标系 76
3.5.2 显示坐标系 79
3.5.3 节点坐标系 82
3.5.4 单元坐标系 83
3.5.5 结果坐标系 84
3.6 工作平面的使用 84
3.6.1 定义一个新的工作平面 85
3.6.2 控制工作平面的显示和样式 85
3.6.3 移动工作平面 85
3.6.4 旋转工作平面 86
3.6.5 还原一个已定义的工作平面 86
3.6.6 工作平面的高级用途 87
3.7 自底向上创建几何模型 90
3.7.1 关键点 90
3.7.2 硬点 92
3.7.3 几何元素——线 95
3.7.4 几何元素——面 102
3.7.5 几何元素——体 107
3.8 自顶向下创建几何模型 114
3.8.1 创建面体素 114
3.8.2 创建实体体素 116
3.9 使用布尔操作来构建复杂几何模型 119
3.9.1 布尔运算的设置 119
3.9.2 布尔运算之后的图元编号 120
3.9.3 交运算 120
3.9.4 两个实体相交操作 122
3.9.5 两个实体相加操作 122
3.9.6 两个实体相减操作 124
3.10 小结 125
第4章 有限元网格划分与模型建立 126
本章将讲解自由网格和映射网格的基本概念、有限元网格划分的主要指导思想、有限元网格划分的基本方法、有限元单元属性的设定方法、有限元网格划分过程和有限元网格划分的控制方法等内容,最后给出了轴承座零件划分网格的实例。
4.1 网格类型和应用场合 126
4.2 有限元网格划分的主要指导思想 128
4.3 有限元网格划分的基本方法 129
4.4 有限元单元属性的设定 130
4.4.1 选择单元类型 130
4.4.2 单元设置 132
4.4.3 材料属性设定 132
4.4.4 单元坐标系设定 133
4.5 有限元网格划分的控制方法 133
4.5.1 有限元网格划分工具 134
4.5.2 选择自由或映射网格划分 134
4.5.3 单元属性分配设置 135
4.5.4 单元尺寸控制 136
4.5.5 局部网格划分控制 137
4.5.6 内部网格划分控制 138
4.5.7 细化网格控制 139
4.5.8 网格质量控制 140
4.5.9 细小结构的网格划分 140
4.6 实体模型的网格划分 140
4.6.1 映射网格划分方法 141
4.6.2 划分实体模型 141
4.6.3 有限元模型的修改 142
4.7 直接生成有限元模型 144
4.7.1 节点 144
4.7.2 单元 150
4.7.3 通过节点和单元生成有限元模型 152
4.8 生成有限元模型实例 157
4.9 小结 168
第5章 施加载荷 169
本章在实体建立和网格划分的基础上,主要介绍了载荷的基本概念、载荷步、子步和迭代的概念、载荷的分类、加载方法、加载控制、如何针对不同的分析类型完成载荷的加载过程。
5.1 概述 169
5.1.1 载荷的定义 169
5.1.2 载荷施加的对象 170
5.1.3 载荷步、子步和平衡迭代 171
5.1.4 时间参数 171
5.2 载荷的初始设置 172
5.2.1 均布温度和参考温度 172
5.2.2 面载荷梯度 173
5.2.3 重复加载方式 173
5.2.4 设定载荷步选项 174
5.3 载荷的分类 175
5.3.1 自由度约束 175
5.3.2 集中力载荷 177
5.3.3 面载荷 178
5.3.4 体载荷 180
5.3.5 阶跃载荷 181
5.3.6 坡道载荷 182
5.3.7 其他载荷 182
5.4 载荷的施加和操作 183
5.4.1 利用表格来施加载荷 183
5.4.2 利用函数来施加载荷 183
5.4.3 修改载荷 184
5.4.4 删除载荷 184
5.4.5 其他操作 185
5.5 实例 186
5.5.1 单载荷步的施加 186
5.5.2 多载荷步的施加 188
