导航:首页 > 知识科普 > 小学数学简便方法计算讲义

小学数学简便方法计算讲义

发布时间:2022-05-27 06:28:57

① 小学数学简便算式有哪几种

一、整体简便计算。整个一道算式可以用简便方法计算,这种形式最为常见。例如:
=1.14×10
=11.4
二、局部简便计算。一道算式中局部可以进行简便计算,这种形式也不少见。
三、中途简便计算。开始计算并不能简便计算,而经过一两步后却能进行简便计算,这种情况最容易忽视。例如:
=1.2×(1+5+4)
=1.2×10
=12
四、重复简便计算。在一道题里不止一次地进行简便计算,这种情况往往不注意后一次简便计算。例如:
=8×55×0.125
=8×0.125×55 第二次
=1×55
=55

一简算的根据 a、乘法运算定律 b、加法运算定律 c、减法、除法的运算性质
二简算的类型 a、直接简算 b、部分简算 c、转化简算 d、过程简算
三简算的几种公式:
加法:a+b+c=a+(b+c)(加法结合律)
乘法:a×b×c=a×c×b(乘法交换律) a×b×c=a×(b×c)(乘法结合律) (a+b)×c=ac+bc或(a-b)×c=ac-bc(乘法分配律)
减法:a-b-c=a-c-b(减法交换律) a-b-c=a-(b+c)(减法结合律)
除法:a÷b÷c=a÷c÷b(除法交换律) a÷b÷c=a÷(b×c)(除法结合律) (a+b)÷c=a÷c+b÷c或(a-b)÷c=a÷c-b÷c(除法分配律)
注意除法分配率只有在被除数是两个数的差或和的情况下才能进行分配

② 简便算法怎么

简便运算
这是小学数学计算题中最常见的一种。从学生一开始接触计算就从各个不同的角度渗透了简便运算的思想,到了四年级在计算题中简便运算则做为独立的题型正式出现,它是计算题中最为灵活的一种,能使学生思维的灵活性得到充分锻炼,对提高学生的计算能力将起到非常大的作用。 何谓简便运算,这是一个非常简单的问题,但要正确地理解它,决不能为了追求简便的形式而进行简便运算。对此,我的理解是:简便运算应该是灵活、正确、合理地运用各种定义、定理、定律、性质、法则等等,改变原有的运算顺序进行计算,通过简便运算要大幅度地提高计算速度及正确率,使复杂的计算变得简单[2] 。也就是说:最重要的是灵活、合理地运用各种定义、定理、定律、性质、法则。尤其要强调“灵活”、“合理”。下面就我在教学中遇到的情况,谈谈我的看法。
1、“4.9+0.1-4.9+0.1”这是小学数学第八册练习二十七第二题中的一道非常简单的常见简便运算题。当我给学生布置了这道题后,我以为学生会毫不犹豫地使用加法交换率和结合率,顺利完成此题,但是当我批改学生的作业时,却发现了以下三种情况:
①、4.9+0.1-4.9+0.1=(4.9-4.9)+(0.1+0.1);
②、4.9+0.1-4.9+0.1=4.9-4.9+0.1+0.1;
③、4.9+0.1-4.9+0.1=(4.9+0.1)-(4.9+0.1)。
显然第③种简算是错误的,因为它违反了四则运算顺序,其简算结果绝对不等于原题的结果。问题就出在第①种和第②种解法上,第①种解法的简算过程非常标准,无懈可击;第②种解法看上去好象不太标准,但是也有道理。于是,我组织学生进行了讨论,结果学生分成了截然相反的两派。一方认为:第①种解法绝对正确,而第②种解法不规范,没有明确标明简便运算的过程,所以不能算对。另一方认为:第①种解法非常标准,肯定正确无疑,但是,第②种解法也是对的,因为按运算顺序从左往右,先算4.9-4.9,实际上就得0,其实就不用算,直接计算0.1+0.1就行了,简算过程其实也很明确。

