导航:首页 > 知识科普 > 配方法公式法两种不同的怎么求

配方法公式法两种不同的怎么求

发布时间:2022-05-01 19:48:02

Ⅰ 配方法,公式法,两种不同的怎么求呢注意还有题目

1) 公式法
因为 y=2x^2 -3x-5
设a=2 b=-3 c=-5

Δ=b^2-4ac=9+40=49>0
当y=0时,x=(3+7)/4,或(3-7)/4
x=2.5,-1 即抛物线与X轴交与(-1,0) (2.5,0)
中轴的x坐标值为 -1+2.5 /2=0.75
对称轴为X=0.75

当x=0时,y=-5
即顶点坐标为(0,-5)
因为,a>0 ,抛物线开口向上

2)配方法
因为 y=2x^2 -3x-5

y=2(x^2-3/2x)-5
y=2(x-3/4)^2 -9/8-5
y=2(x-3/4)^2-49/8

当y=0时,2(x-3/4)^2-49/8=0
(x-3/4)^2=49/16

x-3/4=7/4,或者-7/4

x=5/2,-1
即抛物线与X轴交与(-1,0) (5/2,0)
中轴的x坐标值为 -1+2.5 /2=0.75
对称轴为X=0.75

当x=0时,y=-5

即顶点坐标为(0,-5)
因为,a>0 ,抛物线开口向上

Ⅱ 配方法。公式法。分解因式法都怎么算

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解 法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。 、直接开平方法: 直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的 方程,其解为x=m± . 例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以 此方程也可用直接开平方法解。 (1)解:(3x+1)2=7× ∴(3x+1)2=5 ∴3x+1=±(注意不要丢解) ∴x= ∴原方程的解为x1=,x2= (2)解: 9x2-24x+16=11 ∴(3x-4)2=11 ∴3x-4=± ∴x= ∴原方程的解为x1=,x2= 2.配方法:用配方法解方程ax2+bx+c=0 (a≠0) 先将常数c移到方程右边:ax2+bx=-c 将二次项系数化为1:x2+x=- 方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2 方程左边成为一个完全平方式:(x+ )2= 当b2-4ac≥0时,x+ =± ∴x=(这就是求根公式) 例2.用配方法解方程 3x2-4x-2=0 解:将常数项移到方程右边 3x2-4x=2 将二次项系数化为1:x2-x= 方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2 配方:(x-)2= 直接开平方得:x-=± ∴x= ∴原方程的解为x1=,x2= . 3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项 系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。 例3.用公式法解方程 2x2-8x=-5 解:将方程化为一般形式:2x2-8x+5=0 ∴a=2, b=-8, c=5 b2-4ac=(-8)2-4×2×5=64-40=24>0 ∴x= = = ∴原方程的解为x1=,x2= . 4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让 两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个 根。这种解一元二次方程的方法叫做因式分解法。 例4.用因式分解法解下列方程: (1) (x+3)(x-6)=-8 (2) 2x2+3x=0 (1)解:(x+3)(x-6)=-8 化简整理得 x2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分解因式) ∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x1=5,x2=-2是原方程的解。 (2)解:2x2+3x=0 x(2x+3)=0 (用提公因式法将方程左边分解因式) ∴x=0或2x+3=0 (转化成两个一元一次方程) ∴x1=0,x2=-是原方程的解。

Ⅲ 配方法 公式法

配方法和公式法是解方程常用的两种方法,二者得到的结果一定是一样的
如果方程中可以非常容易的凑成完全平方的形式,那么配方法比较简单
因式分解也是解方程常用的一种方法
如果上述两种方法都行不通,那么就只能用公式法了,公式法是一个万能的方法,所有的一元二次方程都可以用公式法来解,但是公式法计算比较复杂。