5.6 小结 192
第6章 求解 193
本章主要介绍ANSYS的求解类型、求解控制和求解过程,并给出了求解实例。
6.1 求解设置 193
6.1.1 新分析 194
6.1.2 求解控制 194
6.2 求解过程处理 196
6.2.1 求解概述 196
6.2.2 求解当前载荷步 196
6.2.3 根据载荷步文件求解 197
6.2.4 多载荷步求解 197
6.2.5 重新启动分析 199
6.2.6 预测求解时间 201
6.3 实例 203
6.3.1 恢复文件 203
6.3.2 求解 203
6.4 小结 204
第7章 通用后处理器 205
本章主要对后处理的基本概念、后处理可以处理的数据类型、图形显示分析计算结果及列表显示计算结果的方法进行了介绍,最后给出了一个综合实例。
7.1 概述 205
7.1.1 通用后处理器 206
7.1.2 时间-历程后处理器 206
7.1.3 结果文件读入通用后处理器 207
7.1.4 查看结果数据集 208
7.1.5 设置结果输出方式 208
7.1.6 设置图形显示方式 209
7.2 图形显示计算结果 209
7.2.1 结果查看器 210
7.2.2 查看和分析变形图 210
7.2.3 查看和分析等值线图 211
7.2.4 查看和分析矢量图 213
7.2.5 基于单元表的结果图形 214
7.2.6 载荷组合及其运算结果显示 216
7.3 列表显示计算结果 218
7.3.1 结果数据集汇总列表(Detailed Summary) 219
7.3.2 迭代汇总信息 (Iteration Summary) 219
7.3.3 排序列表(Sorted Listing) 220
7.4 综合实例 220
7.4.1 单载荷步求解结果查看 221
7.4.2 多载荷步求解结果查看 224
7.5 小结 227
第8章 时间-历程后处理器 228
本章主要介绍时间-历程后处理器的概况和使用方法,最后给出使用实例。
8.1 概述 228
8.1.1 时间-历程后处理器的作用 228
8.1.2 使用时间-历程后处理器的基本步骤 230
8.2 进入时间-历程后处理器 230
8.2.1 交互方式 230
8.2.2 批处理方式 232
8.3 时间-历程变量观察器 233
8.4 绘制时间-变量曲线 235
8.5 数据的输入和输出 236
8.5.1 数据的输入 237
8.5.2 数据的输出 237
8.6 综合实例 238
8.6.1 恢复文件 238
8.6.2 查看结果 239
8.7 小结 241
第9章 静力学分析 242
本章将系统地介绍结构静力学分析的内容,包括线性静力学问题中各种类型的工程实例,如平面应力、应变问题,轴对称问题,以及梁、桁架、壳等模型的分析问题,通过这些实例进行具体的分析求解,让读者能熟悉静力学中各种模型的分析思路和求解方法,并掌握ANSYS分析静力学问题的基本步骤。
9.1 静力学分析简介 242
9.1.1 静力学分析类型 242
9.1.2 静力学分析步骤 243
9.2 平面应力问题分析 244
9.2.1 问题描述 245
9.2.2 问题分析 245
9.2.3 求解过程和分析结果 246
9.3 平面应变问题分析 256
9.3.1 问题描述 257
9.3.2 问题分析 257
9.3.3 求解过程和分析结果 257
9.4 轴对称问题分析 266
9.4.1 问题描述 266
9.4.2 问题分析 266
9.4.3 求解过程和分析结果 267
9.5 梁分析 275
9.5.1 问题描述 275
9.5.2 问题分析 276
9.5.3 求解过程和分析结果 276
9.6 桁架分析 282
9.6.1 问题描述 283
9.6.2 问题分析 283
9.6.3 求解过程和分析结果 283
9.7 壳分析 292
