A. 数学思维和方法有哪些内容
1、数学思维方法有哪些
一、转化方法:
转化思维,既是一种方法,也是一种思维。转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单、更清晰。
二、逻辑方法:
逻辑是一切思考的基础。罗辑思维,是人们在认识过程中借助于概念、判断、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。罗辑思维,在解决逻辑推理问题时使用广泛。
三、逆向方法:
逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。
四、对应方法:
对应思维是在数量关系之间(包括量差、量倍、量率)建立一种直接联系的思维方法。比较常见的是一般对应(如两个量或多个量的和差倍之间的对应关系)和量率对应。
五、创新方法:
创新思维是指以新颖独创的方法解决问题的思维过程,通过这种思维能突破常规思维的界限,以超常规甚至反常规的方法、视角去思考问题,提得出与众不同的解决方案。可分为差异性、探索式、优化式及否定性四种。
六、系统方法:
系统思维也叫整体思维,系统思维法是指在解题时对具体题目所涉及到的知识点有一个系统的认识,即拿到题目先分析、判断属于什么知识点,然后回忆这类问题分为哪几种类型,以及对应的解决方法。
七、类比方法:
类比思维是指根据事物之间某些相似性质,将陌生的、不熟悉的问题与熟悉问题或其他事物进行比较,发现知识的共性,找到其本质,从而解决问题的思维方法。
八、形象方法:
形象思维,主要是指人们在认识世界的过程中,对事物表象进行取舍时形成的,是指用直观形象的表象,解决问题的思维方法。想象是形象思维的高级形式也是其一种基本方法。
如何锻炼自己的数学思维?
一、做出来不如讲出来,听得懂不如说得通。
做10道题,不如讲一道题。孩子做完家庭作业后,家长不妨鼓励孩子开口讲解一下数学作业中的难题,我也在群里会经常发一些比较好的训练题,您也可以鼓励去想一想说一说,如果讲得好,家长还可进行小奖励,让孩子更有成就感。
二、举一反三,学会变通。
举一反三出自孔子的《论语·述而》:“举一隅,不以三隅反,则不复也。”意思是说:我举出一个墙角,你们应该要能灵活的推想到另外三个墙角,如果不能的话,我也不会再教你们了。后来,大家就把孔子说的这段话变成了“举一反三”这句成语,意思是说,学一件东西,可以灵活的思考,运用到其他相类似的东西上!
在数学的训练中,一定要给孩子举一反三训练。一道题看似理解了,但他的思维可能比较直线,不多做几道举一反三或在此基础上变式的题,他还是转不过玩了。
举一反三其实就是“师傅领进门,学艺在自身”这句话的执行行为。
三、建立错题本,培养正确的思维习惯
每上第一次课,我所讲的课程内容都和学生的错题有关。我通常把试卷中的错题摘抄出几个典型题,作为课堂的例题再讲一遍。而学生的反应,或是像没有见过,或是对题目非常熟悉,但没有思路。这些现象的发生,都是学生没有及时总结的原因。所以第一次课后我都建议我的学生做一个错题本,像写日记一样,记录下自己的错题和错因分析。
一般来说,错题分为三种类型:第一种是特别愚蠢的错误、特别简单的错误;第二种就是拿到题目时一点思路都没有,不知道解题该从何下手,但是一看到答案却恍然大悟;第三种就是题目难度中等,按道理有能力做对,但是却做错了。
尤其第二种、第三种,必须放到错题本上。建立错题本的好处就是掌握了自己所犯错的类型,为防范一类错误成为习惯性的思维。
四、图形推理是培养逻辑思维能力最好的工具
假是真时真亦假,真是假时假亦真;逻辑思维是在规则的确定下而进行的思维,如果联系生活就属于非常规思维。一切看似与生活毫无联系却自在法则约束规范的范围内。逻辑推理的“瞒天过海”可谓五花八门,好似一个万花筒,百变无穷,乐趣无穷。
几何图形是助其锻炼逻辑思维的好工具,经典的图形推理题总有其构思、思路、巧妙的思维;经典在于其看似变态,而实际解法却简而又简单。
因此,多训练一些图形推理题,对其逻辑思维很有帮助。
B. 数学应用题的解题逻辑思路有哪几种
学好数学,最主要的是基本功。基础知识一定要融会贯通。这样使用起来才能得心应手。解数学应用题首先判断它属于哪种类型题。看问题看实质。每种类型题都有它的侧重点