③ 小学数学简便方法计算

小学数学简便方法计算,小学数学简便方法的计算可以利用加法交换律加法结合律乘法交换律乘法结合律和乘法分配律

④ 小学四年级数学简便计算方法技巧

小学四年级数学简便计算例子演示19×24+19×46
解题思路:四则运算规则(按顺序计算,先算乘除后算加减,有括号先算括号,有乘方先算乘方)即脱式运算(递等式计算)需在该原则前提下进行

解题过程:
19×24+19×46

=19×(24+46)

=19×70

=1330

(4)小学数学简便方法计算讲义扩展阅读→竖式计算-计算结果:先将两乘数末位对齐,然后分别使用第二个乘数,由末位起对每一位数依次乘上一个乘数,最后将所计算结果累加即为乘积,如果乘数为小数可先将其扩大相应的倍数,最后乘积在缩小相应的倍数;

解题过程:
步骤一:9×70=630

步骤二:1×70=700

根据以上计算结果相加为1330

存疑请追问,满意请采纳

⑤ 小学数学计算简便方法

小学数学计算的简便方法也有好多,一个是另加的交换律,把这个缝时逢五的数跟在一起,另外就是用这个乘法分配律来完成

⑥ 小学数学简便运算方法归类

简算是一种简便、迅速的运算,根据算式的不同特点,利用数的组成和分解、各种运算定律、性质或它们之间的特殊关系,使计算过程简单化,或直接得出结果。根据归纳,常见以下几类题型:

(一)“凑整巧算”——运用加法的交换律、结合律进行计算。要求学生善于观察题目,同时要有凑整意识。
【评注】凑整,特别是“凑十”、“凑百”、“凑千”等,是加减法速算的重要方法。
1、加法交换律
定义:两个数交换位置和不变,
公式:A+B =B+A,
例如:6+18+4=6+4+18
2、加法结合律
定义:先把前两个数相加,或者先把后两个数相加,和不变。
公式:(A+B)+C=A+(B+C),
例如:(6+18)+2=6+(18+2)
3、引申——凑整
例如:1.999+19.99+199.9+1999
=2+20+200+2000-0.001-0.01-0.1-1
=2222-1.111
=2220.889
【评注】所谓的凑整,就是两个或三个数结合相加,刚好凑成整十整百,譬如此题,“1.999”刚好 与“2”相差0.001,因此我们就可以先把它读成“2”来进行计算。但是,一定要记住刚 才“多加的”要“减掉”。“多减的”要“加上”!
(二)运用乘法的交换律、结合律进行简算。
1、乘法交换律
定义:两个因数交换位置,积不变.
公式:A×B=B×A
例如:125×12×8=125×8×12
2、乘法结合律
定义:先乘前两个因数,或者先乘后两个因数,积不变。
公式:A×B×C=A×(B×C),
例如:30×25×4=30×(25×4)

(三)运用减法的性质进行简算,同时注意逆进行。
1、减法
定义:一个数连续减去两个数,可以先把后两个数相加,再相减。
公式:A-B-C=A-(B+C),【注意:A-(B+C)= A-B-C的运用】
例如:20-8-2=20-(8+2)
(四)运用除法的性质进行简算 (除以一个数,先化为乘以一个数的倒数,再分配)。

1、除法
定义:一个数连续除去两个数 ,可以先把后两个数相乘,再相除。
公式:A÷B÷C=A÷(B×C),
例如:20÷8÷1.25=20÷(8×1.25)
定义:除数除以被除数,把被除数拆为两个数字连除(这两个数的积一定是这个被除数)
例如:64 ÷16=64÷8÷2=8÷2=4
(五)运用乘法分配律进行简算
乘法分配律
定义:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。

⑦ 小学数学简便计算公式

总结了小学数学的计算公式,及其灵活运用,简便计算技巧。

①加法

加法交换律:a+b=b+a;

加法结合律:a+b+c=a+(b+c)=(a+b)+c;

②减法

a-b=-(b-a)

a-b-c=a-(b+c)

减法有一个口诀:加括号,变符号。

③乘法

乘法交换律:a x b=b x a;

乘法结合律:a x b x c=a x (b x c);

乘法分配律:a x (b±c)=a x b±a x c;

