导航:首页 > 知识科普 > 概率论中的统计方法有哪些

概率论中的统计方法有哪些

发布时间:2022-07-22 01:53:09

A. 概率论与数理统计知识点有哪些

概率论与数理统计知识点有:

1、随机变量:对事件发生的各个结果联系数字进行定义,创造出一个随着结果不同而变化的实值单值函数就是随机变量。

2、频率与概率:频率在试验趋于无穷时等于概率。概率具有非负性,可列可加性。

3、中心极限定理:大量随机因素(变量)共同作用下(构成统计量)的分布近似于正态分布。

4、区间估计:本质依然是通过样本估计未知参数,构造枢轴量(不依赖未知参数确定分布类型的统计量)。

5、分布函数和概率密度:分布函数和分布率体现出随机变量取不同值时的概率,概率密度体现出随机变量取值的密集成程度。

B. 概率论与数理统计中统计方面的重要公式都有哪些对于考研数三的

数理统计方面的知识主要是抽样分布,参数估计,假设检验。参数估计分点估计和区间估计。我可以很负责的告你数学卷当中的第23题最主要考点估计的两个方面,1矩估计,2极大似然估计,当然这里联系到了抽样分布的东西(也需要会抽样)。区间估计和假设检验百分之九十九的不考(你如果想知道为什么,考完后咱两讨论),其实以上所有的东西都是建立在大数定律和中心极限定理之(当然这个绝对不考)上的东东,所以你要理解一下这两个概念,然后至于是什么公式需要会用,你也就知道了,这样比你直接背那几个公式好多多,祝你好运。

C. 概率统计

贝叶斯公式
若B1,B2,...为一系列互不相容的事件,且

U Bi=Ω,P(Bi)>0,i=1,2,…
i=1
则对任一事件A,有
P(Bi|A)=[P(Bi)P(A|Bi)]/[P(A|B1) P(A|B2)...P(A|B∞)] i=1,2,...
这个公式为我们判断某种结果生成的原因提供理论依据。

