导航:首页 > 知识科普 > 小孩子记住乘法运算的简便方法

小孩子记住乘法运算的简便方法

发布时间:2022-05-23 03:58:07

1. 乘法简便运算技巧

乘法简便运算方法

一、结合法

一个数连续乘两个一位数,可根据情况改写成用这个数乘这两个数的积的形式,使计算简便。

例1 计算:19×4×5

19×4×5

=19×(4×5)

=19×20

=380

在计算时,添加一个小括号可以使计算简便。因为括号前是乘号,所以括号内不变号。

二、分解法

一个数乘一个两位数,可根据情况把这个两位数分解成两个一位数相乘的形式,再用这个数连续乘两个一位数,使计算简便。

例2 计算:45×18

48×18

=45×(2×9)

=45×2×9

=90×9

=810

将18分解成2×9的形式,再将括号去掉,使计算简便。

三、拆数法

有些题目,如果一步一步地进行计算,比较麻烦,我们可以根据因数及其他数的特征,灵活运用拆数法进行简便计算。

例3 计算:99×99+199

(1)在计算时,可以把199写成99+100的形式,由此得到第一种简便算法:

99×99+199

=99×99+99+100

=99×(99+1)+100

=99×100+100

=10000

(2)把99写成100-1的形式,199写成100+(100-1)的形式,可以得到第二种简便算法:

99×99+199

=(100-1)×99+(100-1)+100

=(100-1)×(99+1)+100

=(100-1)×100+100

=10000

四、改数法

有些题目,可以根据情况把其中的某个数进行转化,创造条件化繁为简。

例4 计算:25×5×48

25×5×48

=25×5×4×12

=(25×4)×(5×12)

=100×60

=6000

把48转化成4×12的形式,使计算简便。

例5 计算:16×25×25

因为4×25=100,而16=4×4,由此可将两个4分别与两个25相乘,即原式可转化为:(4×25)×(4×25)。

16×25×25

=(4×25)×(4×25)

=100×100

=10000

2. 小学数学简便计算公式

总结了小学数学的计算公式,及其灵活运用,简便计算技巧。

①加法

加法交换律:a+b=b+a;

加法结合律:a+b+c=a+(b+c)=(a+b)+c;

②减法

a-b=-(b-a)

a-b-c=a-(b+c)

减法有一个口诀:加括号,变符号。

③乘法

乘法交换律:a x b=b x a;

乘法结合律:a x b x c=a x (b x c);

乘法分配律:a x (b±c)=a x b±a x c;

小学数学试题中常考的一种题型-计算复杂数式。

经常就会用到乘法分配律,来提取公因数,简化计算。

【例1】计算:7.19x1.36+3.13x2.81+1.77x7.19

分析:这道题就是加法结合律,乘法交换律,乘法分配律的综合运用。

7.19x1.36+3.13x2.81+1.77x7.19

=7.19x(1.36+1.77)+3.13x2.81

=7.19x3.13+3.13x2.81

=(7.19+2.81)x3.13

=10x3.13

=31.3

④除法

a÷b÷c=a÷(b x c)(b,c不等于0);

a x b÷c=a÷cxb(c不等于0);

以上公式是解四则运算题目的基本关系式。

灵活学习,灵活运用。

它们除了正着用,有时候还得会倒着用。

【例2】计算:47.9x6.6+529x0.34;

分析:6.6+3.4=10,能不能想办法把凑出一个3.4,然后让3.4和6.6相加?

47.9x6.6+529x0.34

=47.9x6.6+529÷10x10x0.34

=47.9x6.6+52.9x3.4(3.4已经凑出来了)

=47.9x6.6+(47.9+5)x3.4

=47.9x6.6+47.9x3.4+5x3.4(6.6+3.4也凑出来了)

=47.9x(6.6+3.4)+17

=496

注意:例2题目中我们将乘法分配律倒着使用。

52.9x3.4=(47.9+5)x3.4=47.9x3.4+5x3.4

除此之外还用到了一个特别的公式。

529x0.34=529÷10x10x0.34

这个公式总结出来,即:

a x b=a÷c x c x b(c不等于0)