Ⅳ 配方法、开方法、公式法算法和公式

1..配方法(可解全部一元二次方程)
2.公式法(可解全部一元二次方程)
3.因式分解法(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。
4.开方法(可解全部一元二次方程)一元二次方程的解法实在不行(你买个卡西欧的fx-500或991的计算器 有解方程的,不过要一般形式)
如何选择最简单的解法:
1、看是否可以直接开方解;
2、看是否能用因式分解法解(因式分解的解法中,先考虑提公因式法,再考虑公式法,最后考虑十字相乘法);
3、使用公式法求解;
4、除非题目要求,最后再考虑配方法(配方法虽然可以解全部一元二次方程,但是解题步骤太麻烦)。
一、知识要点:
一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基础,应引起同学们的重视。
一元二次方程的一般形式为:ax^2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2的整式方程。
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
二、方法、例题精讲:
1、直接开平方法:
直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=m±√n
例1.解方程(1)(3x+1)^2=7 (2)9x^2-24x+16=11
分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)^2,右边=11>0,所以此方程也可用直接开平方法解。
(1)解:(3x+1)^2=7
∴(3x+1)^2=7
∴3x+1=±√7(注意不要丢解)
∴x= ...
∴原方程的解为x1=...,x2= ...
(2)解: 9x^2-24x+16=11
∴(3x-4)^2=11
∴3x-4=±√11
∴x= ...
∴原方程的解为x1=...,x2= ...
2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0)
先将固定数c移到方程右边:ax^2+bx=-c
将二次项系数化为1:x^2+(b/a)x=-c/a
方程两边分别加上一次项系数的一半的平方:x^2+(b/a)x+0.5(b/a)^2=-c/a+0.5(b/a)^2
方程左边成为一个完全平方式:[x+0.5(b/a)]^2=-c/a+0.5(b/a)^2
当b2-4ac≥0时,x+ =± √[-c/a+0.5(b/a)^2 ]-0.5(b/a)
∴x=...(这就是求根公式)
例2.用配方法解方程 3x^2-4x-2=0
解:将常数项移到方程右边 3x^2-4x=2
将二次项系数化为1:x^2-x=
方程两边都加上一次项系数一半的平方:x^2-x+( )^2= +( )^2
配方:(x-)^2=
直接开平方得:x-=±
∴x=
∴原方程的解为x1=,x2= .
3.公式法:把一元二次方程化成ax^2+bx+c的一般形式,然后把各项系数a, b, c的值代入求根公式就可得到方程的根。
当b^2-4ac>0时,求根公式为x1=[-b+√(b^2-4ac)]/2a,x2=[-b-√(b^2-4ac)]/2a(两个不相等的实数根)
当b^2-4ac=0时,求根公式为x1=x2=-b/2a(两个相等的实数根)
当b^2-4ac<0时,求根公式为x1=[-b+√(4ac-b^2)i]/2a,x2=[-b-√(4ac-b^2)i]/2a(两个共轭的虚数根)(初中理解为无实数根)
例3.用公式法解方程 2x^2-8x=-5
解:将方程化为一般形式:2x^2-8x+5=0
∴a=2, b=-8, c=5
b^2-4ac=(-8)2-4×2×5=64-40=24>0
∴x= = =
∴原方程的解为x1=,x2= .
4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。
例4.用因式分解法解下列方程:
(1) (x+3)(x-6)=-8 (2) 2x^2+3x=0
(3) 6x^2+5x-50=0 (选学) (4)x^2-4x+4=0 (选学)
(1)解:(x+3)(x-6)=-8 化简整理得
x^2-3x-10=0 (方程左边为二次三项式,右边为零)
(x-5)(x+2)=0 (方程左边分解因式)
∴x-5=0或x+2=0 (转化成两个一元一次方程)
∴x1=5,x2=-2是原方程的解。
(2)解:2x^2+3x=0
x(2x+3)=0 (用提公因式法将方程左边分解因式)
∴x=0或2x+3=0 (转化成两个一元一次方程)
∴x1=0,x2=-是原方程的解。
注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。
(3)解:6x2+5x-50=0
(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)
∴2x-5=0或3x+10=0
∴x1=, x2=- 是原方程的解。
(4)解:x^2-4x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)
(x-2)(x-2 )=0
∴x1=2 ,x2=2是原方程的解。
小结:
一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。