9.7.1 问题描述 293
9.7.2 问题分析 293
9.7.3 求解过程和分析结果 294
9.8 接触分析 302
9.8.1 问题描述 302
9.8.2 问题分析 302
9.8.3 求解过程和分析结果 303
9.9 小结 325
第10章 结构动力学分析 326
本章主要介绍结构动力学分析基本过程、运用ANSYS 软件对模态分析、谐响应分析、瞬态动力学分析和谱分析等各种动力学的实际问题进行分析的过程、步骤、技巧与方法。
10.1 结构动力学分析基本过程 326
10.1.1 模态分析 327
10.1.2 谐响应分析 330
10.1.3 瞬态动力学分析 333
10.1.4 谱分析 336
10.2 模态分析实例 340
10.2.1 问题描述 340
10.2.2 问题分析 340
10.2.3 求解过程和分析结果 340
10.3 谐响应分析 353
10.3.1 问题描述 353
10.3.2 问题分析 354
10.3.3 求解过程和分析结果 354
10.4 响应谱分析 364
10.4.1 问题描述 364
10.4.2 问题分析 365
10.4.3 求解过程和分析结果 365
10.5 瞬态动力学分析 374
10.5.1 问题描述 375
10.5.2 问题分析 375
10.5.3 求解过程和分析结果 375
10.6 小结 385
第11章 非线性分析 386
本章将介绍非线性分析基本过程,包括结构非线性分析、几何非线性分析、材料非线性分析、状态非线性分析等几种典型的非线性分析的基本概念,针对每种分析类型结合实例详细介绍了ANSYS中的非线性分析过程。
11.1 非线性分析基本过程 386
11.1.1 结构非线性分析 387
11.1.2 几何非线性分析 387
11.1.3 材料非线性分析 388
11.1.4 状态非线性分析 388
11.1.5 非线性分析步骤 388
11.2 几何非线性分析 396
11.2.1 问题描述 397
11.2.2 问题分析 397
11.2.3 建立模型 398
11.2.4 定义边界条件并求解 404
11.2.5 查看结果 406
11.3 材料非线性分析 410
11.3.1 问题描述 411
11.3.2 问题分析 411
11.3.3 建立模型 411
11.3.4 定义边界条件并求解 416
11.3.5 查看结果 419
11.4 状态非线性分析 422
11.4.1 问题描述 423
11.4.2 问题分析 423
11.4.3 建立模型 423
11.4.4 定义边界条件并求解 430
11.4.5 查看结果 432
11.5 小结 437
第12章 热分析 438
本章主要介绍热分析的基本概念、传热学经典理论、三种基本热传递方式等热分析基础知识、热分析的基本过程;热—结构耦合分析、热—应力耦合分析内容和实例。
12.1 热分析基础知识 438
12.1.1 热分析符号与单位 438
12.1.2 传热学经典理论 439
12.1.3 三种基本热传递方式 439
12.1.4 热分析材料基本属性 441
12.1.5 边界条件与初始条件 442
12.1.6 热载荷 443
12.1.7 稳态与瞬态热分析 444
12.1.8 线性与非线性热分析 445
12.2 热分析介绍 445
12.2.1 热分析简介 445
12.2.2 热分析的类型 445
12.2.3 热分析的基本过程 446
12.3 热—结构耦合分析 447
12.3.1 问题描述 447
12.3.2 问题分析 448
12.3.3 建立模型 448
12.3.4 定义边界条件并求解 456
12.3.5 查看结果 460
12.4 热—应力耦合分析实例 464
12.4.1 问题描述 464
12.4.2 问题分析 464
12.4.3 建立模型 465
