⑴ 怎样学好初一数学我学起来有点吃力啊以后我该怎么办,求学习方法
数学呢,是一个研究数量,结构变化和空间模型等等的含义的一种科学方式,它是物理化学等科目的基础.而且和我们的日常生活有着很大的关联,所以说,学好数学对于我们每个人来说都是非常重要的.下面就向大家来介绍一下怎么学习初中数学吧!
学习数学还必要的,因为数学是从幼儿园开始就接触的科目,如果说不会数学,那不是太丢人了吗?以下就是关于怎么学习初中数学的技巧:
积极做题
二:考试时的技巧
如果你是想得高分的话,你需要在选择填空,还有计算题上是绝对不能丢分儿的,所以这需要你谨慎的做题.如果是一开始不知道一道题该怎么做,但是后来突然明白的那一种,千万要冷静,不能瞎写,要先在草稿纸上写一遍,最后再放在答题纸上.
以上就是关于怎么学习初中数学的一些技巧.希望大家是可以理解的.其实学习数学并不难,重要的是要多做题.并且了解题型的技巧.
⑵ 请教学习初中几何/代数方法
链接: https://pan..com/s/1EhMqLsqKxRh94pmcYqyJng
⑶ 数学初一年级历届试卷与答题技巧
如何提高学生的解题能力,学生要想学好数学,必须进行解题练习,而解题的方法往往是多样的,灵活的,只有在完成一定数量习题的基础上,进行归纳和总结,才可以掌握解题的一般方法和技巧。
一、正确理解基本概念及性质。学习了用字母表示数以后,有一些同学认为a一定是正数,-a是负数只所以出现这种错误,就是因为对正数、负数和代数式的概念没有正确理解;有的同学解“-2x>3”时错解成“x>-3/2”是由于对不等式的基本性质不熟悉造成。
二、培养学生的学习兴趣,深入探讨习题。数学是双边的活动,只有教师的教没有学生的学,只会水过鸭背,不起效果。充分调动学生的主观能动性,调动学生配合老师上课是关键,通过教师的导与学生的练,同学互相讨论,加强对问题的研讨,归纳和总结。
三、要让学生学会解题的基本方法。解题的思想方法,在初中阶段通常有综合法、分析法、反证法等。利用综合法解题,考虑问题是从已知条件出发,逐步推导出未知;而利用分析法则以未知条件出发,逐步推导出解决问题所需的已知条件,探索由已知向未知的道路,这两种方法一般题目的条件较少,难度较低时运用,对于较为复杂综合性的题目,我们应学会分析和综合法,同时以已知及未知条件出发,寻求解题途径即所谓的分析综合法。解题是有方法的,但没有一种应付各种一成不变的方法,我们不应死记各种类型题的解法,应该培养自己的分析能力,善于分析各种问题的特点能以题目的特点出发,探索解题的方法,以而积累解题经验。
四、教会学生注意解题技巧积累。一些难度中上的题目,一般需要一些处理过程才可应用书本的有关知识解决。例如几何中的 辅助线问题通常结合定理进行,运用不同定理解题的技巧也不同。又如代数学生若不理解并熟记一些解题技巧,即使概念定理、公式学得再熟,也难以用得上,这只能解一些较为基础的题。因此要想做好难题,技巧题的笔记是有必要的,这样能加深各种类型题的认识。
五、培养学生良好的思维习惯,通过练习巩固知识,思维的严密性是思维能力的重要方面,在解题中不考虑得周密则顾此失彼,妨碍了数学水平的进一步提高,不少学生在教师评讲完试卷后总觉得自己懂得解题知识却不会解题方法,就认为自己笨,理解能力差,却没从自己的学习方法去找原因,知识是有层次,还未达到灵活运用层次,因此遇到一些陌生的题目就束手无策,要真正把握知识,只有通过适量的练习加以认识巩固,找出知识的内涵和外延,从而在解题过程联系上已学的有关知识,再构思解题思路方法,平时多积累不同类型的解题经验,才能在考试中提高解题效率和准确性,从而得心应手。
总之,要想提高学生的解题能力,必须做到记忆基础知识——应用练习——综合巩固提高——总结方法技巧,提高升华,要有钻研精神及决心毅力,并做好解题方法摘录,积累解题经验,提高解题效率。
⑷ 我是刚上初一的新生,该怎样学好数学呢,代数式该怎么学
运算是学好数学的基本功。在面对复杂运算的时候,常常要注意以下两点:
(1)情绪稳定,算理明确,过程合理,速度均匀,结果准确;
(2)要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。
理解和记忆数学基础知识是学好数学的前提。一是知识的形成过程和表述;二是知识的引申及其包含的数学思想方法和数学思维方法。
3.数学解题
学数学没有捷径可走,保证做题的数量和质量是学好数学的必经之路。
"温故而知新",把一些比较"经典"的题重做几遍,把做错的题当作一面"镜子"进行自我反思,也是一种高效率的、针对性较强的学习方法。
4.数学思想
数学思想与哲学思想的融合是学好数学的高层次要求。
⑸ 初一代数式找规律的技巧
“找规律”是从特殊到一般的归纳性思维训练。初一代数式找规律的问题,通常有根据所给数字找规律和根据所给单项式找规律。解答这种问题主要技巧是把数字和对应的序号n联系在一起,从第1个、第2个、.....逐渐到第n个,找出序号n与数字的对应关系,规律就找到了。
一、根据所给数字找规律,列出代数式:
例如:1 , 3 ,5 , 7, 9, ......