直接开平方法是最基本的方法。
公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解。
配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。
例5.用适当的方法解下列方程。(选学)
(1)4(x+2)^2-9(x-3)^2=0 (2)x^2+2x-3=0
(3) x2-2 x=- (4)4x2-4mx-10x+m2+5m+6=0
分析:(1)首先应观察题目有无特点,不要盲目地先做乘法运算。观察后发现,方程左边可用平方差公式分解因式,化成两个一次因式的乘积。
(2)可用十字相乘法将方程左边因式分解。
(3)化成一般形式后利用公式法解。
(4)把方程变形为 4x^2-2(2m+5)x+(m+2)(m+3)=0,然后可利用十字相乘法因式分解。
(1)解:4(x+2)^2-9(x-3)^2=0
[2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0
(5x-5)(-x+13)=0
5x-5=0或-x+13=0
∴x1=1,x2=13
(2)解: x^2+2x-3=0
[x-(-3)](x-1)=0
x-(-3)=0或x-1=0
∴x1=-3,x2=1
(3)解:x^2-2 x=-
x^2-2 x+ =0 (先化成一般形式)
△=(-2 )^2-4 ×=12-8=4>0
∴x=
∴x1=,x2=
(4)解:4x^2-4mx-10x+m^2+5m+6=0
4x^2-2(2m+5)x+(m+2)(m+3)=0
[2x-(m+2)][2x-(m+3)]=0
2x-(m+2)=0或2x-(m+3)=0
∴x1= ,x2=
例6.求方程3(x+1)^2+5(x+1)(x-4)+2(x-4)^2=0的二根。 (选学)
分析:此方程如果先做乘方,乘法,合并同类项化成一般形式后再做将会比较繁琐,仔细观察题目,我们发现如果把x+1和x-4分别看作一个整体,则方程左边可用十字相乘法分解因式(实际上是运用换元的方法)
解:[3(x+1)+2(x-4)][(x+1)+(x-4)]=0
即 (5x-5)(2x-3)=0
∴5(x-1)(2x-3)=0
(x-1)(2x-3)=0
∴x-1=0或2x-3=0
∴x1=1,x2=是原方程的解。
例7.用配方法解关于x的一元二次方程x^2+px+q=0
解:x^2+px+q=0可变形为
x^2+px=-q (常数项移到方程右边)
x^2+px+( )2=-q+( )2 (方程两边都加上一次项系数一半的平方)
(x+)2= (配方)
当p^2-4q≥0时,≥0(必须对p^2-4q进行分类讨论)
∴x=- ±=
∴x1= ,x2=
当p^2-4q<0时,<0此时原方程无实根。
说明:本题是含有字母系数的方程,题目中对p, q没有附加条件,因此在解题过程中应随时注意对字母取值的要求,必要时进行分类讨论。
练习:
(一)用适当的方法解下列方程:
1. 6x^2-x-2=0 2. (x+5)(x-5)=3
3. x^2-x=0 4. x^2-4x+4=0
5. 3x2+1=2x 6. (2x+3)2+5(2x+3)-6=0
(二)解下列关于x的方程
1.x^2-ax+-b2=0 2. x^2-( + )ax+ a2=0
练习参考答案:
(一)1.x1=-1/2 ,x2=2/3 2.x1=2,x2=-2
3.x1=0,x2= 4.x1=x2=2 5.x1=x2=
6.解:(把2x+3看作一个整体,将方程左边分解因式)
[(2x+3)+6][(2x+3)-1]=0
即 (2x+9)(2x+2)=0
∴2x+9=0或2x+2=0
∴x1=-,x2=-1是原方程的解。
(二)1.解:x^2-ax+( +b)( -b)=0 2、解:x^2-(+ )ax+ a· a=0
[x-( +b)] [x-( -b)]=0 (x- a)(x-a)=0
∴x-( +b)=0或x-( -b) =0 x- a=0或x-a=0
∴x1= +b,x2= -b是 ∴x1= a,x2=a是
原方程的解。 原方程的解。
测试(有答案在下面)
选择题
1.方程x(x-5)=5(x-5)的根是( )
A、x=5 B、x=-5 C、x1=x2=5 D、x1=x2=-5
2.多项式a2+4a-10的值等于11,则a的值为( )。
A、3或7 B、-3或7 C、3或-7 D、-3或-7
3.若一元二次方程ax^2+bx+c=0中的二次项系数,一次项系数和常数项之和等于零,那么方程必有一个根是( )。
A、0 B、1 C、-1 D、±1
4. 一元二次方程ax^2+bx+c=0有一个根是零的条件为( )。
A、b≠0且c=0 B、b=0且c≠0
C、b=0且c=0 D、c=0
5. 方程x^2-3x=10的两个根是( )。
A、-2,5 B、2,-5 C、2,5 D、-2,-5
6. 方程x^2-3x+3=0的解是( )。
A、 B、 C、 D、无实根
7. 方程2x^2-0.15=0的解是( )。
A、x= B、x=-
C、x1=0.27, x2=-0.27 D、x1=, x2=-
8. 方程x^2-x-4=0左边配成一个完全平方式后,所得的方程是( )。
A、(x-)2= B、(x- )2=-
C、(x- )2= D、以上答案都不对
9. 已知一元二次方程x^2-2x-m=0,用配方法解该方程配方后的方程是( )。
A、(x-1)^2=m2+1 B、(x-1)^2=m-1 C、(x-1)^2=1-m D、(x-1)^2=m+1