贝叶斯法则
贝叶斯的统计学中有一个基本的工具叫“贝叶斯法则”,尽管它是一个数学公式,但其原理毋需数字也可明了。如果你看到一个人总是做一些好事,则那个人多半会是一个好人。这就是说,当你不能准确知悉一个事物的本质时,你可以依靠与事物特定本质相关的事件出现的多少去判断其本质属性的概率。用数学语言表达就是:支持某项属性的事件发生得愈多,则该属性成立的可能性就愈大。
贝叶斯法则又被称为贝叶斯定理、贝叶斯规则是概率统计中的应用所观察到的现象对有关概率分布的主观判断(即先验概率)进行修正的标准方法。
所谓贝叶斯法则,是指当分析样本大到接近总体数时,样本中事件发生的概率将接近于总体中事件发生的概率。
但行为经济学家发现,人们在决策过程中往往并不遵循贝叶斯规律,而是给予最近发生的事件和最新的经验以更多的权值,在决策和做出判断时过分看重近期的事件。面对复杂而笼统的问题,人们往往走捷径,依据可能性而非根据概率来决策。这种对经典模型的系统性偏离称为“偏差”。由于心理偏差的存在,投资者在决策判断时并非绝对理性,会行为偏差,进而影响资本市场上价格的变动。但长期以来,由于缺乏有力的替代工具,经济学家不得不在分析中坚持贝叶斯法则。
[编辑本段]贝叶斯法则的原理
通常,事件A在事件B(发生)的条件下的概率,与事件B在事件A的条件下的概率是不一样的;然而,这两者是有确定的关系,贝叶斯法则就是这种关系的陈述。
作为一个规范的原理,贝叶斯法则对于所有概率的解释是有效的;然而,频率主义者和贝叶斯主义者对于在应用中概率如何被赋值有着不同的看法:频率主义者根据随机事件发生的频率,或者总体样本里面的个数来赋值概率;贝叶斯主义者要根据未知的命题来赋值概率。一个结果就是,贝叶斯主义者有更多的机会使用贝叶斯法则。
贝叶斯法则是关于随机事件A和B的条件概率和边缘概率的。
\Pr(A|B) = \frac{\Pr(B | A)\, \Pr(A)}{\Pr(B)}\propto L(A | B)\, \Pr(A) \!
其中L(A|B)是在B发生的情况下A发生的可能性。
在贝叶斯法则中,每个名词都有约定俗成的名称:
Pr(A)是A的先验概率或边缘概率。之所以称为"先验"是因为它不考虑任何B方面的因素。
Pr(A|B)是已知B发生后A的条件概率,也由于得自B的取值而被称作A的后验概率。
Pr(B|A)是已知A发生后B的条件概率,也由于得自A的取值而被称作B的后验概率。
Pr(B)是B的先验概率或边缘概率,也作标准化常量(normalized constant)。
按这些术语,Bayes法则可表述为:
后验概率 = (相似度 * 先验概率)/标准化常量
也就是说,后验概率与先验概率和相似度的乘积成正比。
另外,比例Pr(B|A)/Pr(B)也有时被称作标准相似度(standardised likelihood),Bayes法则可表述为:后验概率 = 标准相似度 * 先验概率
[编辑本段]举例分析
全垄断市场,只有一家企业A提供产品和服务。现在企业B考虑是否进入。当然,A企业不会坐视B进入而无动于衷。B企业也清楚地知道,是否能够进入,完全取决于A企业为阻止其进入而所花费的成本大小。
挑战者B不知道原垄断者A是属于高阻挠成本类型还是低阻挠成本类型,但B知道,如果A属于高阻挠成本类型,B进入市场时A进行阻挠的概率是20%(此时A为了保持垄断带来的高利润,不计成本地拼命阻挠);如果A属于低阻挠成本类型,B进入市场时A进行阻挠的概率是100%。
博弈开始时,B认为A属于高阻挠成本企业的概率为70%,因此,B估计自己在进入市场时,受到A阻挠的概率为:
0.7×0.2+0.3×1=0.44
0.44是在B给定A所属类型的先验概率下,A可能采取阻挠行为的概率。
当B进入市场时,A确实进行阻挠。使用贝叶斯法则,根据阻挠这一可以观察到的行为,B认为A属于高阻挠成本企业的概率变成A属于高成本企业的概率=0.7(A属于高成本企业的先验概率)×0.2(高成本企业对新进入市场的企业进行阻挠的概率)÷0.44=0.32
根据这一新的概率,B估计自己在进入市场时,受到A阻挠的概率为:
0.32×0.2+0.68×1=0.744
如果B再一次进入市场时,A又进行了阻挠。使用贝叶斯法则,根据再次阻挠这一可观察到的行为,B认为A属于高阻挠成本企业的概率变成
A属于高成本企业的概率=0.32(A属于高成本企业的先验概率)×0.2(高成本企业对新进入市场的企业进行阻挠的概率)÷0.744=0.086
这样,根据A一次又一次的阻挠行为,B对A所属类型的判断逐步发生变化,越来越倾向于将A判断为低阻挠成本企业了。
以上例子表明,在不完全信息动态博弈中,参与人所采取的行为具有传递信息的作用。尽管A企业有可能是高成本企业,但A企业连续进行的市场进入阻挠,给B企业以A企业是低阻挠成本企业的印象,从而使得B企业停止了进入地市场的行动。
应该指出的是,传递信息的行为是需要成本的。假如这种行为没有成本,谁都可以效仿,那么,这种行为就达不到传递信息的目的。只有在行为需要相当大的成本,因而别人不敢轻易效仿时,这种行为才能起到传递信息的作用。
传递信息所支付的成本是由信息的不完全性造成的。但不能因此就说不完全信息就一定是坏事。研究表明,在重复次数有限的囚徒困境博弈中,不完全信息可以导致博弈双方的合作。理由是:当信息不完全时,参与人为了获得合作带来的长期利益,不愿过早暴露自己的本性。这就是说,在一种长期的关系中,一个人干好事还是干坏事,常常不取决于他的本性是好是坏,而在很大程度上取决于其他人在多大程度上认为他是好人。如果其他人不知道自己的真实面目,一个坏人也会为了掩盖自己而在相当长的时期内做好事。

D. 概率论与数理统计公式有哪些

并没有,可能在某些过程中有成立的,而且a小于b的话,在x大于b发生的情况下,x大于a的概率明显是1。

涉及n次试验某事件发生的次数X的数字特征的问题,马上要联想到对X作(0-1)分解,凡求解各概率分布已知的若干个独立随机变量组成的系统满足某种关系的概率(或已知概率求随机变量个数)的问题,马上联想到用中心极限定理处理。

特点:

它以随机现象的观察试验取得资料作为出发点,以概率论为理论基础来研究随机现象,根据资料为随机现象选择数学模型,且利用数学资料来验证数学模型是否合适,在合适的基础上再研究它的特点,性质和规律性。