12.4.4 定义边界条件并求解 471
12.4.5 查看结果 478
12.5 小结 480
第13章 ANSYS新界面WORKBENCH环境 481
本章主要介绍ANSYS新界面Workbench集成环境的基本情况,如何基于ANSYS 12.0版本的“项目视图(Project Schematic View)”功能,将整个仿真流程的建立模型,划分网格,求解和查看结果更加紧密的组合在一起,通过简单的拖拽操作即可完成复杂的多物理场分析流程。
13.1 ANSYS WORKBENCH概述 481
13.1.1 ANSYS Workbench产品设计流程 482
13.1.2 ANSYS Workbench文件格式 484
13.2 ANSYS WORKBENCH安装和启动配置 485
13.2.1 ANSYS 12.0 Workbench 启动 485
13.2.2 ANSYS 12.0 Workbench 配置 486
13.2.3 ANSYS 12.0 Workbench帮助资源 488
13.3 静力学分析实例 489
13.3.1 问题描述 489
13.3.2 问题分析 489
13.3.3 建立模型 489
13.3.4 定义边界条件并求解 495
13.3.5 查看结果 498
13.4 结构动力学分析实例 500
13.4.1 问题描述 501
13.4.2 问题分析 501
13.4.3 建立模型 501
13.4.4 定义边界条件并求解 506
13.4.5 查看结果 508
13.5 热力学分析实例 508
13.5.1 问题描述 508
13.5.2 问题分析 509
13.5.3 建立模型 509
13.5.4 定义边界条件并求解 512
13.5.5 查看结果 513
13.6 小结 515
附录A ANSYS使用常见问题 516
㈣ 有限元作振动模态分析需要哪些参数
材料的密度、杨氏模量
结构的尺寸参数
边界的约束
㈤ 在那里找到有限元方法中需要的材料属性,如聚四氟乙烯
聚四氟乙烯具有优良的耐腐蚀性、耐酸碱和高温性,不老化,在已知固体材料中它具有最佳的磨擦系数,可在-180摄氏度使用,广泛应用于化工、制药、生物等行业,还可用于电器绝缘等零件。
㈥ 什么是有限元方法
中文名称:有限元法
英文名称:finite element method
定义:一种将连续体离散化为若干个有限大小的单元体的集合,以求解连续体力学问题的数值方法。 应用学科:水利科技(一级学科);工程力学、工程结构、建筑材料(二级学科);工程力学(水利)(三级学科)
有限元法(finite element method)是一种高效能、常用的计算方法。有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系。基本思想:由解给定的泊松方程化为求解泛函的极值问题。
原理:
将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题。
㈦ 有没有高手在用有限元做hyperfoam的材料呢,请教一下怎么定义的材料参数,mu1和nu1和alpha是什么
一般用use test data来定义,输入工程应力应变
㈧ 如何学习有限元分析
ANSYS功能强大,也很吸引人,但真正是使其成为手中一把利剑的人少之又少。也许文章比较长,感谢你们有耐心把它读完。
ANSYS,公认的难学、难用,但并非如我们想象的那样难于上手,就像学习一门语言,与门之后在兴趣的驱使下,还是能够征服它的。
研究生阶段,使用ANSYS完成了863项目子课题-尿素合成塔数值模拟系统的开发工作(开发平台-ANSYS),有了这种经历,自己也有胆出来把经验分享出来了。
一:如何入门?
