⑴ 小学生口算训练方法
1、 培养口算兴趣
要提高孩子的口算能力,培养兴趣是不能少的,如果孩子讨厌口算,那就算是有一百种提高方法,对孩子来说还是一点用都没有。对于低年级的孩子来说,培养孩子的口算兴趣,可以采用生动活泼、富有情趣的口算游戏形式来进行。
这里介绍几种方法,家长们可以一试,和孩子进行抢答、口算接力赛、口算大比拼等,或者进行随时随地的熏陶。形式多样了,孩子的口算兴趣自然更浓了。
例如口算大比拼:妈妈做裁判,孩子和爸爸进行比赛。妈妈快速的念出题目,孩子和爸爸抢答,回答正确者得分,赢了会有奖励;或者超市购物时,可以让孩子去算账;又或者孩子看书的时候问孩子今天从哪页看到哪页,共看了多少页……在这些形式的潜移默化下,让口算走到了生活中,变成一件孩子觉得是有趣而快乐的事。
2、 大声读题
口算练习时可以让孩子大声地读口算题,刚开始可能会有些慢,可重复几遍,不断提高速度,同时记录每一遍练习的时间,以便对比,了解孩子的进步情况。经过这样的读算训练,使孩子熟练到不需要思考不需要背口诀就能快速地计算,还可以训练孩子的反应能力和计算速度,促使他们的注意力高度集中。此外,在孩子快速口算的过程中,不妨打乱口算题的顺序,让孩子能够根据不同的口算题,灵活地使用口算方法,使口算合理、灵活、迅速,逐渐锻炼孩子思维的敏捷性。
3、 说说怎么算
口算练习时可以挑出几道口算题让孩子说说是怎么算的,看看孩子对口算算理是否清楚明白,这是正确、快速口算的基础,同时也避免了机械的口算练习。低年级口算一般用凑十凑百或口诀等方法,当孩子学会一些口算方法之后,就可以集中注意力,激发他们的口算兴趣,对以后的口算练习有一定的帮助,也更为方便了。
4、 坚持每天练习
培养孩子口算能力,要重在平时,贵在坚持,保证孩子口算练习的时间,最好天天练,每天练习3-5分钟。另一方面,每天口算训练的内容要尽量与当天所学内容有机结合,这样才会起到很好的巩固作用。
5、 良好的口算习惯
口算中出现的错误,大多都是孩子粗心大意等不良习惯造成的。因此,良好的习惯是提高计算能力的保证。因此养成良好的的口算习惯是十分重要的。
1.看清楚;
一二年级学生在口算过程中,常常会出现这样那样的错误。如,有时看错数字,有时看错符号。因此,做题前,先要完整地看清每个数字和每个符号。
2.想明白;
看到口算题,孩子脑海里要迅速的闪过所选择的运算方法的具体步骤。
3.算仔细;
一二年级孩子很容易加法忘了进位,减法忘了退位;或者加法当减法做,因此在确定运算步骤后,要认真地进行计算。即使是简单的口算,也要谨慎。
练习(保存图片格式可打印)
⑵ 怎样练习口算
1、口算练习要经常练口算练习一要天天练、课课练。
可以在每堂课开头先安排2~3分钟,口算20~30道题,日积月累才能形成学生的口算能力。二要视算、听算结合练。视算有一定的直观性,听算在脑中反映题目与计算过程,两者结合,手、脑、口、眼并用,提高口算能力。三要形式多样变化练。要针对儿童特点,形式要多样化,以此激发学生兴趣,调动他们的积极性,并尽量让全体学生参与。
2、加强算理教学。
从小学生的思维特点看,小学生数学要经过从具体到抽象,又从抽象到具体的过程。所以,要掌握口算方法,关键是理解算理。以新授9+3=?为例。学生通过操作小棒得出计算过程,并要求学生详细说出计算过程:因为9加1得10,把小数3分成1和2,9加1得10,10再加2得12,这是具体题目9+3的计算。然后,经过一段时间的计算练习后,师生共同找出规律,让学生形成一种简缩思维:9加1得10,把小数3分出1剩2得12,这是从具体到抽象。最后,省略思维过程,直接得9+3=12,又从抽象到具体。这样使学生理解和掌握计算方法,保证初级口算正确,通过以后的练习,就可以达到一定的熟练程度。
3、要注意练习设计的合理性。
低年级学生口算能力形成的心理过程,可以分为三个阶段。第一阶段是能正确地以表象为中介抽象地口算,能按照口算方法一步步清晰地思考。第二阶段是降低表象的清晰度,提高口算的速度。第三阶段是无意识口算,使口算自动化。 在第一阶段,我们要注意控制练习量,放慢口算速度,确保口算准确以及口算思考过程的清晰度。主要采用口算口答形式,注意多让学生讲讲口算的思考过程,使每个学生清晰地认识到算什么,怎样算以及为什么这样算,为进一步形成口算能力打下基础。 在第二阶段,我们适当增加口算练习量,逐步提出限时口算的要求,并针对错误率高的算式进行重点练习,主要采用口算笔答形式。 在第三阶段,坚持每天2~3分钟口算基本训练,并根据遗忘规律,新旧知识结合练,巩固已形成的口算能力。
4、口算训练要突出重点,突破难点,对症下药,并注重算法指导。
在口算训练中,应精先习题,有的放矢,边计算边让学生说说如何计算出结果的?有没有更简便的方法?从口算题中你学会了什么?这样,既面对了全体学生,又照顾到中差生,起到了事半功倍之效。如:一年级学生对15-4=11与14-5=9两种类型的题目容易混淆,放在一起对比练,并要求学生比较两道题的不同;口算中经常出错的题如6+3,7+2,4+3,8-2,9-7等反复练;9+4+1=?告诉学生先算9+1得10,再算10加4得14比较简便;9乘几的积就等于几十减几等等。
5、重视练习效果的反馈。
为了及时掌握口算情况和效果,我们应按照教学要求,拟定口算能力量化标准,利用这个量化标准及时反馈,及时调控。如明确告诉学生每次口算练习所要达到的标准,并及时鼓励,及时纠错,及时督促,不断激发学生练习口算的动机,从而最大限度地调动全体学生口算练习的积极性与主动性。
⑶ 小学数学快速计算方法是什么
一、加法交换律与加法结合律
加法交换律:
两个数相加,交换加数的位置,它们的和不变。即a+b=b+a
一般地,多个数相加,任意改变相加的次序,其和不变。
a+b+c+d=d+b+a+c
加法结合律:
几个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个数相加,再与第一个数相加,它们的和不变。即:a+b+c=(a+b)+c=a+(b+c),
二、速算与巧算中常用的三大基本思想
1、凑整(目标:整十整百整千...)