答案与解析
答案:1.C 2.C 3.B 4.D 5.A 6.D 7.D 8.C 9.D
解析:
1.分析:移项得:(x-5)^2=0,则x1=x2=5,
注意:方程两边不要轻易除以一个整式,另外一元二次方程有实数根,一定是两个。
2.分析:依题意得:a^2+4a-10=11, 解得 a=3或a=-7.
3.分析:依题意:有a+b+c=0, 方程左侧为a+b+c, 且具仅有x=1时, ax^2+bx+c=a+b+c,意味着当x=1时,方程成立,则必有根为x=1。
4.分析:一元二次方程 ax^2+bx+c=0若有一个根为零,则ax^2+bx+c必存在因式x,则有且仅有c=0时,存在公因式x,所以 c=0.另外,还可以将x=0代入,得c=0,更简单!
5.分析:原方程变为 x^2-3x-10=0,
则(x-5)(x+2)=0
x-5=0 或x+2=0
x1=5, x2=-2.
6.分析:Δ=9-4×3=-3<0,则原方程无实根。
7.分析:2x2=0.15
x2=
x=±
注意根式的化简,并注意直接开平方时,不要丢根。
8.分析:两边乘以3得:x^2-3x-12=0,然后按照一次项系数配方,x^2-3x+(-)2=12+(- )^2,
整理为:(x-)2=
方程可以利用等式性质变形,并且 x^2-bx配方时,配方项为一次项系数-b的一半的平方。
9.分析:x^2-2x=m, 则 x^2-2x+1=m+1
则(x-1)^2=m+1.
中考解析
考题评析
1.(甘肃省)方程的根是( )
(A) (B) (C) 或 (D) 或
评析:因一元二次方程有两个根,所以用排除法,排除A、B选项,再用验证法在C、D选项中选出正确选项。也可以用因式分解的方法解此方程求出结果对照选项也可以。选项A、B是只考虑了一方面忘记了一元
二次方程是两个根,所以是错误的,而选项D中x=-1,不能使方程左右相等,所以也是错误的。正确选项为C。
另外常有同学在方程的两边同时除以一个整式,使得方程丢根,这种错误要避免。
2.(吉林省)一元二次方程的根是__________。
评析:思路,根据方程的特点运用因式分解法,或公式法求解即可。
3.(辽宁省)方程的根为( )
(A)0 (B)–1 (C)0,–1 (D)0,1
评析:思路:因方程为一元二次方程,所以有两个实根,用排除法和验证法可选出正确选项为C,而A、B两选项只有一个根。D选项一个数不是方程的根。另外可以用直接求方程根的方法。
4.(河南省)已知x的二次方程的一个根是–2,那么k=__________。
评析:k=4.将x=-2代入到原方程中去,构造成关于k的一元二次方程,然后求解。
5.(西安市)用直接开平方法解方程(x-3)2=8得方程的根为( )
(A)x=3+2 (B)x=3-2
(C)x1=3+2 ,x2=3-2 (D)x1=3+2,x2=3-2
评析:用解方程的方法直接求解即可,也可不计算,利用一元二次方程有解,则必有两解及8的平方根,即可选出答案。
课外拓展
一元二次方程
一元二次方程(quadratic equation of one variable)是指含有一个未知数且未知数的最高次项是二次的整式方程。 一般形式为ax^2+bx+c=0, (a≠0)
在公元前两千年左右,一元二次方程及其解法已出现于古巴比伦人的泥板文书中:求出一个数使它与它的倒数之和等于 一个已给数,即求出这样的x与,使
x=1, x+ =b,
x^2-bx+1=0,
他们做出( )2;再做出 ,然后得出解答:+ 及 - 。可见巴比伦人已知道一元二次方程的求根公式。但他们当时并不接受 负数,所以负根是略而不提的。
埃及的纸草文书中也涉及到最简单的二次方程,例如:ax^2=b。
在公元前4、5世纪时,我国已掌握了一元二次方程的求根公式。
希腊的丢番图(246-330)却只取二次方程的一个正根,即使遇到两个都是正根的情况,他亦只取其中之一。
公元628年,从印度的婆罗摩笈多写成的《婆罗摩修正体系》中,得到二次方程x^2+px+q=0的一个求根公式。
在阿拉伯阿尔.花拉子米的《代数学》中讨论到方程的解法,解出了一次、二次方程,其中涉及到六种不同的形式,令 a、b、c为正数,如ax^2=bx、ax^2=c、 ax^2+c=bx、ax^2+bx=c、ax^2=bx+c 等。把二次方程分成不同形式作讨论,是依照丢番图的做法。阿尔.花拉子米除了给出二次方程的几种特殊解法外,还第一次给出二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识。十六世纪意大利的数学家们为了解三次方程而开始应用复数根。
韦达(1540-1603)除已知一元方程在复数范围内恒有解外,还给出根与系数的关系。
我国《九章算术.勾股》章中的第二十题是通过求相当于 x^2+34x-71000=0的正根而解决的。我国数学家还在方程的研究中应用了内插法。
[编辑本段]判别方法
一元二次方程的判断式:
b^2-4ac>0 方程有两个不相等的实数根.
b^2-4ac=0 方程有两个相等的实数根.
b^2-4ac<0 方程有两个共轭的虚数根(初中可理解为无实数根).
上述由左边可推出右边,反过来也可由右边推出左边.
[编辑本段]列一元二次方程解题的步骤
(1)分析题意,找到题中未知数和题给条件的相等关系;
(2)设未知数,并用所设的未知数的代数式表示其余的未知数;
(3)找出相等关系,并用它列出方程;
(4)解方程求出题中未知数的值;
(5)检验所求的答案是否符合题意,并做答.
[编辑本段]经典例题精讲