ANSYS难学,是因为入门难,目前国内有大量的ANSYS书籍,而且都有一个很挺的名字,但一个又一个的初学者发现,在学完这些拥有靓丽名字的ANSYS书籍之后,碰到问题依然是一头雾水,不知道如何下手,心里上首先产生了一种畏惧心理,以为是ANSYS软件本身难学的原因,其实这本身并非是软件的问题,也不是个人的不努力,而是努力的方向不对。
想要会用而不是学好ANSYS,首先,要加深对ANSYS的理解,也就是它是怎么工作的,明白了这些再拿到问题就不会无从下手,而ANSYS是如何工作从国内这些大多数书籍上(很多是直接翻译ANSYS英文帮助,这是一种误人子弟和不负责任的做法)是学不到的。ANSYS这款软件包括前处理、求解和后处理三部分,前处理主要是建立模型什么的并不难理解,后处理是等计算完毕用来处理计算结果的,关键是在求解这一部分,把这一部分理解好了就会拨开迷雾见到阳光了。
ANSYS工作过程是这样的:
(1)我们在前处理模块建立模型也就是我们看到的工程系统的外形(称为有限元实体模型);
(2)建立出来模型之后,我们要将其转化为有限元模型,在这部分我们需要选择单元类型,输入材料参数和匹配单元与模型相应部位的对应关系。ANSYS计算出来的都是变位(也就是模型的位移),然后通过位移导出应变,再使用应变值导出应力值(输入材料参数就是为了使用应变算出应力值),当然这些都是在程序内部完成的,这里我们遇到一个新的问题就是单元如何选取得问题,究竟选择什么样的单元合适,对初学者来说去详细的了解单元的详细属性还不太现实,所以建议查阅资料看看别人用的单元类型,因为我们现在还只是处在入门阶段,想要真正做到熟练应用各种单元进行不同问题的分析,我推测国内真正做到的人还没有出现,除非他是在扯淡,因为ANSYS单元库本身也只有100多种单元,不可能适用于所有单元。等我们选择了某种单元,输入了相应的材质参数(这个比较确定,各种材料有其固定的参数,比如E)之后,我们可以我们的模型进行网格划分,这是把实体模型转化为有限元模型的过程,任何一本ANSYS书籍上都有如何划分网格的详细介绍,不详述。
(3)划分完网格后的模型,其实已经确定了内部各个单元应力是如何传递的,求解过程其实就是一个解方程组得过程,解前面通过单元网格划分得出的大量方程组,计算机去完成好了。
所以,再拿到一个问题后,我们要进行分析可以按以下步骤完成:
(1) 建立实体模型;(2)选择单元类型,划分网格;(3)求解;
而在这些步骤中遇到一些问题,则随着对ANSYS软件本身的慢慢熟悉,会越来越得心应手,这不是学习ANSYS真正难得地方,各位不需要再这个方面畏惧。
二:当我们对ANSYS的操作比较熟练了以后,我们可以进入下一步的学习,拿到一个问题如何进行大体上正确的分析?
我们拿到问题进行有限元分析,首先要分析这个问题进行有限元分析想要得到的结果数据,比如应力场、温度场等等,其次,当我们知道了我们想要得到什么数据后,我们要学习通过什么能够得到这些数据,比如我们要想得到某结构的应力场,我们可以通过位移算出应变,通过应变算出应力,这时需要我们查阅相关资料得到通过弹性模量、杨氏模量和应变能够计算出应力的信息,这时我们就会知道在材料参数里需要输入弹性模量、杨氏模量才能得到应力值,而如何输入这些变量,只是对ANSYS操作的熟练程度而已,不知道的也能够查到怎样操作,而进行其它方面的计算都是如此,我们之所以一头雾水,是因为我们不知道能够通过什么得到我们需要的数据,而一旦知道了这些需要材料参数我们就会信心大增了。然后需要我们选择单元,这时如果我们没有很长时间的有限元分析经验,这方面我们会很迷茫,这也确实没有什么好的方法,我们可以查阅ANSYS帮助文件(现在有一本ANSYS中文帮助指南的小册子讲述了某些单元的一些细节)里关于哪些单元适用于那些场合的指南。把这些确定下来后我们的问题解决方案已经确定了,后面的求解的设置什么的可以通过大量的练习来熟悉。有了这些基础我们可以进行我们拿到问题上大致准确的有限元分析过程,至于是否真正的正确,还需要进一步的验证。
三、ANSYS高手应该达到的境界!
