⑴ 小学数学加减法速算方法与技巧
小学学生的加减法运算能力是非常重要的数学能力,运算能力不仅包括理解运算算理,掌握运算方法,还包括在遇到问题时能够找到合理简便的运算途径。
速算不仅能简化计算过程,化繁为简,化难为易,同时又会提高计算效率。
因此在学习过程中,不仅需要掌握计算法则,还需要学会一些运算技巧。
凑整"先计算
在进行加法运算时,若能对算式的各项恰当地分组,会使计算过程大大简化。两个数相加,若能恰好凑成整十、整百、整千、整万…则先计算。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:12+88=100,35+65=100,21+79=100,44+56=100,55+45=100。
在上面算式中,1叫9的"补数";79叫21的"补数",44也叫56的"补数",也就是说两个数互为"补数"。
例题1.计算53+55+47
解:原式=(53+47)+55
=155
计算23+39+61
解:原式=23+(39+61)
=23+100
=123
对于不能直接凑整的,可以把其中一个数进行拆分,再凑整。
例题2.计算87+15
解:原式=87+13+2
=(87+13)+2
=100+2
=102
计算54+79
解:原式=33+21+79
=33+(21+79)
=33+100
=133
计算65+18+27
解:原式=60+2+3+18+27
=60+(2+18)+(3+27)
=60+20+30
=110
对于没有直接凑整的数的,可以先凑整,最后再减去凑整的数。
例题3.计算:38+29+19
解:原式=(38+2)+(29+1)+(19+1)-4
=40+30+20-4
=90-4
=86
等差数列
计算等差连续数(等差数列)的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:
1,2,3,4,5,6,7,8,9
1,3,5,7,9
2,4,6,8,10
3,6,9,12,15
4,8,12,16,20等都是等差连续数
1、等差连续数的个数是奇数时,它们的和等于中间数乘以个数。
例题4.计算1+2+3+4+5+6+7+8+9
解:原式=5×9(中间数是5,共9个数)
=45
计算1+3+5+7+9+11+13
解:原式=7×7(中间数是7,共7个数)
=49
计算2+4+6+8+10
解:原式=6×5(中间数是6,共5个数)
=30
2、等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半。
例题5.计算1+2+3+4+5+6+7+8+9+10
共10个数,个数的一半是5,首数是1,末数是10。
解:原式=(1+10)×5
=11×5
=55
计算1+3+5+7+9+11+13+15
共8个数,个数的一半是4,首数是1,末数是15。
解:原式=(1+15)×4
=16×4
=64
计算2+4+6+8+10+12
共6个数,个数的一半是3,首数是2,末数是12。
解:原式=(2+12)×3
=14×3
=42
基准数法
先观察各个加数的大小接近什么数字,再把每个加数先按接近的数字相加,然后再把少算的加上,把多算的减去。
例题6.计算23+22+24+18+19+17
通过观察发现所有的加项比较接近20
解:原式=20×6+3+2+4-2-1-3
=120+9-6
=123
计算103+102+101+99+98
所有加项比较接近100
解:原式=100×5+3+2+1-1-2
=500+3
=503
减法中的巧算
1、把几个互为"补数"的减数先加起来,再从被减数中减去。
例题7.计算 400-63-37
解:原式= 400-(63+37)
=400-100
=300
计算1000-90-80-10-20
解:原式=1000-(90+80+10+20)
=1000-200
=800
2、先减去那些与被减数有相同尾数的减数。
例题8.计算4622-(622+149)
解:原式=4000-149
=3851
3、利用"补数"先凑整,再运算(注意把多加的数再减去,把多减的数再加上)。
例题9.计算505-397
解:原式=500+5-400+3(把多减的 3再加上)
=108
计算523-289
解:原式=523-300+11(把多减的11再加上)
=223+11
=234
计算358+997
解:原式=358+1000-3(把多加的3再减去)
=1355
加减混合式的运算
1、去括号和添括号的法则
在只有加减运算的算式里,如果括号前面是"+"号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是"-"号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,"+"变"-","-"变"+"。
例题10.计算200-20-10-30
解:原式=200-(10+20+30)
=200-60
=140
计算100-40+30
解:原式=100-(40-30)
=100-10
=90
2、带符号"搬家"
例题11.计算 545+47-145+53
解:原式=545-145+47+53
=(545-145)+(47+53)
=400+100
=500
注意:每个数前面的运算符号是这个数的符号,如+47,-145,+53。而545前面虽然没有符号,应看作是+545。
3、两个数相同而符号相反的数可以直接"抵消"掉
例题12.计算18+2-18+4
解:原式=18-18+2+4
=6
⑵ 什么是数学巧算
在加减混合,乘除混合同级运算中,可以根据运算的需要以及题目的特点,交换数字的位置,可以使计算变得简便。特别提醒的是:交换数字的位置,要注意运算符号也随之换位置。根据运算定律和数字特点,常常灵活地把算式中的数拆分,重新组合,分别凑成整十、整百、整千。
2
方法一:两位数乘法的巧算方法
首位是1的两位数相乘
从个位起:
1. 两尾数相乘,作个位。注意进位。
2. 两尾数相加,作十位。注意进位。
3. 两首数相乘,作百位。
如:18×19= 342:8×9=72,则进7,2作个位 ;
8+9+7=24,则进2,4作十位;
1×1+2=3 作百位。
12×13=156
末位是1的两位数相乘
从个位起:
1. 两尾数相乘,作个位。肯定是1
2. 两首位相加,作十位。注意进位。
3. 两首数相乘,作百位和千位。