1、行程问题:平均速度的概念很重要,是指单位时间内行走的路程。而不是简单的速度相加除以二。路程基本上是最常用的等量关系。
2、工作问题:整体1的理解。
3、钟表问题:实质是行程问题中的追击问题。
4、水管问题:水箱总量是整体1,进为加出为减。
5、牛吃草问题:每天生长的草是定量,等于牛的食用量时,处于平衡状态。
6、浓度问题:通常溶质、溶剂都会有一个量是恒定的。
7、利润问题:基数的选择。如以成本为基数,还是以销售价为基数。
8、客房问题(包括车船数量选择):方程与不等式联合求整数解。
9、水中行船问题:顺水速度=船速+水速,逆水速度=船速-水速
就想到这些了,希望有所帮助。学习数学贵在积累。应用题只是数学中的一小部分。但只要你有这种求学的态度,肯定会成功。
C. 数学逻辑思维能力的几种训练方法
那如何才能提高自己的逻辑思维能力呢?
1、学会运用“PREP+A”的逻辑产出模式:P(Point,观点/论点),R(Reason,原因/理由/根据),E(Example,实例/例证),P(Point),A(Action,行动)。在正式的谈话、讲演、文案中,一般可以遵循下面的逻辑/步骤:P:首先,简洁明了的表明自己的观点/论点/主张,也就是你在说什么、你想要表达什么。R:其次,说出支持你结论的“依据”,也就是回答 你凭什么这样认为,是基于哪种事实和解释?E:再者,用实际的例证(资料、数据、个人例子等)来提高你结论或观点的说服力。P:最后重复结论,确保自己想传达的信息,已确实传递。A:行动就是你希望对方怎么做(根据实际需要,一把可以省略)。
小结:简单来讲,这个模式就是先从结论说起,再说明得出结论的理由及根据,然后举出具体事例佐证,最后再强调一次结论 。
2、日常谈话练习除了正式场合,我们在日常生活中,也可以借鉴“PREP+A”逻辑产出模式来增强自己的逻辑性。无论是你讲给别人听,还是听别人讲,都可以刻意的去思考一下“这篇稿子”中:要表达的观点是什么、理由是什么,案例是什么?这种潜移默化的练习,可以不断优化你的逻辑思维。
3、自我提问练习在日常生活中,无论是看到、听到或读到一些:重要信息或者让你有触动的信息时,都可以通过一些刻意的自我提问来锻炼自己的思维。比如读到一个观点时,就可以这样问自己:作者为什么会从这个角度切入?作者是如何形成这个结论?这个结论有什么缺点?如果我来写如何可以更好?
4、电影梳理练习法大部分人都比较喜欢看电影,既然如此,我们不妨就在看完电影后,花上一点时间,梳理一下电影的情节、主线吧(悬疑、科幻、罪案类的影视或书籍效果较好,因为它们都比较考验你的逻辑思维)。自己梳理完之后,还可以去网上搜搜别人的一些见解,做做比较,看看自己有哪些疏漏。经常这样做,你的逻辑思维,以及记忆力都会得到一定的提升。
5、逻辑趣味题练习法
6、通过“做结构式的读书笔记”来训练逻辑思维每一本书都有自己的逻辑架构,其中目录就是作者写这本书的基础逻辑。所以我们可以借着做笔记来锻炼自己的逻辑思维能力,这样一举多得。①初步阅读一本书,我们基本是站在作者的角度上看待问题的,为了检验自己的基本掌握情况,就可以通过“默写一本书的目录”的方式来检验,默写完之后再与这本书的目录对比。②从自身出发,思考“如果你是作者,你会怎么写这本书?”然后把你的写作大纲(逻辑架构)写出来。③读完书之后,多多少少会有一些你比较关注的重点内容,这些内容在理解、思考之后,你又可以以这些知识点作为主题来写写文章。
7、通过写作练习来锻炼逻辑思维写作是一种自我思考的整理,花时间架构出一篇让别人能读懂得文章,其实就是训练自己的逻辑思考能力和组织能力。因为写作是一个设定主题,然后寻找答案的过程,你先要定义对的问题,然后决定切入问题的角度,再分析各种角度的优缺点,最后形成自己的结论。完成这整个过程,写完一篇文章,就等于进行了一遍逻辑思考的练习。至于写什么,这就很广泛了,比如写一个原创故事,写一篇读书或学习心得,或者生活感悟。等写作能力有所提升之后,你就可以随便找一个关键词,然后以这个关键词来搭建逻辑架构,写一篇文章。
您好,对于你的遇到的问题,我很高兴能为你提供帮助,
非常感谢您的耐心观看,如有帮助请采纳,祝生活愉快!谢谢!