2、分拆(分拆后能够凑成整十整百整千...)
3、组合(合理分组再组合)
三、常见方法
凑整法
两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的"补数",利用"补数"巧算加法,通常称为"凑整法"
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,
在上面算式中,1叫9的"补数";89叫11的"补数",11也叫89的"补数"。也就是说两个数互为"补数"。
对于一个较大的数,如何能很快地算出它的"补数"来呢?一般来说,可以这样"凑"数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如:87655→12345,46802→53198,87362→12638。
利用"补数"巧算加法,通常称为"凑整法"。
巧算下面各题:
①36+87+64
②99+136+101
③1361+972+639+28
解:
①式=(36+64)+87=100+87=187
②式=(99+101)+136=200+136=336
③式=(1361+639)+(972+28)=2000+1000=3000
魏德武速算
魏氏速算它可以不借助任何计算工具在很短时间内就能使学习者,用一种思维,一种方法快速准确地掌握任意数加、减、乘、除的速算方法。从而达到快速提高学习者口算和心算的速算能力。
1、加法速算:计算任意位数的加法速算,方法很简单学习者只要熟记一种加法速算通用口诀——“本位相加(针对进位数)减加补,前位相加多加一”就可以彻底解决任意位数从高位数到低位数的加法速算方法,比如:
(1),67+48=(6+5)×10+(7-2)=115;
(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。
2、减法速算:计算任意位数的减法速算方法也同样是用一种减法速算通用口诀——“本位相减(针对借位数)加减补,前位相减多减一”就可以彻底解决任意位数从高位数到低位数的减法速算方法,比如:
(1),67-48=(6-5)×10+(7+2)=19;
(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。
以上内容参考网络-数学速算法
⑷ 口算心算的速算方法是什么
1、加大减差法:前面加数加上后面加数的整数,减去后面加数与整数的差等于和。
2、减大加差法:被减数减去减数的整数,再加上减数与整数的差,等于差。
3、互补两个数的差:两位互补的数相减,被减数减50乘以2;三位互补的数相减,被减数减500乘以2;四位互补的数相减,被减数减5000乘以2,以此类推。
4、数字位置颠倒两个两位数的和:一个数的十位数加上它的个位数乘以11等于和。
(4)小学生快速口算的方法扩展阅读:
破十法即:当个位不够减时,就用10减去减数,剩下的数和个位上的数相加,即破十法。
破十法口诀
十几减九,几加一;十几减七,几加三;十几减五,几加五;十几减三,几加七;十几减八,几加二;十几减六,几加四;十几减四,几加六;十几减二,几加八。
⑸ 口算有什么快速方法呢
1、十位数是1的两位数相乘
乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。
2、个位是1的两位数相乘
十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。
3、十位相同个位不同的两位数相乘
被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。
4、首位相同,两尾数和等于10的两位数相乘
十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。
5、首位相同,尾数和不等于10的两位数相乘
两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。
⑹ 三年级数学快速口算方法
只要熟练掌握计算法则和运算顺序,根据题目本身的特点,使用合理、灵活的计算方法,化繁为简,化难为易,就能算得又快又准确。先为大家介绍5个速算技巧:
1. 方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
例如:
23-11+7=23+7-11
4×14×5=4×5×14
10÷8×4=10×4÷8
2. 方法二:结合律法
加括号法
(1)在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
例如:
23+19-9=23+(19-9)
33-6-4=33-(6+4)
(2)在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
例如:
2×6÷3=2×(6÷3)
10÷2÷5=10÷(2×5)
去括号法
(1)在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加)。
例如:
17+(13-7)=17+13-7
23-(13-9)=23-13+9
23-(13+5)=23-13-5
(2)在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)
例如:
1×(6÷2)=1×6÷2
24÷(3×2)=24÷3÷2
24÷(6÷3)=24÷6×3
3. 方法三:乘法分配律法
分配法
括号里是加或减运算,与另一个数相乘,注意分配。
例如:
8×(5+11)=8×5+8×11
提取公因式法
注意相同因数的提取。
例如:
9×8+9×2=9×(8+2)
4. 方法四:凑整法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦,有借有还,再借不难嘛。
例如:
99+9=(100-1)+(10-1)
5. 方法五:拆分法
拆分法就是为了方便计算,把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。
例如:
32×125×25
=4×8×125×25
=(4×25)×(8×125)
=100×1000
要想让孩子熟练运用速算方法,需要通过持之以恒的练习,提升计算能力,这样,无论平时做作业还是考试都能游刃有余。
建议家长每天抽出5分钟时间,帮助孩子进行口算练习,培养孩子快速、准确口算的能力。在练习过程中,也要记录好用时,做完后马上核对正误,并分析做错的原因。