序号:1 2 3 4 5 ......
数字找规律,可以先观察,猜想,然后逐一尝试。观察所给的几个数,数字是序号的2倍减去1,猜想是2n-1,再试验看下几个是否适合,下面的数是11,13,......,当n=6时,2×6-1=11;当n=7时,2×7-1=13;......,适合。这就可以确认这组数字的规律是2n-1.
其实这是一种合情推理。
可以练习如下问题:(1)1 ,4, 7,10,......
(2)1,4,9,16,25,36,......
关于你的问题:如2,8,18。。。。。怎么转化成代数式通式?其实就是2×1,2×4,2×9,......
1,4,9,.....,都是完全平方数,是n^n,每项都乘2就可以了。那就是2n^n.
二、根据所给单项式找规律.
例如:-2x,4x²,-8x³,16x^4,-32x^5,......
序号:1 2 3 4 5 ......
这类问题要把系数和字母部分分开考虑。
系数是:-2,4,-8,16,-32......
序号是:1 2 3 4 5 ......
系数绝对值的规律是2^n.
负号用(-1)来控制。这里第1、3、5、.....奇数项是负号,偶数项是正号。这样在系数项前面乘以(-1)^n即可。这样系数部分就是(-1)^n×2^n.
字母部分:都含有字母x,指数部分依次是1,2,3,4,5,......,正好和序号相同。那字母部分就是x^n.
于是规律就找到了:(-1)^n×2^nx^n.
三、再有就是应用题。需要根据题意分析,转化成数字问题或者代数式问题。
例如:n条直线最多将平面分成几部分?
1条直线最多将平面分成2个部分;2条直线最多将平面分成4个部分;3条直线最多将平面分成7个部分;现在添上第4条直线.它与前面的3条直线最多有3个交点,这3个交点将第4条直线分成4段,其中每一段将原来所在平面部分一分为二,所以4条直线最多将平面分成7+4=11个部分.
.
完全类似地,5条直线最多将平面分成11+5=16个部分;6条直线最多将平面分成16+6=22个部分;7条直线最多将平面分成22+7=29个部分.
......
一般地,n条直线最多将平面分成2+2+3....+n=1/2(n²+n+2)
供你参考。
⑹ 浅谈初中数学常用求代数式值方法
大家通常会认为小学数学只是加减乘除的累积,是一门理性的学科,只重视了表面的数字运算,却很容易就忽视了数学与其他科目之间的联系,以及小学数学对孩子逻辑思维能力的训练。逻辑思维能力并不像人们想象的那样固化,它是可以通过后期培养的,并且会逐渐成为帮助人们理清思路解决问题的法宝之一。
一、什么是数学思维能力?