一名真正意义上的高手应该达到这样的境界:
拿到一个具体的问题后,察看本领域的最新理论研究成果,如进行尿素合成塔分析,考虑层板间,想要得到层板应力场,我们要查阅前人如何计算尿素合成塔层板的应力场的,现在有没有最新的研究成果,然后利用这些公式到ANSYS单元库里去查找单元看看时候存在这样的单元专门针对这种问题是按照这种计算公式来作为基础开发单元的,如果有那就再好不过了,如果没有则需要分析人员利用本领域最新的科研成果结合自己在ANSYS二次开放方面的知识,从二次开发的角度开发新的用于该问题的专门单元(这个过程比较难,但并不是不可完成,因为ANSYS本身已经开发出来100多种单元,而且只有这样的分析才是足够专业和令人信服的),否则,那只能是近似的结果了,我们用这种新开发的单元来作分析的话,即使不能做到真正与现实情况一致,但至少是最接近于真实应力场分布的分析,因为这是以最新的理论研究为基础做的分析。
所以,想真正的学好ANSYS,不但要知道怎样操作,而且要知道如何扩充ANSYS,使他能够完成自己需要的功能,使它成为自己独一无二的ANSYS版本,这也是我们学习任何一款有限元软件的方向,否则我们就无法做到随心所欲、无所不能的使用这些利剑完成各种各样的分析
㈨ 有限元分析方法的简介
有限元分析是使用有限元方法来分析静态或动态的物理物体或物理系统。在这种方法中一个物体或系统被分解为由多个相互联结的、简单、独立的点组成的几何模型。在这种方法中这些独立的点的数量是有限的,因此被称为有限元。由实际的物理模型中推导出来得平衡方程式被使用到每个点上,由此产生了一个方程组。这个方程组可以用线性代数的方法来求解。有限元分析 的精确度无法无限提高。元的数目到达一定高度后解的精确度不再提高,只有计算时间不断提高。
有限元分析法(FEA)已应用得非常广泛,现已成为年创收达数十亿美元的相关产业的基础。即使是很复杂的应力问题的数值解,用有限元分析的常规方法就能得到。此方法是如此的重要,以至于即便像这些只对材料力学作入门性论述的模块,也应该略述其主要特点。 不管有限元法是如何的卓有成效,当你应用此法及类似的方法时,计算机解的缺点必须牢记在心头:这些解不一定能揭示诸如材料性能、几何特征等重要的变量是如何影响应力的。一旦输入数据有误,结果就会大相径庭,而分析者却难以觉察。所以理论建模最重要的作用可能是使设计者的直觉变得敏锐。有限元程序的用户应该为此目标部署设计策略,以尽可能多的封闭解和实验分析作为计算机仿真的补充。 与现代微机上许多字处理和电子制表软件包相比,有限元的程序不那么复杂。然而,这些程序的复杂程度依然使大部分用户无法有效地编写自己所需的程序。可以买到一些预先编好的商用程序1,其价格范围宽,从微机到超级计算机都可兼容。但有特定需求的用户也不必对程序的开发望而生畏,你会发现,从诸如齐凯维奇(Zienkiewicz2)等的教材中提供的程序资源可作为有用的起点。大部分有限元软件是用Fortran语言编写的,但诸如felt等某些更新的程序用的是C语言或其它更时新的程序语言。
在实践中,有限元分析法通常由三个主要步骤组成: 1、预处理:用户需建立物体待分析部分的模型,在此模型中,该部分的几何形状被分割成若干个离散的子区域——或称为“单元”。各单元在一些称为“结点”的离散点上相互连接。这些结点中有的有固定的位移,而其余的有给定的载荷。准备这样的模型可能极其耗费时间,所以商用程序之间的相互竞争就在于:如何用最友好的图形化界面的“预处理模块”,来帮助用户完成这项繁琐乏味的工作。有些预处理模块作为计算机化的画图和设计过程的组成部分,可在先前存在的CAD文件中覆盖网格,因而可以方便地完成有限元分析。 2、分析:把预处理模块准备好的数据输入到有限元程序中,从而构成并求解用线性或非线性代数方程表示的系统
u和f分别为各结点的位移和作用的外力。矩阵K的形式取决于求解问题的类3、分析的早期,用户需仔细地研读程序运算后产生的大量数字,即 型,本模块将概述桁架与线弹性体应力分析的方法。商用程序可能带有非常大的单元库,不同类型的单元适用于范围广泛的各类问题。有限元法的主要优点之一就是:许多不同类型的问题都可用相同的程序来处理,区别仅在于从单元库中指定适合于不同问题的单元类型。