例如灯泡厂生产灯泡,将某天的产品中抽出几个进行试验,试验前不知道该天灯泡的寿命有多长,概率和其分布情况。试验后得到这几个灯泡的寿命作为资料。

从中推测整批生产灯泡的使用寿命、合格率等。为了研究它的分布,利用概率论提供的数学模型进行指数分布,求出值,再利用几天的抽样试验来确定指数分布的合适性。

E. 对概率统计的认识

一、概率与统计主线内容整体感知

20世纪,概率与统计逐步成为数学教育的基本内容。概率与统计首先进入大学数学教育,不仅成为大学数学、应用数学、计算数学等的基础课程,进而成为很多专业的基础课程,很多大学把它确定为公共选修课程。20世纪中期,概率与统计逐步成为中小学学习的主要内容。目前我们已进入大数据时代,为了适应社会与科学技术的发展和进步,"概率与统计"内容已经成为大学数学教育的基础课程,在高中阶段"概率与统计"成为数学课程的主线,概率内容变得越来越重要,在培养学生的随机观念和提升学生的核心素养方面具有不可替代的作用.概率课程的主要育人功能是培养学生分析随机现象的能力,提升学生的数学抽象、数学建模、逻辑推理以及数学运算等素养。《普通高中数学课程标准(2017年版)》把"数据分析"确定为数学学科核心素养。

《普通高中数学课程标准(2017年版)》对概率与统计的课程设计,无论在内容选取、体系结构还是在学习要求上,都发生了很大变化.新版教材重新构建了概率与统计的教材结构体系,在概率中,通过样本空间理解随机事件,结合古典概型计算随机事件的概率,理解概率的性质和运算法则;在统计中,突出通过数据分析解决实际问题的统计学科特征,关注让学生经历数据处理的全过程,体会数据的随机性,感悟用样本估计总体的统计思想.

中小学阶段,在概率方面,要求学生初步学习和掌握古典概型、几何概型、二项分布、超几何分布等,了解正态分布,逐步理解有限样本空间,为学习概率空间奠定基础。在统计方面,要求学生能够初步学习和掌握独立性检验和回归分析。统计思维与传统数学思维有一定区别,后者七较重视演绎推理,前者更多用到归纳推理。

“概率与统计主线”通过准备知识、概率、统计三个主题来理解和认识概率与统计主线,其中,准备知识包括计数原理、二项式定理等核心内容;概率包括有限样本空间、随机、独立性与条件概率、随机变量等核心内容;统计包括一些基本概念、"数据分析全过程、几个基本问题等核心内容。

F. 概率论与数理统计问题

概率统计是应用非常广泛的数学学科,其理论和方法的应用遍及所有科学技术领域、工农业生产、医药卫生以及国民经济的各个部门.
概率统计是概率论与数理统计的简称.概率论研究随机现象的统计规律性;数理统计研究样本数据的搜集、整理、分析和推断的各种统计方法,这其中又包含两方面的内容:试验设计与统计推断.试验设计研究合理而有效地获得数据资料的方法;统计推断则是对已经获得的数据资料进行分析,从而对所关心的问题做出尽可能精确的估计与判断.
统计学是一门研究如何收集、整理、计算、分析数据,并在此基础上作出推断的科学.由于社会、生产和科技的发展,统计学获得了空前广泛的应用,渗透到整个社会生活的各个方面.这是因为对产品质量和工作质量要求的提高势必导致“用数据说话”,这样就需要用到统计工具.我们看到,现在各门科学和各个部门都建立了自己相应的统计学,如卫生统计学、农业统计学等等.正因为这样,统计知识及作为其理论基础的概率知识在义务教育学教学大纲和与之相衔接的新高中数学教学大纲里均占有一定的地位.
在中学数学里,统计及概率知识是分成三段介绍的.本章“统计初步”是首先介绍统计知识,从数据处理的角度,较为直观、具体地介绍一些统计的最基本的知识,为以后继续学习概率统计知识打下基础.第二段是要在高中数学必修课里介绍“概论”,第三段是要在高中数学限定选修课里继续介绍统计及概率,从概率的角度来认识统计问题,把对统计的学习上升到一个新的档次.可见,在整个中学数学的统计与概率知识里,本章处于一个知识启蒙和为后续学习打好基础的地位,十分重要,那种认为本章可有可无、一旦需要再学也不迟想法,或轻率地将本章从必学内容改为选学内容的做法都是不可取的.