思维是人脑对客观事物的一般特殊性和规律性的一种间接的、概括的反映过程。数学思维是对数学对象(空间形式、数量关系、结构关系等)的本质属性和内部规律的间接反映,并按照一般思维规律认识数学内容的理性活动。
二、培养数学思维能力的各种好处
首先,对孩子来讲,良好的数学思维能力可以帮助他们快速获取新知识、更好地进行创造性学习,也属于智力发展的核心;对教师来讲,培养孩子的数学思维能力能够有效提高教学效益。为了教师和学生之间实现更加高水平的教、学平衡,提高学生数学思维能力刻不容缓。当然,习惯不是三两天就能养成的,更何况数学思维习惯,它的养成需要落实到平时的学习生活中去,从思维品质的形成开始。
4、培养思维的广阔性
思维的广阔性是指对一个问题能从多方面考虑。具体表现为对一个事实能作多方面的解释,对一个对象能用多种方式表达,对一个题目能想出各种不同的解法。在数学学习中,注重多方位、多角度的思考方式,拓广解题思路,可以促进学生思维的广阔性。
5、培养思维的批判性
思维的批判性是指思维活动中善于严格地估计思维材料和精细地检查思维过程。在数学学习的过程中,学生要善于从已有的答案和解题过程中提炼出自己想要的东西,发表自己的见解。不能一味盲从,要学会用批判性的思路去进行各种方式的反思和检验。就算思想上完全接受了东西,也要谋改善,提出新的想法和见解。
以上五种思维品质是提高数学思维能力的必要途径,但大家切勿忽视了一点,就是这五大思维品质之间的紧密联系,不可分一而行,否则会很被思维定势所牵制,出现机械套用之前思维模式的倾向,并且同一种方法使用的次数越多,这种倾向就会越明显。
我们就如何养成学生良好的数学思维习惯,讨论了五种主要的思维品质及培养方法。而这五种思维品质是最为重要的。它们之间互相联系,密不可分。除了严谨性、广阔性、灵活性、批判性,还有探讨性、独创性、目的性等。
⑺ 初一找规律的数学题及解题方法技巧
一、基本方法——看增幅
(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2
(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。如增幅分别为3、5、7、9,说明增幅以同等幅度增加。此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;
2、求出第1位到第第n位的总增幅;
3、数列的第1位数加上总增幅即是第n位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.
(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
⑻ 初中数学做题技巧
掌握了中学数学这9种常用解题方法,中考数学考试就游刃有余了。
1、配方法:就是把一个解析式利用恒等式变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法:就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分租分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法:是数学种一个非常重要而且应用十分广泛的解题方法。通常把未知数或变数成元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元法去代替原式子的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c属于R,a!=0)根的判别式不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一个根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法:在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的重要方法之一。
6、构造法:在解题时,常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法:是一种间接证明法,先提出一个与命题的结论相反的假设,然后从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法与穷举反证法。
8、等(面或体)积法:平面(立体)几何中讲的面积(体积)公式以及由面积(体积)公式推出的与面积(体积)计算有关的性质定理,不仅可用于计算面积(体积),而且用它来证明(计算)几何题有时会收到事半功倍的效果。运用 面积(体积)关系来证明或计算几何题的方法,称为等(面或体)积法,它是几何中的一种常用方法。用归纳法或分析法证明几何题,其困难在添置辅助线。等(面或体)积法的特点是把已知和未知各量用面积(体积)公式联系起来,通过运算达到求证的结果。所以用等(面或体)积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置辅助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法:在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。几何变换包括:平移;旋转;对称。
