1. 线性代数的特征值求法
这种方法并不比化简行列式慢有些行列式难求,那么直接求三次方程也是个快速的办法。
因为特征值一般比较简单,所以三次方程也可以快速写成因式相乘的形式的。
这题求得的三次方程式入^3+6入^2+11入+6=0.
通过特殊值,可以轻易知道入=-1时方程成立。
那么三次方程肯定能抽出(入+1)
可以变为入(入^2+6入+5)+6(入+1)=0
(入+1)(入^2+5入+6)=0
(入+1)(入+2)(入+3)=0
可以看出来
2. 求代数式的值的一般步骤是:---
代数式化简与求值
1.代数式的值:用数值代替代数式里的字母,按照代数式里的运算符号,计算出的结果就是代数的值。
2.求代数式的值的一般步骤
(1)代入,将指定的字母数值代替代数式里的字母,代入数值时,必须将相应的字母换成数值,其他的运算符号、原来的数字都不能改变,对原来省略的乘号应还原。
(2)计算,按照代数式指明的运算计算出结果,运算时,应分清运算种类及运算顺序,按照先乘除,后加减,有括号的先算括号的顺序进行。
3.求代数式的值的一般方法:
(1)直接带入求解
(2)消元代入法:如果代数式中有两个或两个以上的不同字母,且条件中没有给出这几个字母各自确定的值,直接代入计算就会有一定的困难,但由于条件中已给出这几个字母的和差倍关系,那么,可设其中一个字母来表示其它字母,然后代入计算,这种求代数式的值的方法,叫做消元代入法。
(3)整体代入法:将已知条件作为一个整体,代入经过化简整理后的代数式中,求代数式的值这种方法叫做整体代入法。
4.求代数式的值的方法:
(1)比例系数法(设k法):对于比例式,可设定一个比例系数,并将比例式中各字母都转化为用比例系数表示的代数式,再代入所求代数式中化简求值,这种方法叫做比例系数法。 (2)特殊值法:根据题目条件选择允许的特殊值代替字母,这种方法叫做特殊值法。
3. 数学上什么叫特值法
特值法也就是特殊值法,就是在用一般方法解不出答案是,用以特殊的数值带入问题求解,这个你是几年级的,我看看能给你举什么例子,有些例子你可能不懂
4. 什么是特值法
特值法是一种非常有效的解题方法
胡老师中小学数学
特值法是数学解题中运用的非常多的一种方法,在数学的解题中经常运用的到。
在用特值法的时候,一定要注意所取的特值必须要符合题目的条件,虽然是特值但有不能任意取值,必须要符合题目的限定条件。
一般能用特值法求值的题目通常是给出了一个取值范围,我们在取值的时候一定要在这个范围内去取值,然后去分析和运算,通常所要求得到的结论也只是一个范围,所以在与不等式或范围相关的题目中可以考虑用特值法来分析和解答。
在运用特值法解题的时候,为了防止所取的特值具有特殊性和意外性,可以多娶几个特值进行分析和运算,以便得到准确 的结果。特值法在客观题,也就是选择题和填空题中运用的比较多,在解答题中因为需要有运算和论证的过程,一般不太适用。
特值法用法举例:
特值法在判断题中的应用:
我们知道,判断一个结论正确需要经过严谨的分析和证明的过程,但需要证明一个结论是错误的,只需要举出一个特例即可,所以特值法在判断题中运用的比较多。
举个简单的例子:
一道初一的判断题:互为补角的两个角,肯定有一个角是钝角,有一个角是锐角。
分析:先来回忆补角的概念,如果两个角之和为180度,那么这两个角互为补角。这个判断正确吗?大眼一看,好像没什么问题,但仔细思考,发现存在一个特例,如果这两个角都是直角呢?满足条件,但不满足结论,所以结果就是错误的。就用一个特值就作出了最终的判断。
特值法在代数式大小比较的题目中经常用特值法:
看一道简单的例题:
分析:
给出了m 的范围,要比较含有m 的三个代数式的值,对于这个题目如果直接取比较,过程有些繁杂,那么针对这个题目就可以用特值法来解答。m取值是在0到1之间,那么我们就可以给m赋一个0到1之间的值,所取的特值要尽量简单,方便运算,那么针对这个题目我们可以给m取一个特值,然后分别代入需要比较大小的代数式中求值再进行比较,将代数式大小比较转化为实数大小比较。
特值法在不等式组字母参数问题中的应用
看一道例题:
这是一道非常经典的不等式字母参数问题。
既然是不等式,那么就需要先去解不等式组,表示出解集,这个不等式组比较特殊,第二个不等式含有字母参数m。先解第一个,得到x>1,第二个也不用解,就为x<2m+2,再结合题目已知条件,不等式组有解集,则可以得到解集的范围为1<x<2m+2。
不等式组的正整数解是2,3,4,说明2,3,4,在1<x<2m+2这个范围内,这个不等式组的解集的左端点是确定的,现在需要来确定右端点的范围。既然2,3,4,在这个范围内,那就说明2m+2肯定要比4大,比5小。
那就说明2m+2肯定要比4大,比5小呢?这是这个题目的关键。
此时可以用特值法来分析和判定,若2m+2<4,则正整数4就不在解集的范围内,不合题意。那么2m+2能取到4吗?这是本题目的一个易错点,假设2m+2=4,则原不等式组的解集就是1<x<4,正整数4依然不在解集的范围内,所以2m+2不能取到4,只能大于4,则得到关于m的第一个不等式2m+2>4;
再来看看2m+2与5的关系。2m+2能取到5吗?假设2m+2=5,则原不等式组的解集就是1<x<5,正整数4在解集的范围内,所以2m+2可以取到5;那么2m+2能大于5吗?若2m+2>5,则正整数5就在解集的范围内,比原来多了一个正整数解,不合题意。所以就得到了关于m的第二个不等式2m+2≤5.
最终得到关于m 的不等式组解不等式组即可。
对于这个题目的分析,也可以借助数轴来分析,确定m的取值范围,但有一点,要确定是否能取等号时还是需要取特值去分析和判断。
特值法在不定方程中的应用
看一道练习题
这是一道二元一次方程,两个未知数,但只有一个方程,有无数组解,但题目中还有另外一个条件,x和y均为正整数,则就限定在一定的条件内。对于这个题目的解答,我们可以先对式子进行变形,然后结合代数式的特征,依次取特值进行计算。
特值法在函数中的应用
来看一道二次函数图像与x轴交点位置判断的题目:
判断函数图像与x轴交点的个数和位置,按照正常的思路,另y=0,得到关于x的一元二次方程,解这个方程求出x的值即可。但分析题目发现,这个函数表达式含有字母参数m,所以不能直接得到具体的数值,即便是最终求出x,还带有字母参数,判断起来比较繁琐。怎么办?发现题目中给出了a的取值范围a>1,根据这个条件,我们给a去个特值,为了方便运算,就取a=2,代入进行计算即可。
恰当、巧妙运用特值法解题可以让很多运算过程比较复杂的题目运算能简单些,可以提高我们的做题速度和效率。但在运用特值法时一定要结合具体条件和限定,合理取值
5. 如何用特值法求函数的解析式
二次函数一般形式:y=ax2+bx+c
(已知任意三点)
顶点式:y=a(x+d)2+h
(已知顶点和任意除顶点以外的点)
有的版本教材也注
原理相同
例:已知某二次函数图像顶点(-2,1)且经过(1,0),求二次函数解析式
解:设y=a(x+2)2+1
注意:y=a(x-d)2+h中d是顶点横坐标,h是顶点纵坐标
由于
二次函数图像过点(1,0)
因此
a*3的平方+1=0
解得a=-1/9
所以所求作二次函数解析式为
y=-1/9(x+2)2+1
(此题是样题,所以就不进一步化简成一般形式)
两根式:已知函数图像与x轴两交点与另外一点
首先必须有交点(b2-4ac>0)
y=a(x-x1)(x-x2)
其中x1,x2是图像与x轴两交点
并且是ax2+bx+c=0的两根