D. 如何培养数学思维和逻辑能力
大家通常会认为小学数学只是加减乘除的累积,是一门理性的学科,只重视了表面的数字运算,却很容易就忽视了数学与其他科目之间的联系,以及小学数学对孩子逻辑思维能力的训练。逻辑思维能力并不像人们想象的那样固化,它是可以通过后期培养的,并且会逐渐成为帮助人们理清思路解决问题的法宝之一。
一、什么是数学思维能力?
思维是人脑对客观事物的一般特殊性和规律性的一种间接的、概括的反映过程。数学思维是对数学对象(空间形式、数量关系、结构关系等)的本质属性和内部规律的间接反映,并按照一般思维规律认识数学内容的理性活动。
二、培养数学思维能力的各种好处
首先,对孩子来讲,良好的数学思维能力可以帮助他们快速获取新知识、更好地进行创造性学习,也属于智力发展的核心;对教师来讲,培养孩子的数学思维能力能够有效提高教学效益。为了教师和学生之间实现更加高水平的教、学平衡,提高学生数学思维能力刻不容缓。当然,习惯不是三两天就能养成的,更何况数学思维习惯,它的养成需要落实到平时的学习生活中去,从思维品质的形成开始。
三、培养数学思维逻辑的5大途径:
1、培养思维的灵活性
思维的灵活性是指能随事物的变化而随机应变的及时性,以及不过多地受思维定势的影响。如果缺乏思维灵活性,我们的思维就会更加倾向某种具体的方式和方法,很容易出现钻牛角尖的情况,片面追求解决问题的模式化和程序化,长此以往造成思维出现惰性。
擅于从旧的模式和普遍制约条件中脱离出来,找到正确的方向;针对知识可以运用自如,善运用辩证思想来平衡事物之间的关系,具体问题具体分析,懂得变通和调整思路等等,这些是思维灵活性养成的直接表现。
2、培养数学思维的严谨性
思维的严谨性是指考虑问题的严密、有据。要提高学生思维的严谨性,必须严格要求,加强训练。
落实到孩子学习生活中去,就是要求在学习新知识时从基本理念开始,做到在思路清晰的前提条件下稳扎稳打,逐步深入,在这个相对来说缓慢的过程中养成思考问题周密的思维习惯,在进行论证推理时掌握足够的理由作为依据;在练习试题时善于留心题干中的隐蔽条件,详细答题,不吝啬地写出解题思路。
3、培养数学思维的深刻性
思维深刻性是指思维活动的抽象程度和逻辑水平,以及思维活动的深度和难度。相信大多数学生都出现过这样的情况,有时候老师评讲试卷,一听错题的解题过程很容易就懂了,恍然大悟自己居然犯了如此低级的错误,但一旦离开书本和老师就无法领会到解题方法和实质,实现独立解题。这就要求学生在平时的学习中要透过现象看数学的本质,掌握最基础的数学概念,洞察数学对象之间的联系,这是思维深刻与否的主要表现。
4、培养思维的广阔性
思维的广阔性是指对一个问题能从多方面考虑。具体表现为对一个事实能作多方面的解释,对一个对象能用多种方式表达,对一个题目能想出各种不同的解法。在数学学习中,注重多方位、多角度的思考方式,拓广解题思路,可以促进学生思维的广阔性。
5、培养思维的批判性
思维的批判性是指思维活动中善于严格地估计思维材料和精细地检查思维过程。在数学学习的过程中,学生要善于从已有的答案和解题过程中提炼出自己想要的东西,发表自己的见解。不能一味盲从,要学会用批判性的思路去进行各种方式的反思和检验。就算思想上完全接受了东西,也要谋改善,提出新的想法和见解。