⑼ 怎样学好初一代数
”因此对于我们每一个刚刚升入初中的同学来说,都希望自己能学好数学。如何顺利完成好小学到中学的过渡。学好初一代数,下面向大家提一些建议和希望。
一、要不断培养学习数学的兴趣和求知欲望
许多同学在小学都曾有过这样的感受,每当你认识了一个数学规律,解决了一个较难的应用问题,成功的喜悦是无法用别的东西来替代的,它激励你的学习热情和好奇心,越学越爱学。学习的兴趣和求知欲是要不断地培养的,况且同学们刚刚迈进“数学王国”的大花园里,许多奥妙无穷的数学问题还等着你们去学习、观赏、研究。
二、要养成认真读书,独立思考的好习惯
过去有些同学认为:学习数学主要是靠上课听老师讲明白,而把我们手中的数学课本仅仅当成做作业的“习题集”。这就有两个认识问题必须要解决。一是同学们要认识到,我们的教科书记载了由数学工作者整理的、大家必须掌握的基础知识,以及如何运用这些知识解决问题等。因此,要想真正获得知识,认真读书、培养自学能力是一条根本途径。我们希望同学们在中学老师的指导、帮助下,从过去不读书、不会读书转变为爱读书、学会读书,进而养成认真读书的好习惯;二是同学们还要认识到,许多数学问题不是单靠老师讲明白的,主要是靠同学们自己想明白的。孔子日:”学而不思则罔,思而不学则殆。”这句话极力精辟地阐述了学习和思考的辩证关系,即要学而恩、又要思而学。大家学习数学的过程主要是自己不断深入思考的过程。我们希望大家今后在上数学课时。无论老师讲新课,还是复习、讲评作业练习,都要使自己的注意力高度集中,边听边积极思考问题,捕捉有用的信息,随时抓住萌发出的灵感。对于没弄明白的问题,一定要及时、主动去解决它,直到弄懂为止。
到了初一,与小学学数学的一个很大的不同是要学习许多数学概念,特别是学第二章有理数。由于数学概念是我们进行判断、推理的依据,是解题的基础,所以一定要准确地理解它们。虽然数学概念往往比较抽象,但它又是从实际生活中的具体事例概括提炼出来的,因此大家在学习数学概念(例如正数和负数、数轴、数的绝对值等)时,要注意与生活、生产实际相结合,会从具体的事例中归纳、慨括出该概念的本质,看书时要抓住概念定义中的关键词语,进行思考,理解它的内涵,这样就能把课本读“精”,“钻”进去,并在运用中逐步加深对数学概念的理解和掌握。
我们相信,会有一大批同学,通过培养认真读书的习惯,提高自学能力;通过培养独立思考的习惯,提高思维能力。
《初一代数》(上册)的数学内容从整体上看主要是解决从算术进展到代数这个重要的基本课题。我们认为主要体现在以下两个方面。一方面是“数集的扩充”,即引进负数,把原有的算术数集合扩充到有理数集合;另一方面是解代数方程的原理和方法,即从用字母表示数,到用“列方程”取代“列算式”解应用问题。
数集的每一次扩充都是解决实际问题和解决数学自身矛盾的需要。有理数概念的建立,有理数性质的介绍,有理数运算法则的规定,这一切都为同学们进一步学习代数做了必要的准备。同学们在学习有理数一章时,希望大家要有意识地培养自己逻辑推理能力,使自己会观察、比较、分析、综合、抽象和概括,会用归纳和类比的方法进行推理。另外要特别重视提高运算能力,有过硬的运算基本功。为此,不仅能根据法则、运算规律、公式等正确地进行运算,而且理解运算的算理,能够根据题目条件,使运算“合理、简捷、准确”。
为了解决用算术方法解应用题的局限性,人们想出用字母表示未知数,把问题中的相等关系平铺直叙地用代数方程式表达出来。由于表示未知数的字母也是数,因此,它们也可以按照数的运算的通性、通法进行运算,从而求得未知数所应有的值。同学们要充分注意这一“历史性”的突破。为此,不仅要熟练掌握含数字的算术的变形和计算,更要切实掌握好含字母的代数式(目前主要是整式)的变形和计算,解方程的基本方法和步骤,这一切都是为列方程解应用题而展开的。通过列方程解应用题的学习,体会如何把实际问题抽象成数学问题,用方程思想处理数学问题,形成用数学的意识,培养我们自己分析问题和解决问题的能力。
四、改进学习方法,把握好数学学习的每个环节
许多数学学习好的同学,他们都有符合本人实际的学习方法,能较好地把握数学学习的各个环节。诸如每个阶段能制定学习计划;课前认真自学、预习数学课本;带着“问题”专心上好每节数学课,积极思维;课后及时复习所学的知识,独立完成作业,认真、及时解决疑难问题,改正作业中出现的错误;每到一个单元结束时,做好复习小结,对知识和解题类型和方法进行系统整理,考前认真进行准备,考后注意总结考试的经验教训;另外坚持参加数学课外小组活动,阅读数学辅导读物等。这些都体现了学习活动的全过程是一个互相联系的有机的系统工程,虽然看起来是老生常谈,但坚持下去决不是一件容易做到的事情。需要有高度的进取精神,刻苦踏实的学习态度,顽强拼搏的学习毅力。我们建议同学们在学习的某一个阶段时着重克服一个缺点,重点解决一个问题。同学之间互帮互学,加强研究、讨论的风气,你追我赶,相互促进,使我们大家能在初一的第一学期为今后的学习打好坚实的基础。
预祝同学们在老师的指导和自己的努力下,使自己的数学学习水平和能力有较大的提高。
⑽ 我初中代数怎么也学不好,请问有什么有什么方法吗
链接: https://pan..com/s/1EhMqLsqKxRh94pmcYqyJng