3. 怎样教小学生记住乘法口诀快速永久的

对小学二年级小朋友来说,记熟乘法口诀表有一定难度,也需要一个过程,从心理学角度来讲,时间和反复是必要的。然而,只要采取多种巧妙和有效的辅助办法,会增加记忆的效果。
这里,我们主要谈一谈小九九的一些记忆方法。从整个小九九表来看,可以按三个顺序去背。
首先,可以竖着背。比如,一一得一,一二得二,一直背到一九得九,接着背二二得四,二三得六,一直到二九十八,然后是三三得九,三四十二,一直到三九二十七,如此类推,接下来,依次是四四十六的竖列、五五二十五的竖列、六六三十六的、七七四十九的、八八六十四的、最后九九八十一的。这种方法有个规律,几的竖列,就逐渐增加几,可以按此规律帮助记忆。
其次,可以横着背。比如第一横行,就一句一一得一,第二横行两句,一二得二,二二得四,往下类推,第几行就几句,最后九句,从一九得九到九九八十一。这种方法也有个规律,第几行,后一句就比前一句增加几。
第三种方法,就是拐弯背。比如,首先背一一得一,往下一二得二,此时接着背二二得四,这时拐弯向下背二三得六、二四得八、一直到二九十八,然后回到一三得三、二三得六、三三得九,再拐弯往下三四一十二,一直到三九二十七,如此类推,回到一四得四接着拐弯。这样背的一个特点是,从一到九的口诀都有九句,几的口诀就逐渐增加几。
为了增加熟练程度,在计算过程中有意识去记忆。还可以采取游戏的方法去记。比如,对口令的游戏,一人说二九,另一人马上说十八。这需要合作学习。还可以用卡片练习

4. 孩子总是记不住乘法口诀,有什么帮孩子记忆的诀窍吗

孩子的记忆力开发要靠勤练习。

勤能补拙,通过科学的方法和勤奋的练习,是能够提高孩子记忆力的。

5. 乘法简便计算的方法规律

乘法(multiplication),是指将相同的数加起来的快捷方式。其运算结果称为积,“x”是乘号。从哲学角度解析,乘法是加法的量变导致的质变结果。整数(包括负数),有理数(分数)和实数的乘法由这个基本定义的系统泛化来定义。

乘法也可以被视为计算排列在矩形(整数)中的对象或查找其边长度给定的矩形的区域。 矩形的区域不取决于首先测量哪一侧,这说明了交换属性。 两种测量的产物是一种新型的测量,例如,将矩形的两边的长度相乘给出其面积,这是尺寸分析的主题。
乘法是四则运算之一
例如4乘5,就是4增加了5倍率,也可以说成5个4连加。
使用铅笔和纸张乘数的常用方法需要一个小数字(通常为0到9的任意两个数字)的存储或查询产品的乘法表,但是一种农民乘法算法的方法不是。
将数字乘以多于几位小数位是繁琐而且容易出错的。发明了通用对数以简化这种计算。幻灯片规则允许数字快速乘以大约三个准确度的地方。从二十世纪初开始,机械计算器,如Marchant,自动倍增多达10位数。现代电子计算机和计算器大大减少了用手倍增的需要。
3×5表示5个3相加
5x3表示3个5相加。
注意:1.在如上乘法表示什么中,常把乘号后面的因数做为乘号前因数的倍数。
2.参见wiki中对乘数和被乘数的定义
另:乘法的新意义:乘法不是加法的简单记法
Ⅰ 乘法原理:如果因变量f与自变量x1,x2,x3,….xn之间存在直接正比关系并且每个自变量存在质的不同,缺少任何一个自变量因变量f就失去其意义,则为乘法。
在概率论中,一个事件,出现结果需要分n个步骤,第1个步骤包括M1个不同的结果,第2个步骤包括M2个不同的结果,……,第n个步骤包括Mn个不同的结果。那么这个事件可能出现N=M1×M2×M3×……×Mn个不同的结果。
Ⅱ 加法原理:如果因变量f与自变量(z1,z2,z3…, zn)之间存在直接正比关系并且每个自变量存在相同的质,缺少任何一个自变量因变量f仍然有其意义,则为加法。
在概率论中,一个事件,出现的结果包括n类结果,第1类结果包括M1个不同的结果,第2类结果包括M2个不同的结果,……,第n类结果包括Mn个不同的结果,那么这个事件可能出现N=M1+M2+M3+……+Mn个不同的结果。
以上所说的质是按照自变量的作用来划分的。
此原理是逻辑乘法和逻辑加法的定量表述。
法则
两数相乘,同号得正,异号得负,并把绝对值相乘。
运算定律
整数的乘法运算满足:交换律,结合律, 分配律,消去律。
随着数学的发展, 运算的对象从整数发展为更一般群。
群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是哈密尔顿发现的四元数群。 但是结合律仍然满足。
1.乘法交换律: ,注:字母与字母相乘,乘号不用写,或者可以写成·。
2.乘法结合律: ,
3.乘法分配律: 。