Ⅳ 开方法,配方法,公式法.怎么算

1.直接开平方法应用简单,但受形式限制;开平方的时候要注意正负。

2.配方法较麻烦,用公式法更方便,故一般不采用。但配方法是一种较重要的数学方法,公式法就是由它推导出来的,而且在后面的函数中还要用到配方法,所以要掌握好。它的重要性,不仅仅表现在一元二次方程的解法中,在今后学习二次函数,到高中学习二次曲线时还将经常用到。配方的时候,要注意二次项系数应先化为1,再把常数项移到式子的右边,然后把方程两边都加上一次项系数一半的平方;左边就变成了一个平方的形式,再运用直接开平方的方法求出方程的解。

3.公式法是一元二次方程的基本解法,对所有的一元二次方程都适用;用公式法的时候要先把方程变为一般形式,在求出方程的判别式,最后用公式求出方程的解。

4.因式分解法使用方便,是解一元二次方程最常用的方法,但不是所有的二次三项式都能很方便地进行因式分解。应用时要注意,等号的右边一定要为0,然后再把方程的左边进行因式分解,将方程左边分解成两个一次因式的乘积的形式,令每个因式分别为零,得到两个一元一次方程,解每个方程就求出了原方程的解。

二、一元二次方程的解法选用:

1.先观察能否用直接开平方法,能用就优先采用;

2.再观察能否用因式分解法;

3.用公式法。

注意:一般不采用配方法。

Ⅵ -2x的平方+4x+1=0。用配方法与公式法。。这两种方法解~。我两种解出来答案不一样。郁闷死我了

解:

配方法:

x²-2x-1/2=0

x²-2x+1-3/2=0

(x-1)²=3/2

x-1=± √6/2

x1=1+√6/2 x2=1-√6/2

公式法:

a=2 b=-4 c=-1

b²-4ac=16+4*2=24

代入求根公式得

x=(4± √24)/4=1± √6/2

x1=1+√6/2 x2=1-√6/2

概述

在基本代数中,配方法是一种用来把二次多项式化为一个一次多项式的平方与一个常数的和的方法。这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。