G. 概率统计的概率论

概率论产生于十七世纪,本来是由保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。
早在1654年,有一个赌徒梅累向当时的数学家帕斯卡提出一个使他苦恼了很久的问题:“两个赌徒相约赌若干局,谁先赢 m局就算赢,全部赌本就归谁。但是当其中一个人赢了 a (a<m)局,另一个人赢了 b(b<m)局的时候,赌博中止。问:赌本应该如何分法才合理?”后者曾在1642年发明了世界上第一台机械加法计算机。 三年后,也就是1657年,荷兰着名的天文、物理兼数学家惠更斯企图自己解决这一问题,结果写成了《论机会游戏的计算》一书,这就是最早的概率论着作。
近几十年来,随着科技的蓬勃发展,概率论大量应用到国民经济、工农业生产及各学科领域。许多兴起的应用数学,如信息论、对策论、排队论、控制论等,都是以概率论作为基础的。 概率论和数理统计是一门随机数学分支,它们是密切联系的同类学科。但是应该指出,概率论、数理统计、统计方法又都各有它们自己所包含的不同内容。 概率论作为一门数学分支,它所研究的内容一般包括随机事件的概率、统计独立性和更深层次上的规律性。 概率是随机事件发生的可能性的数量指标。在独立随机事件中,如果某一事件在全部事件中出现的频率,在更大的范围内比较明显的稳定在某一固定常数附近。就可以认为这个事件发生的概率为这个常数。对于任何事件的概率值一定介于 0和 1之间。
有一类随机事件,它具有两个特点:第一,只有有限个可能的结果;第二,各个结果发生的可能性相同。具有这两个特点的随机现象叫做“古典概型”。
在客观世界中,存在大量的随机现象,随机现象产生的结果构成了随机事件。如果用变量来描述随机现象的各个结果,就叫做随机变量。
随机变量有有限和无限的区分,一般又根据变量的取值情况分成离散型随机变量和非离散型随机变量。一切可能的取值能够按一定次序一一列举,这样的随机变量叫做离散型随机变量;如果可能的取值充满了一个区间,无法按次序一一列举,这种随机变量就叫做非离散型随机变量。
在离散型随机变量的概率分布中,比较简单而应用广泛的是二项式分布。如果随机变量是连续的,都有一个分布曲线,实践和理论都证明:有一种特殊而常用的分布,它的分布曲线是有规律的,这就是正态分布。正态分布曲线取决于这个随机变量的一些表征数,其中最重要的是平均值和差异度。平均值也叫数学期望,差异度也就是标准方差。 数理统计包括抽样、适线问题、假设检验、方差分析、相关分析等内容。抽样检验是要通过对子样的调查,来推断总体的情况。究竟抽样多少,这是十分重要的问题,因此,在抽样检查中就产生了“小样理论”,这是在子样很小的情况下,进行分析判断的理论。
适线问题也叫曲线拟和。有些问题需要根据积累的经验数据来求出理论分布曲线,从而使整个问题得到了解。但根据什么原则求理论曲线?如何比较同一问题中求出的几种不同曲线?选配好曲线,有如何判断它们的误差?...... 就属于数理统计中的适线问题的讨论范围。
假设检验是只在用数理统计方法检验产品的时候,先作出假设,在根据抽样的结果在一定可靠程度上对原假设做出判断。
方差分析也叫做离差分析,就是用方差的概念去分析由少数试验就可以做出的判断。
由于随机现象在人类的实际活动中大量存在,概率统计随着现代工农业、近代科技的发展而不断发展,因而形成了许多重要分支。如:随机过程、信息论、极限理论、试验设计、多元分析等。

H. 概率统计知识点归纳有哪些

概率统计知识点归纳有:1.了解随机事件的发生存在着规律性和随机事件概率的意义。2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。4.会计算事件在n次独立重复试验中恰好发生k次的概率。


数学:

数学是研究数量、结构、变化、空间以及信息等概念的一门学科。数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。




阅读全文

与概率论中的统计方法有哪些相关的资料

热点内容
oppo手机的助手在哪里设置方法 浏览:537
尖头b2单边桥最简单方法如何对点 浏览:132
灯带安装方法直流 浏览:86
衬衣领子打结方法视频 浏览:980
修复冰晶使用方法 浏览:246
受益所有人的计算方法 浏览:881
黄豆怎么收购方法去杂 浏览:658
a5c用简便方法表示 浏览:265
正方形面积的计算方法 浏览:276
国标铝的检测方法 浏览:115
boa9连接wifi方法 浏览:865
尿素水溶液的检测方法 浏览:570
评职称里的技术创新方法怎么写 浏览:239
电脑取出电池充电方法 浏览:385
体育课快速热身方法 浏览:792
如何看出html的解密方法 浏览:771
弹力带健身使用方法 浏览:600
如何鉴定蜂蜜真假的方法 浏览:665
科目二教育原则和方法有哪些 浏览:854
肝结节怎么治疗最好方法 浏览:856