以上五种思维品质是提高数学思维能力的必要途径,但大家切勿忽视了一点,就是这五大思维品质之间的紧密联系,不可分一而行,否则会很被思维定势所牵制,出现机械套用之前思维模式的倾向,并且同一种方法使用的次数越多,这种倾向就会越明显。
我们就如何养成学生良好的数学思维习惯,讨论了五种主要的思维品质及培养方法。而这五种思维品质是最为重要的。它们之间互相联系,密不可分。除了严谨性、广阔性、灵活性、批判性,还有探讨性、独创性、目的性等。
E. 有哪些逻辑推理的方法
1、三段论
是由两个含有一个共同项的性质判断作前提,得出一个新的性质判断为结论的演绎推理。三段论是演绎推理的一般模式,包含三个部分:大前提——已知的一般原理,小前提——所研究的特殊情况,结论——根据一般原理,对特殊情况作出判断。
2、假言推理
是根据假言命题的逻辑性质进行的推理。分为充分条件假言推理,必要条件假言推理和充分必要条件假言推理三种。
3、选言推理
是至少有一个前提为选言命题,并根据选言命题各选言支之间的关系而进行推演的演绎推理。一般由两个前提和一个结论所组成。
根据组成前提的命题是否皆为选言命题,可分为纯粹选言推理和选言直言推理。按一般习惯用法。选言推理主要指选言直言推理。根据选言前提各选言支之间的关系是否为相容关系,可分为相容的选言推理和不相容的选言推理。
相关定义:
①演绎推理是从一般到特殊的推理;
②它是前提蕴涵结论的推理;
③它是前提和结论之间具有必然联系的推理。
④演绎推理就是前提与结论之间具有充分条件或充分必要条件联系的必然性推理。
演绎推理的逻辑形式对于理性的重要意义在于,它对人的思维保持严密性、一贯性有着不可替代的校正作用。这是因为演绎推理保证推理有效的根据并不在于它的内容,而在于它的形式。演绎推理的最典型、最重要的应用,通常存在于逻辑和数学证明中。
F. 目前的数学思想方法一共有几种
四种。其中的具体情况如下:
1
数形结合的思想:
这是我们学习数学最先接触的思想方法。数形结合,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。
G. 数学常用的数学思想方法有哪些
数学常用的数学思想方法主要有:用字母表示数的思想,数形结合的思想,转化思想 (化归思想),分类思想,类比思想,函数的思想,方程的思想,无逼近思想等等。
1.用字母表示数的思想:这是基本的数学思想之一 .在代数第一册第二章“代数初步知识”中,主要体现了这种思想。
2.数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国着名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。
3.转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。
4.分类思想:有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。
5.类比:类比推理在人们认识和改造客观世界的活动中具有重要意义.它能触类旁通,启发思考,不仅是解决日常生活中大量问题的基础,而且是进行科学研究和发明创造的有力工具.