配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。由于问题中的完全平方具有(x+y)2=x2+ 2xy+y2的形式,可推出2xy= (b/a)x,因此y=b/2a。等式两边加上y2= (b/2a)2,可得:这个表达式称为二次方程的求根公式。

Ⅶ 比较一元二次方程中配方法、公式法、因式分解法

1.配方法
(可解全部一元二次方程)
如:解方程:x^2+2x-3=0
解:把常数项移项得:x^2+2x=3
等式两边同时加1(构成完全平方式)得:x^2+2x+1=4
因式分解得:(x+1)^2=4
解得:x1=-3,x2=1
用配方法解一元二次方程小口诀
二次系数化为一
常数要往右边移
一次系数一半方
两边加上最相当
2.公式法
(可解全部一元二次方程)
首先要通过b^2-4ac的值来判断一元二次方程有几个根
1.当b^2-4ac<0时 x无实数根(初中)
2.当b^2-4ac=0时 x有两个相同的实数根 即x1=x2
3.当b^2-4ac>0时 x有两个不相同的实数根
当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a
来求得方程的根
3.因式分解法
(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。
如:解方程:x^2+2x+1=0
解:利用完全平方公式因式分解得:(x+1﹚^2=0
解得:x1=x2=-1
4.直接开平方法
(可解部分一元二次方程)
5.代数法
(可解全部一元二次方程)
ax^2+bx+c=0
同时除以a,可变为x^2+bx/a+c/a=0
设:x=y-b/2
方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X错__应为 (y^2+b^2/4-by)除以(by-b^2/2)+c=0
再变成:y^2+(b^22*3)/4+c=0 X ___y^2-b^2/4+c=0
y=±√[(b^2*3)/4+c] X ____y=±√[(b^2)/4+c]
如何选择最简单的解法:
1、看是否可以直接开方解;
2、看是否能用因式分解法解(因式分解的解法中,先考虑提公因式法,再考虑平方公式法,最后考虑十字相乘法);
3、使用公式法求解;
4、最后再考虑配方法(配方法虽然可以解全部一元二次方程,但是有时候解题太麻烦)。

Ⅷ 用配方法怎么做配方法的公式是什么

x²-2x-8=0

x²-2x+1-1-8=0

x²-2x+1-9=0

(x-1)²=9

x-1=±3

解得

x1=4 x2=-2

Ⅸ 配方法的公式是什么

配方法是根据完全平方公式:(a+/-b)²=a²+/-2ab+b²得出的。

配方只适用于等式方程,就是把等式通过左右两边同时加或减去一个数,使这个等式的左边的式子变成完全平方式的展开式,再因式分解就可以解方程了。

举例:

2a²-4a+2=0

a²-2a+1=0(二次项系数要先化为1,方便使用配方法解题,所以等式两边同除二次项系数2)

(a-1)²=0(上一步的式子发现左边是完全平方式,所以根据完全平方公式,将a²-2a+1因式分解为(a-1)²,这样就完成了配方)

a-1=0(最后等式两边同时开平方)

a=1(得到结果)

(9)配方法公式法两种不同的怎么求扩展阅读

配方法的应用

1、用于比较大小:

在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小。

2、用于求待定字母的值:

配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值。

3、用于求最值:

“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值。

4、用于证明:

“配方法”在代数证明中有着广泛的应用,学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用。

阅读全文

与配方法公式法两种不同的怎么求相关的资料

热点内容
霞多丽葡萄的种植方法 浏览:779
肛周尖锐疣治疗方法 浏览:244
怎么踢腿减肥最有效方法 浏览:764
花王泡沫染发使用方法 浏览:91
有什么方法杀蛐蛐 浏览:832
异步电机轻载震荡抑制方法研究 浏览:476
学习技能计算方法 浏览:503
触点插座开关安装方法 浏览:118
植物接种方法一般分为什么和什么 浏览:111
大众车钥匙使用方法 浏览:910
平衡核心力的训练方法 浏览:380
底盘悬挂检查的方法和步骤 浏览:917
如何记叙自己的方法 浏览:257
手机扁平化解锁方法 浏览:716
常用细胞克隆化方法 浏览:893
检测毛囊需要用哪些检查方法 浏览:301
如何学习好日语的方法 浏览:86
食盐除了食用还有什么方法 浏览:182
二苯胺鉴定最简单方法 浏览:65
win10系统界面大小设置在哪里设置方法 浏览:820