小学数学试题中常考的一种题型-计算复杂数式。

经常就会用到乘法分配律,来提取公因数,简化计算。

【例1】计算:7.19x1.36+3.13x2.81+1.77x7.19

分析:这道题就是加法结合律,乘法交换律,乘法分配律的综合运用。

7.19x1.36+3.13x2.81+1.77x7.19

=7.19x(1.36+1.77)+3.13x2.81

=7.19x3.13+3.13x2.81

=(7.19+2.81)x3.13

=10x3.13

=31.3

④除法

a÷b÷c=a÷(b x c)(b,c不等于0);

a x b÷c=a÷cxb(c不等于0);

以上公式是解四则运算题目的基本关系式。

灵活学习,灵活运用。

它们除了正着用,有时候还得会倒着用。

【例2】计算:47.9x6.6+529x0.34;

分析:6.6+3.4=10,能不能想办法把凑出一个3.4,然后让3.4和6.6相加?

47.9x6.6+529x0.34

=47.9x6.6+529÷10x10x0.34

=47.9x6.6+52.9x3.4(3.4已经凑出来了)

=47.9x6.6+(47.9+5)x3.4

=47.9x6.6+47.9x3.4+5x3.4(6.6+3.4也凑出来了)

=47.9x(6.6+3.4)+17

=496

注意:例2题目中我们将乘法分配律倒着使用。

52.9x3.4=(47.9+5)x3.4=47.9x3.4+5x3.4

除此之外还用到了一个特别的公式。

529x0.34=529÷10x10x0.34

这个公式总结出来,即:

a x b=a÷c x c x b(c不等于0)

⑧ 小学数学简便运算公式

根据算式的不同特点,利用数的组成和分解、各种运算定律、性质或它们之间的特殊关系,使计算过程简单化,或直接得出结果,这种简便、迅速的运算叫做简算。
这就需要在进行简便计算之前,要求学生对所学的性质、定律、规律等有透彻的理解和正确的使用。也就是说,这些知识能使计算过程简化,同时使用凑整、拆项、转化、拆数等技巧以达到速算的目的。根据我的归纳,常见以下几类题型:
(一)运用加法的交换律、结合律进行计算。要求学生善于观察题目,同时要有凑整意识。

如:5.7+3.1+0.9+1.3,等。
(二)运用乘法的交换律、结合律进行简算。

如:2.5×0.125×8×4等,如果遇到除法同样适用,或将除法变为乘法来计算。如:8.3×67÷8.3÷6.7等。
(三)运用乘法分配律进行简算,遇到除以一个数,先化为乘以一个数的倒数,再分配。

如:2.5×(100+0.4),还应注意,有些题目是运用分配律的逆运算来简算:即提取公因数。如:0.93×67+33×0.93。
(四)运用减法的性质进行简算。减法的性质用字母公式表示:A-B-C=A-(B+C),同时注意逆进行。

如:7691-(691+250)。
(五)运用除法的性质进行简算。除法的性质用字母公式表示如下:A÷B÷C=A÷(B×C),同时注意逆进行,

如:736÷25÷4。
(六)接近整百的数的运算。这种题型需要拆数、转化等技巧配合。

如;302+76=300+76+2,298-188=300-188-2,等。
(七)认真观察某项为0或1的运算。

如:7.93+2.07×(4.5-4.5)等。

总的说来,简便运算的思路是:(1)运用运算的性质、定律等。(2)可能打乱常规的计算顺序。(3)拆数或转化时,数的大小不能改变。(4)正确处理好每一步的衔接。(5)速算也是计算,是将硬算化为巧算。(6)能提高计算的速度及能力,并能培养严谨细致、灵活巧妙的工作习惯。
答案来自:http://wenda.so.com/q/1378319052073930?src=150(仅供参考)