6. 背乘法口诀的简单方法

1、竖着背
比如,一一得一,一二得二,一直背到一九得九,接着背二二得四,二三得六,一直到二九十八,然后是三三得九,三四十二,一直到三九二十七,如此类推。
接下来,依次是四四十六的竖列、五五二十五的竖列、六六三十六的、七七四十九的、八八六十四的、最后九九八十一的。这种方法有个规律,几的竖列,就逐渐增加几,可以按此规律帮助记忆。
2、横着背
比如第一横行,就一句一一得一;第二横行两句,一二得二,二二得四;往下类推,第几行就几句,最后九句,从一九得九到九九八十一。这种方法也有个规律,第几行,后一句就比前一句增加几。
3、拐弯背
比如,首先背一二得二,此时接着背二二得四,这时拐弯向下背二三得六、二四得八、一直到二九十八;然后回到一三得三、二三得六、三三得九,再拐弯往下三四一十二,一直到三九二十七;如此类推,回到一四得四接着拐弯。这样背的一个特点是,从一到九的口诀都有九句,几的口诀就逐渐增加几。
(6)小孩子记住乘法运算的简便方法扩展阅读
九九乘法表口诀特点:
1、九九表一般只用一到九这9个数字。
2、九九表包含乘法的可交换性,因此只需要八九七十二,不需要“九八七十二”,9乘9有81组积,九九表只需要1+2+3+4+5+6+7+8+9 =45项积。明代珠算也有采用81组积的九九表。45项的九九表称为小九九,81项的九九表称为大九九。
3、古代世界最短的乘法表。玛雅乘法表须190项,巴比伦乘法表须1770项,埃及、希腊、罗马、印度等国的乘法表须无穷多项;九九表只需45/81项。
4、朗读时有节奏,便于记忆全表。
5、九九表存在了至少三千多年。从春秋战国时代就用在筹算中运算,到明代则改良并用在算盘上。九九表也是小学算术的基本功