如:41×71=2911 31×21=651
3
方法二:凑整先算
1.计算:(1)24+44+56 (2)53+36+47
解:(1)24+44+56=24+(44+56)=24+100=124
因为44+56=100是个整百的数,所以先把它们的和算出来。
(2)53+36+47=53+47+36 =(53+47)+36=100+36=136
因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来。
2.计算:(1)96+15 (2)52+69
解:(1)96+15=96+(4+11)
=(96+4)+11=100+11=111
把15分拆成15=4+11,这是因为96+4=100,可凑整先算。
(2)52+69=(21+31)+69 =21+(31+69)=21+100=121
因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算。
3.计算:(1)63+18+19 (2)28+28+28
解:(1)63+18+19 =60+2+1+18+19 =60+(2+18)+(1+19) =60+20+20=100
将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算。
(2)28+28+28 =(28+2)+(28+2)+(28+2)-6 =30+30+30-6=90-6=84
因为28+2=30可凑整,但最后要把多加的三个2减去。
4
方法三:减法中的巧算
1.把几个互为“补数”的减数先加起来,再从被减数中减去。
例 3① 300-73-27 ② 1000-90-80-20-10
解:①式= 300-(73+ 27) =300-100=200
②式=1000-(90+80+20+10) =1000-200=800
2.先减去那些与被减数有相同尾数的减数。
例4① 4723-(723+189) ② 2356-159-256
解:①式=4723-723-189 =4000-189=3811 ②式=2356-256-159 =2100-159 =1941
3.利用“补数”把接近整十、整百、整千……的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。
例 5 ①506-397 ②323-189 ③467+997 ④987-178-222-390
解:①式=500+6-400+3(把多减的 3再加上) =109
②式=323-200+11(把多减的11再加上) =123+11=134
③式=467+1000-3(把多加的3再减去) =1464
④式=987-(178+222)-390 =987-400-400+10=197
⑶ 破十法口诀是什么
减九加一、减八加二、减七加三、减六加四、减五加五、减四加六、减三加七、减二加八。
解析
拓展资料:
破十法:一种计算方法、当个位不够减时,就用10减去减数,剩下的数和个位上的数相加,即破十法、比如,11-3,说“1-3不够,还差2个,我们从10里拿出一个2就等8了。
破十法的计算是从减法的意义出发进行思考的,学生通过操作活动,能直观地理解算理、形成算法。可思考过程比较复杂,学生至少需要两步思考—先减再加。相比用数数的方法和想加算减的方法显得比较难理解,主要在于学生已有的数数计算习惯。
⑷ 十种巧算方法
巧算的方法很多嗯,最常用的是凑整法
比如说一个数加99,你就可以先加100,再减去一
比如看到125,要想到乘以8=1000之类的
⑸ 加减法巧算方法介绍
加减法巧算方法介绍:
1加法交换律与加法结合律
加法交换律:
两个数相加,交换加数的位置,它们的和不变。即a+b=b+a
一般地,多个数相加,任意改变相加的次序,其和不变。
a+b+c+d=d+b+a+c
加法结合律:
几个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个数相加,再与第一个数相加,它们的和不变。即:a+b+c = (a+b)+c = a+(b+c),
2速算与巧算中常用的三大基本思想
1.凑整 (目标:整十 整百 整千...)
2.分拆(分拆后能够凑成 整十 整百 整千...)
3.组合(合理分组再组合 )
3常见方法
凑整法
两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的"补数",利用"补数"巧算加法,通常称为"凑整法"
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,
在上面算式中,1叫9的"补数";89叫11的"补数",11也叫89的"补数"。也就是说两个数互为"补数"。
对于一个较大的数,如何能很快地算出它的"补数"来呢?一般来说,可以这样"凑"数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如: 87655→12345, 46802→53198,87362→12638,…
下面讲利用"补数"巧算加法,通常称为"凑整法"。
巧算下面各题:
①36+87+64
②99+136+101
③1361+972+639+28
解:
①式=(36+64)+87=100+87=187
②式=(99+101)+136=200+136=336
③式=(1361+639)+(972+28)=2000+1000=3000
组合凑整法
(1)在加、减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”
(2)在加、减法混合运算中,添括号时:如果添加的括号前面是“+”号,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”号,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。
(3)利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。
基准法
在减法运算过程中利用补数原理,先将几个减数凑整,再进行减法运算。在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。
计算 78+76+83+82+77+80+79+85=640