⑨ 小学数学简便运算

小学六年级数学总复习资料(六)
班级: 姓名:
一、口算下面各题。(23分)
10-2.65= 0.9×0.08= 528-349= 6+14.4= 24÷0.04=
12.34-2.3= 0÷3.8= 0.77+0.33= 7÷1.4= 67.5+0.25=7.2÷8×4= 5-1.4-1.6= 400÷125÷8= 1.9×4×0.5=
80×0.125= 3× = 6 6= 2 -( + )= 10 2=
3.2×7÷3.2×7= ( - )×12= 187.7×11-187.7= 1- 62.5%=
二、写出下列每题在简便运算时所运用的定律或性质(12分)
4 +3.2+5 +6.8 25×(8×0.4)×1.25 7 -(2 - )
( ) ( ) ( )
( + + )×72 93.5÷3 16÷2.5
( ) ( ) ( )
三、用简便方法计算。(65分)
1125-997 998+1246+9989 (8700+870+87)÷87

125×8.8 1.3+4.25+3.7+3.75 17.15-(3.5-2.85)

3.4×99+3.4 4.8×1.01 0.4×(2.5÷73)

(1.6+1.6+1.6+1.6)×25 ( + - )÷

12.3-2.45-5.7-4.55 2 + 0.125×0.25×64

64.2×87+0.642×1300 78×36+7.8×741-7 17+ 8

0.125× +0.5 2.42 +4.58 -43

25÷100 4.25-3 -(2 -1 )

(1)1.25*17.6+36.1/0.8+2.36*12.5
1.25*17.6+36.1/0.8+2.36*12.5
=(5/4)*17.6+36.1*(5/4)+23.6*(50/4)
=176/8+361/8+236/8
=773/8=96.625

(2)7.5*2.3+1.9*2.5
7.5*2.3+1.9*2.5
=7.5*(1.9+0.4)+1.9*2.5
=(7.5+2.5)*1.9+7.5*0.4
=19+3 =22

(3)2004/2003*2005
2004/2003*2005
=(2004/2003)*(2003+2)
=2004+4008/2003

(4)276*543-267/276+543*275
276*543-267/276+543*275
=543*(276+275)-267/276
=543*551-267/276

1)五十二又二十五分之十一×79.45+159×47.56+七十九又二十分之十一×52.44
=52.44×79.45+159×47.56+79.55×52.44
=52.44×(79.45+79.55)+159×47.56
=52.44×159+159×47.56
=159×(52.44+47.56)
=159×100
=15900

3)2002+2001-2000-1999+1998+1997-1996-1995+……+2+1
=(2002-2000)+(2001-1999)+(1998-1996)+(1997-1995)+……+(6-4)+(5-3)+2+1
=2+2+2+2+……+2+2(从3-2002共2000个数,所以有1000个2)+2+1
=1000×2+2+1
=2003

4,5两题均用到一个转换式1/(A×B)=1/(B-A)×(1/A-1/B)
如1/15=1/(3×5)=1/(5-3)×(1/3-1/5)=1/2×(2/15)=1/15可验证一下

4)(1×2分之一)+(2×3分之一)+(3×4分之一)+……+(10×11分之一)
=1/(1×2)+1/(2×3)+1/(3×4)+……+1/(10×11)
=(1-1/2)+(1/2 - 1/3)+(1/3 - 1/4)+……+(1/10 - 1/11)
=1-1/11
=10/11

5)三分之一+十五分之一+三十五分之一+六十三分之一+九十九分之一
=1/(1×3)+1/(3×5)+1/(5×7)+1/(7×9)+1/(9×11)
=1/2×(1-1/3)+1/2×(1/3-1/5)+1/2×(1/5-1/7)+1/2×(1/7-1/9)+1/2×(1/9-1/11)
=1/2×(1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11)
=1/2×(1-1/11)
=1/2×10/11
=5/11

6)一又二分之一-六分之五+十二分之七-二十分之九+三十分之十一-四十二分之十三+五十六分之十五
(根据提示,1又1/2=1+1/2,+1/2+1/3=5/6……)
=(1+1/2)-(1/2+1/3)+(1/3+1/4)-(1/4+1/5)+(1/5+1/6)-(1/6+1/7)+(1/7+1/8)
=1+ 1/2 - 1/2 - 1/3 + 1/3 + 1/4 - 1/4 - 1/5 + 1/5 + 1/6 - 1/6 - 1/7 + 1/7 + 1/8
=1+1/8
=9/8