㈩ 有限元的基本理论
为避开抽象的概念,现以平面问题为对象进行有限元理论的推导说明。在平面区域内用有限元方法进行分析,单元节点上的力学状态通常由下列参数表征:
(1)节点位移量
考虑具有直线边界的单元e,其节点为i,j,m,…。单元内任意点的位移u以列矢量
油气藏现今地应力场评价方法及应用
式中N的分量一般为坐标(x,y)的函数,ae表示e的全部节点位移,i=1,2,3…是单元节点的局部符号。
以平面应力场为例,则下式表示单元内任意点(x,y)的位移x、y值:
油气藏现今地应力场评价方法及应用
且:
油气藏现今地应力场评价方法及应用
ai表示节点i的位移量。
(2)节点应变
如给定单元内所有节点的位移量,则可求出任意点的应变,其关系式可表示为:
ε=Lu (1-38)
式中L为适当的线性算子。根据式(1-33),上式可变为:
ε=[B]a (1-39)
此处:
[B]=[L][N] (1-40)
对于平面应力的场,相关联的应变将在平面内产生,在确定出算子L后,而位移的函数则可表示如下:
油气藏现今地应力场评价方法及应用
根据上式和已知的Ni,Ni,Nm函数,容易求得矩阵B。如果这些函数是线性函数,则单元内的应变为恒定值。
(3)单元应力
一般来讲,单元材料随温度的变化、收缩、结晶等发生应变。这种应变以εi表示,由于实际的应变和初期应变ε0存在差值,因而产生了应力。而且,受某个已知系统的影响,为了便于分析,从分析初期开始,通常假定物体处于受初期残留应力作用的状态。ε0有时能被测定出来,但如果不清楚材料来源的话,就不能预测其值。另外,此应力只能适用于一般的应力-应变关系式。基于以上考虑及一般的弹性运动状态,线性应力和应变的关系式可以表示如下:
σ=D(ε-ε0)+σ0 (1-42)
这里,σ0是初始应力,D是含有适当材料常数的弹性矩阵。
下面进一步说明有关弹性应力场的问题。对于已定义的应变,必须考虑三个应力分量,表示为:
油气藏现今地应力场评价方法及应用
矩阵D可以用普通的各向同性弹性体关系式求得:
油气藏现今地应力场评价方法及应用
油气藏现今地应力场评价方法及应用
于是:
油气藏现今地应力场评价方法及应用
(4)等价节点力
把作用于单元边界上的应力及单元内的分布荷载(物体力—body force)等称为静态等价节点力,用下式表示:
油气藏现今地应力场评价方法及应用
这里,各节点的力
例如,平面应力场的情况下,节点力为:
油气藏现今地应力场评价方法及应用
分量U、V的方向与变形u、v的方向对应。另外,物体力为:
油气藏现今地应力场评价方法及应用
其中:bx、by为其分量。
把节点力与实际的边界应力、物体力等静态地等价起来的最简单方法是给任意的(假想)节点位移,由此使各种力和应力所产生的外部功与内部功相等。如果将赋给节点的假想位移表示为δae,则根据式(1-35)及式(1-41)单元内产生的位移和应变可由下式表示:
δu=Nδae及δε=Bδae (1-51)
节点力的功等于各个力的分量与相对应假想位移分量的积的和,可用矩阵可表示为:
δaeTqe (1-52)
同样,单位面积上应力及物体力所做的内部功为:
δεTσ-δuTb (1-53)
或者,代入式(1-52)得:
δaT(BTσ-NTB) (1-54)
如果令由式(1-52)得到的外部功等于单元总体积Ve上积分得全部内部功时,则有:
油气藏现今地应力场评价方法及应用
此式对于任意的应力-应变关系都成立。
将式(1-42)代入式(1-54)得:
qe=Keae+fe (1-56)
式中:
油气藏现今地应力场评价方法及应用
且:
油气藏现今地应力场评价方法及应用
最后式子中的三项各为物体力、初期应变和初期应力的力的表现形式。任意的构造单元特性均可用下式表示:
油气藏现今地应力场评价方法及应用
(5)全区域的一般化
至此,已阐明了假想功的原理仅对一个单元适用以及等价节点力的概念。在有限元法中,可通过建立每个单元节点的局部方程式导出式来分析区域内有限个节点的平衡方程式。因而,任意节点上的内力及外力可通过与该节点相连的所有单元在该节点上的内力及外力的总合来计算出来,即:
Ka+f=r (1-60)
另外,可将单元相互间的分布作用力、反作用力用等价节点进行置换,这一方法是很容易理解的。