7. 小学的简便运算公式有哪些

1、 乘法运算

每份数×份数=总数

总数÷每份数=份数

总数÷份数=每份数

2、倍数计算

1倍数×倍数=几倍数

几倍数÷1倍数=倍数

几倍数÷倍数= 1倍数

3、 路程计算

速度×时间=路程

路程÷速度=时间

路程÷时间=速度

4、 价格计算

单价×数量=总价

总价÷单价=数量

总价÷数量=单价

5、效率计算

工作效率×工作时间=工作总量

工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

6、加法计算

加数+加数=和

和-一个加数=另一个加数

7、 减法计算

被减数-减数=差

被减数-差=减数

差+减数=被减数

8、乘法问题

因数×因数=积

积÷一个因数=另一个因数

8. 乘法简便运算技巧

乘法简便运算方法一、结合法一个数连续乘两个一位数,可根据情况改写成用这个数乘这两个数的积的形式,使计算简便。
例1 计算:19×4×519×4×5=19×(4×5)=19×20=380在计算时,添加一个小括号可以使计算简便。因为括号前是乘号,所以括号内不变号。
二、分解法一个数乘一个两位数,可根据情况把这个两位数分解成两个一位数相乘的形式,再用这个数连续乘两个一位数,使计算简便。
例2 计算:45×1848×18=45×(2×9)=45×2×9=90×9=810将18分解成2×9的形式,再将括号去掉,使计算简便。
三、拆数法有些题目,如果一步一步地进行计算,比较麻烦,我们可以根据因数及其他数的特征,灵活运用拆数法进行简便计算。
例3 计算:99×99+199(1)在计算时,可以把199写成99+100的形式,由此得到第一种简便算法:99×99+199=99×99+99+100=99×(99+1)+100=99×100+100=10000(2)把99写成100-1的形式,199写成100+(100-1)的形式,可以得到第二种简便算法:99×99+199=(100-1)×99+(100-1)+100=(100-1)×(99+1)+100=(100-1)×100+100=10000
四、改数法有些题目,可以根据情况把其中的某个数进行转化,创造条件化繁为简。
例4 计算:25×5×4825×5×48=25×5×4×12=(25×4)×(5×12)=100×60=6000把48转化成4×12的形式,使计算简便。
例5 计算:16×25×25因为4×25=100,而16=4×4,由此可将两个4分别与两个25相乘,即原式可转化为:(4×25)×(4×25)。16×25×25=(4×25)×(4×25)=100×100=10000

9. 四年级简便运算的窍门与技巧

四年级运算定律,没有什么技巧,但是需要记住公式。按照公式进行计算就是窍门。

加法交换律 a+b=b+a
加法结合律 (a+b)+c=a+(b+c)
乘法交换律 a×b=b×a也可以写成:a·b=b·a还可以写成:ab=ba

乘法结合律 (a×b)×c=a×(b×c)也可以写成:(a·b)·c=a·(b·c)还可以写成:(ab)c=a(bc)
乘法分配律 (a+b)×c=a×c+b×c也可以写成:(a+b)·c=a·c+b·c还可以写成:(a+b)c=ac+bc

乘法交换律
两个数相乘,交换因数的位置,积不变。ab=ba
乘法结合律
三个数相乘,可以先乘前两个数,或者先乘后两个数,积不变。 (ab)c=a(bc)
分配律
分配律是乘法运算的一种简便运算,可用于分数、小数中。
主要公式为(a+b)c=ac+bc。两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加,积不变,这叫做乘法分配律。

10. 乘法的简便方法是什么

一、30以内的两个两位数乘积的心算速算

1、两个因数都在20以内,任意两个20以内的两个两位数的积,都可以将其中一个因数的”尾数”移加到另一个因数上,然后补一个0,再加上两“尾数”的积。例如:

11×11=120+1×1=121 12×13=150+2×3=156 13×13=160+3×3=169 14×16=200+4×6=224 16×18=240+6×8=288
2、两个因数分别在10至20和20至30之间对于任意这样两个因数的积,都可以将较小的一个因数的“尾数”的2倍移加到另一个因数上,然后补一个0,再加上两“尾数”的积。例如:

22×14=300+2×4=308

23×13=290+3×3=299

26×17=400+6×7=442

28×14=360+8×4=392

29×13=350+9×3=377

阅读全文

与小孩子记住乘法运算的简便方法相关的资料

热点内容
苹果手机网页提取文字的方法 浏览:292
星露谷物语铁锭快速入手方法 浏览:120
摩托机油尺正确的测量方法 浏览:800
炸虾的正确方法图片 浏览:428
a型血人最佳解压方法 浏览:110
调整金牛座的最佳方法 浏览:381
以实践为基础的研究方法及意义 浏览:545
魅蓝拦截的信息在哪里设置方法 浏览:403
雕刻牛字最简单的方法 浏览:36
武汉恋爱挽回方法操作步骤 浏览:431
戒掉手机的四个方法 浏览:574
快速有效治疗尖锐湿方法 浏览:226
最简单的方法画hellokitty 浏览:844
反渗透膜解决方法 浏览:485
扯面的正确方法和技巧 浏览:494
文彦博树洞取球方法好在哪里 浏览:854
四川泡洋姜的正确泡水方法 浏览:497
黑檀手串的鉴别方法图解 浏览:818
延迟满足实验研究方法 浏览:161
种植业污染解决方法 浏览:894