仔细看一下,不会很难,都可以简便算的。你自己看一下,有些题目化成分数会好算些,我不是六年级的,不知道你们学的和我们是否一样,只能找一些,抱歉,请原谅。
参考资料:

⑩ 小学六年级数学用简便方法计算

1到6年级数学公式
【和差问题公式】
(和+差)÷2=较大数;
(和-差)÷2=较小数。
【和倍问题公式】
和÷(倍数+1)=一倍数;
一倍数×倍数=另一数,

和-一倍数=另一数。
【差倍问题公式】
差÷(倍数-1)=较小数;
较小数×倍数=较大数,

较小数+差=较大数。
【平均数问题公式】
总数量÷总份数=平均数。
【一般行程问题公式】
平均速度×时间=路程;
路程÷时间=平均速度;
路程÷平均速度=时间。
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。这两种题,都可用下面的公式解答:
(速度和)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度和)=相遇(离)时间;
相遇(离)路程÷相遇(离)时间=速度和。
【同向行程问题公式】
追及(拉开)路程÷(速度差)=追及(拉开)时间;
追及(拉开)路程÷追及(拉开)时间=速度差;
(速度差)×追及(拉开)时间=追及(拉开)路程。
【列车过桥问题公式】
(桥长+列车长)÷速度=过桥时间;
(桥长+列车长)÷过桥时间=速度;
速度×过桥时间=桥、车长度之和。
【行船问题公式】
(1)一般公式:
静水速度(船速)+水流速度(水速)=顺水速度;
船速-水速=逆水速度;
(顺水速度+逆水速度)÷2=船速;
(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
【工程问题公式】
(1)一般公式:
工效×工时=工作总量;
工作总量÷工时=工效;
工作总量÷工效=工时。
(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几;
1÷单位时间能完成的几分之几=工作时间。
1
.每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2.
1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3.
速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4.
单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5.
工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6
加数+加数=和
和-一个加数=另一个加数
7
被减数-减数=差
被减数-差=减数
差+减数=被减数
8
因数×因数=积
积÷一个因数=另一个因数
9
被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1.
正方形
C周长
S面积
a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2.
正方体
V:体积
a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3.
长方形
C周长
S面积
a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4
.长方体
V:体积
s:面积
a:长
b:

h:高
(1)表面积=(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5
.三角形
s面积
a底
h高
面积=底×高÷2
s=ah÷2
三角形高=面积
×2÷底
三角形底=面积
×2÷高
6.
平行四边形
s面积
a底
h高
面积=底×高
s=ah
7.
梯形
s面积
a上底
b下底
h高
面积=(上底+下底)×高÷2
s=(a+b)×
h÷2
8
圆形
S面积
C周长

d=直径
r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9.
圆柱体
v:体积
h:高
s;底面积
r:底面半径
c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10.
圆锥体
v:体积
h:高
s;底面积
r:底面半径
体积=底面积×高÷3
和差问题的公式;
总数÷总份数=平均数
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者
和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或
小数+差=大数)
植树问题

1.
非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2
封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题

(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题

相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题

追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题

顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题

溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题:
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
这些应该可以了吧?

阅读全文

与小学数学简便方法计算讲义相关的资料

热点内容
家兔常用的取穴方法 浏览:743
地质灾害分析评价方法模型 浏览:634
乳头内陷治疗的方法 浏览:179
数学分数混合运算简便方法 浏览:918
医疗机构综合能耗电耗定额及计算方法 浏览:988
婴儿消化不良怎么办快速方法 浏览:168
龙鱼大白片使用方法 浏览:240
学习三句半的教学方法 浏览:581
qq印象单排解决方法 浏览:640
入睡快速方法 浏览:946
毛竹串联方法视频 浏览:947
胸椎间盘突出治疗方法 浏览:167
amd旧电脑改造方法 浏览:12
win10图标设置在哪里设置方法 浏览:700
2岁判断白癜风最简单方法 浏览:721
类比法是初中化学常用的学习方法 浏览:356
期货交易有哪些方法 浏览:611
高效审批的方法和技巧 浏览:99
学生如何戒网瘾最好的方法 浏览:201
脑血管感染的症状和治疗方法 浏览:457