如果已知二次函数一般形式和与x轴的一个交点,则可以求出另一个交点
利用根与系数的关系
例:y=x2+4x+3与x轴的一个交点是(-1,0),求其与x轴的另一交点坐标
解:由根与系数的关系得:
x1+x2=-b/a=-4
则x2=-4-x1=-4-(-1)=-3
所以与x轴的另一交点坐标为(-3,0)
另外将y=ax2+bx+c向右平移2个单位可得
y=a(x-2)2+b(x-2)+c
再向下平移2个单位得:y=a(x-2)2+b(x-2)+c-2
记住:“左加右减
上加下减”
6. 求特征值方法与化简技巧
这个嘛,我也有跟你相同的问题,但是我总结了以下几点可供参考:尽量把一行或一列化成除了一个数其余全是零,这样可以利用代数余子式去掉一行一列化简。尽量让某行或某列相同,可以提出公因子。最后一个实在不行,一般求特征值的行列式都是三行三列,你直接不要化间或者化简到数字最简,然后行列式的值等于零解方程,这个可能方程比较难解,我个人觉得没啥捷径,主要是多做题练习,自己找规律,做多了就自然熟练了
7. 特殊值法,我现在是初三学生,我们班学习好一点的做有些题目都用特殊值法,谁能教我怎么用啊
特殊值法。一种很重要的数学思想。即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。用特殊值法解题要注意所选取的值要符合条件,且易于计算。此类问题通常具有一个共性:题干中给出一些一般性的条件,而要求得出某些特定的结论或数值。在解决时可将问题提供的条件特殊化。使之成为具有一般性的特殊图形或问题,而这些特殊图形或问题的答案往往就是原题的答案。利用特殊值法解答问题,不仅可以选用特别的数值代入原题,使原题得以解决而且可以作出符合条件的特殊图形来进行计算或推理。
8. 什么是特殊值法急!!
数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法。
中文名:特殊值法
外文名:The special value method
应用:数学
综述
又叫特值法,即通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法。若问题的选择对象是针对一般情况给出的,则可选择合适的特殊数、特殊点、特殊数列、特殊图形等对结论加以检验,从而做出正确判断.对于有情况讨论的题目,可以代入相应的特殊值,结合排除法进行。这个特殊值必须满足三个条件:首先,无论这个量的值是多少,对最终结果所要求的量的值没有影响;其次,这个量应该要跟最终结果所要求的量有相对紧密的联系;最后,这个量在整个题干中给出的等量关系是一个不可或缺的量。
例题
已知a,b,c为实数,并且对于任意实数x恒有 |x+a|+|2x+b|=|3x+c| ,则a:b:c_____。
解:令x=-c/3,则 |x+a|+|2x+b|=0
∴x=-a,x=-b/2
∴-c/3=-a=-b/2
∴c=3a,b=2a
∴a:b:c=a:(2a):(3a)=1:2:3
9. 用特值法求函数解析式(高一内容)有什么技巧没有
有
用特殊值发求函数解析式一般是用于求抽象函数的,这个要视具体的题目而定,但是也有一般的取法如下几点知道就可以:
(1)特值一般取0,1,-1,的一些数,一般取0附近的,因为较容易算,而且和题目所求相差不远.
(2)若题目告诉你一个函数f(x)是奇函数,且其定义域包含原点,则有f(0)=0.
(3)求抽象函数解析式还有一种方法就是方程组法:
例题:已知f(x)满足f(x)+2f(1/X)=2X+1,求f(x)的解析式
解:由于原来函数定义域为x不等于0,把原来方程中的x全部换成1/x,可以得到
f(1/x)+2f(x)=2*1/x+1
然后联立两个方程就可以解出f(x)