6.函数的思想 :辩证唯物主义认为,世界上一切事物都是处在运动、变化和发展的过程中,这就要求我们教学中重视函数的思想方法的教学。
7.方程:是初中代数的主要内容.初中阶段主要学习了几类方程和方程组的解法,在初中阶段就要形成方程的思想.所谓方程的思想,就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略,
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。
从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用。
H. 怎么提高数学逻辑思维能力,求方法。
思维能力的训练是一种有目的、有计划、有系统的教育活动。对它的作用不可轻估。人的天性对思维能力具有影响力,但后天的教育与训练对思维能力的影响更大、更深。许多研究成果表明,后天环境能在很大程度上造就一个新人。
思维能力的训练主要目的是改善思维品质,提高小孩的思维能力,只要能实际训练中把握住思维品质,进行有的放矢的努力,就能顺利地卓有成效地坚持下去。思维并非神秘之物,尽管看不见,摸不着,来无影,去无踪,但它却是实实在在,有特点、有品质的普遍心理现象。
(1)推陈出新训练法
当看到、听到或者接触到一件事情、一种事物时,应当尽可能赋予它们的新的性质,摆脱旧有方法束缚,运用新观点、新方法、新结论,反映出独创性,按照这个思路对学生进行思维方法训练,往往能收到推陈出新的结果。
(2) 聚合抽象训练法
把所有感知到的对象依据一定的标准“聚合”起来,显示出它们的共性和本质,这能增强学生的创造性思维活动。这个训练方法首先要对感知材料形成总体轮廓认识,从感觉上发现十分突出的特点;其次要从感觉到共性问题中肢解分析,形成若干分析群,进而抽象出本质特征;再次,要对抽象出来的事物本质进行概括性描述,最后形成具有指导意义的理性成果。
(3) 循序渐进训练法
这个训练 法对学生的思维很有裨益,能增强领导者的分析思维能力和预见能力,能够保证领导者事先对某个设想进行严密的思考,在思维上借助于逻辑推理的形式,把结果推导出来。
(4) 生疑提问训练法
此训练法是对事物或过去一直被人认为是正确的东西或某种固定的思考模式敢于并且善于或提出新观点和新建议,并能运用各种证据,证明新结论的正确性。这也标志着一个学生创新能力的高低。训练方法是:首先,每当观察到一件事物或现象时,无论是初次还是多次接触,都要问“为什么”,并且养成习惯;其次,每当遇到工作中的问题时,尽可能地寻求自身运动的规律性,或从不同角度、不同方向变换观察同一问题,以免被知觉假象所迷惑。
(5) 集思广益训练法
此训练法是一个组织起来的团体中,借助思维大家彼此交流,集中众多人的集体智慧,广泛吸收有益意见,从而达到思维能力的提高。此法有利于研究成果的形成,还具有潜在的培养学生的研究能力的作用。因为,当一些富个性的学生聚集在一起,由于各人的起点、观察问题角度不同,研究方式、分析问题的水平的不同,产生种种不同观点和解决问题的办法。通过比较、对照、切磋,这之间就会有意无意地学习到对方思考问题的方法,从而使自己的思维能力得到潜移默化的改进
I. 高一数学常用的逻辑方法
高考试题主要从以下几个方面对数学思想方法进行考查:
①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等;
②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等;
③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和演绎等;
④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想等。
要了解具体的内容,告诉我你的邮箱,给你发过去
J. 逻辑思维的方法有哪些
逻辑思维的方法有哪些?我来回答,逻辑思维方法是人类思维的一种基本的方法,是逻辑思维的活动程序和格式,是在概念的基础上进行判断、推理的思维方法,也是人们获得间接性的知识或探求新知识的逻辑工具。 明白常用的逻辑思维方法,是我们进行逻辑思维的前提。那么常用的逻辑思维方法有哪些?
常用的逻辑思维方法
假设法
假设法就是对于给定的问题,先做一个或多个假设,然后根据已知条件来分析,如果与题目所给的条件矛盾,就说明假设错误,然后再用其它的假设。
排除法
排除法:已知在有限个答案中,只有一个是正确的,对于一个答案,不知道它是否正确,但是知道这个答案之外的其它答案都是错误的,所以推断这个答案是正确的。
着名侦探福尔摩斯说过:“当排除了所有其它的可能性,还剩一个时,不管有多么的不可能,那都是真相。”
反证法
反证法是“间接证明法”一类,是从反面的角度的证明方法,即:肯定题设而否定结论,从而得出矛盾。具体地讲,反证法就是从反论题入手,把命题结论的否定当作条件,使之得到与条件相矛盾,肯定了命题的结论,从而使命题获得了证明。
常见步骤:
第一步:假设命题结论不成立,即假设结论的反面成立。
第二步:从这个命题出发,经过推理证明得出矛盾。
第三步:由矛盾判断假设不成立,从而肯定命题的结论正确。